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Quintessence-like dark matter in spiral galaxies
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Through the geodesic analysis of a static and axially symmetric space time, we present conditions on the state equation of an isotropic
perfect fluid p = ωd, when it is considered as the dark matter in spiral galaxies. The main conclusion is that it can be an exotic
fluid (−1 < ω < −1/3) as it is found for Quintessence at cosmological scale.

Keywords: Quintessence; perfect fluid.

Por medio de un ańalisis de las geodesicas en un espacio axisimétrico y est́atico, obtenemos condiciones sobre la ecuación de estado para un
fluido perfecto isotŕopo,p = ω d, cuandóeste es considerado como la materia obscura en las galaxias espirales. La conclusión principal es
que dicho fluido puede ser exótico, es decir, con−1 < ω < − 1

3
, como se obtiene a escalas cosmológicas dentro del modelo de Quintaesencia.

Descriptores: Quinta-esencia; fluido perfecto.

PACS: 95.35.+d, 95.35.G

There is no doubt about the importance of the mystery con-
cerning the nature of dark matter in the Universe and partic-
ularly in galaxies. The consequences of observations made
on SNIa supernovae [1] have posed challenges to the avail-
able theoretical machinery, and models explaining such phe-
nomena have arisen. Several of them propose exotic types
of matter and therefore unusual equations of state, such as a
Cosmological Constant, Cold Dark Matter models, Dilaton
Fields [2] and Quintessence [3]. However, at the galactic
level there are no models consistent with the cosmological
ones which give some light in the understanding of dark mat-
ter’s nature.

In order to be precise about the problem, let us recall the
situation of the galactic dark matter, for which we confine
ourselves to the observations made by Rubinet al. [4] who
found that, for a few sample of spiral galaxies the interstellar
gas and stars lying far away from the center (in the equato-
rial plane) of the corresponding galaxy behave in a very pe-
culiar way: Their circular velocity seems to be independent
of the radius starting from a certain distance to the galac-
tic center,i.e. the rotation curve profile of a spiral galaxy
is flat outside a central galactic region. It was then inferred
a distribution∼ 1/r2 of non luminous matter (dark matter)
which should contribute to the flatness of the rotation curves.
There exists certain controversy about the flatness of such
curves [5], but in general it is accepted that rotation curves
are flat up to the precision of the measurements, and that this
behavior is observed in large samples of spiral galaxies [6].

The most accepted scenario for a spiral galaxy reads as
follows: it is an object composed by a luminous disc whose
density exponentially decays. At the same time, there is a
dark halo whose density is distributed as∼ 1/r2 [7]. With
these assumptions, an explanation is found for the kinetic be-
havior of gas and stars composing a spiral galaxy, but many
questions remain unsolved. This phenomenological model
describes how the density should behave, but does not tell
what is the nature of dark matter, how was such mixture be-
tween dark and luminous matter formed and under which
laws? If the dark matter is baryonic such as MACHOS for
instance, why does its density have a non exponential distri-
bution as luminous matter density does? If it is non baryonic,
what is it made of, or at least which is its equation of state?
This last question is the one that occupies ourselves in the
present work.

In this letter we proceed in the following way: We assume
that a spiral galaxy lies on a background axysimmetric static
space time which is characterized by the presence of a perfect
fluid with an arbitrary equation of state,i.e., p = ωd beingω
a free function, and then we find conditions overω that permit
flat rotation curves of test particles. Other types of candidates
to dark matter are discussed in Refs. 8 and 9.

First of all it must be clear that our treatment is valid
only in the dark matter dominated region, i.e. where the
rotation curves are flat, and we do not consider the galac-
tic core region. We only consider the external region, and a
complete model should be one where we match this descrip-
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tion to another for the internal region. Some advances have
been made in this direction, considering an oscilaton in the
center [10], or with scalar fields non-minimally coupled to
gravity [11, 12].

In order to explain the observed dynamics of particles in
the luminous sector of the galaxy, the galaxies must be com-
posed by almost 90% of dark matter, distributed in the halo.
We can thus assume that luminous matter does not contribute
in a very important way to the total energy density. That is,
the curvature, the gravitational effects, are due mainly to the
halo, so the luminous matter will be treated as a test fluid, that
is, that it moves in geodesics of the spacetime curved by the
dark matter, but the luminous matter itself does not produce
changes in the curvature.

Finally, the exact symmetry of the halo is still unknown,
but it is reasonable to suppose that the halo is symmetric with
respect to the rotation axis of the galaxy, so we choose the
space time to be axial symmetric.

The line-element of such space-time, given in the Papa-
petrou form is

ds2 = −e2 ψ(dt + ω dϕ)2

+e−2ψ [e2γ(dρ2 + dz2) + µ2dϕ2], (1)

whereψ, ω, γ, andµ, are functions of(ρ, z).
On the other hand, the observed circular velocity of stars

around the galactic center is of the order of 230 Km/s, that
is 7 × 10−4c , where c is the speed of light. If we suppose
that this is also a measure of the rotation of the galactic halo,
such rotation will be too small to generate curvature effects
such as gravitational dragging. Hence, in the region of inter-
est we will consider the space-time to be static as well.

Therefore, we start from the background described by the
following line element:

ds2 = −e2 ψdt2 + e−2ψ[e2γ(dρ2 + dz2) + µ2dϕ2], (2)

which corresponds to an static axially symmetric space-time;
and the coordinatesψ, γ, andµ , are functions of(ρ, z) .

We recall the reader that observations are made upon ob-
jects lying in the galactic equatorial planei.e.z = 0 , thus the
Lagrangian for a test particle travelling on such slide of the
space time described by (2) is

2L = −e2 ψ ṫ2 + e−2ψ[e2γ ρ̇2 + µ2 ϕ̇2], (3)

where dot means derivative with respect to the proper timeτ
of the test particle. Due to the symmetry of the metric, we
have two conserved quantities associated with the energy and
the angular momentum. Also, the Hamiltonian of the sys-
tem is another constant. From this we can perform a dy-
namical analysis upon our system and obtain the canonical
momentums associated with it. This will serve us to give
an expression for the Hamiltonian using a Legendre transfor-
mation which will lead us to the following radial geodesic
motion equation:

ρ̇2 − e2(ψ−γ)

[
E2e−2ψ − L2 e2ψ

µ2
− 1

]
= 0, (4)

whereE, andL, are constants associated with this geodesic
motion along the equatorial plane.

We are interested in circular and stable motion of test par-
ticles, therefore the following conditions must be satisfied

i) ρ̇ = 0, for circular trajectories,

ii)
∂V (ρ)

∂ ρ
= 0, extreme ones,

iii)
∂2V (ρ)

∂ ρ2

∣∣∣∣
extr

> 0, and stable.

being

V (ρ) = −e2(ψ−γ)
[
E2e−2ψ − L2 e2ψ/µ2 − 1

]
.

Recalling thatE and L are constants of motion for
each circular orbit, it is straightforward to obtain expres-
sions for the energyE, angular momentumL, angular veloc-
ity Ω=dϕ/dt and the tangential velocityv(ϕ)=e−2ψµΩ [13],
corresponding to a circular, stable equatorial motion:

E = eψ

√√√√√√√√

µ,ρ

µ
− ψ,ρ

µ,ρ

µ
− 2 ψ,ρ

, (5)

L = µ e−ψ

√√√√√
ψ,ρ

µ,ρ

µ
− 2 ψ,ρ

, (6)

Ω =
e2ψ

µ

√√√√√
ψ,ρ

µ,ρ

µ
− ψ,ρ

, (7)

v(ϕ) =

√√√√√
ψ,ρ

µ,ρ

µ
− ψ,ρ

, (8)

and for the stability condition:

V,ρρ|extr = − 2 e2(ψ−γ)

µ,ρ

µ − 2 ψ,ρ

×
(

µ,ρ

µ
ψ,ρρ − µ,ρρ

µ
ψ,ρ + 4 ψ,ρ

3

−6
µ,ρ

µ
ψ,ρ

2 + 3
(

µ,ρ

µ

)2

ψ,ρ

)
> 0, (9)

where a coma stands for partial derivative.
Notice that equation Eq.(8) allows us to impose a condi-

tion over the tangential velocity of our test particle. Actually,
if we want the rotational curves of galaxies to be model as
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radii independent ones (which is what is observed!), we can
use this expression Eq.(8), derived from a purely geometrical
and dynamical analysis, to do it. Considering the tangential
velocity as constant we can easily solve this equation and ob-
serve that the functionsψ andµ are related by

eψ =
( µ

µ0

)l

, (10)

beingl = const, we obtain a necessary and sufficient condi-
tion for the velocityvc

(ϕ) to be the same for two orbits at dif-
ferent radii, givenl = (vc

(ϕ))2/
(
1 + (vc

(ϕ))2
)
, and Eq. (9)

tells us that this motion is stable. We call Eq. (10) together
with such value ofl theflat curve condition.

We now write the Einstein’s equations

Gαβ = 8πTαβ

for an arbitrary energy momentum tensor for the line ele-
ment (2):

µ(ψρρ + ψzz) + µρ ψρ + µz ψz = 4πµ

×[e−2(ψ−γ) (e−2ψTtt +
e2ψ

µ2
Tϕϕ) + Tρρ + Tzz], (11)

µρρ + µzz = 8π µ [Tρρ + Tzz], (12)

γρ µρ − γz µz − µ (ψρ
2 − ψz

2) + µzz = 8 π µ Tρρ, (13)

γρ µz + γz µρ − 2 µψρ ψz − µρz = 8 π µ Tρz. (14)

The flat curve condition(10) is introduced in order to have
flat tangential curve velocities. This condition is valid on the
equatorial plane. Nevertheless, the halo is expected to be al-
most spherically symmetric, that means that if we know the
functional dependence of the gravitational potential on the
equatorial plane, this dependence should be the same one in
almost the rest of the halo. In that case it is reasonable to
suppose that theflat curve condition(10) is valid in a region
around the equatorial plane. Thus, in this region we substitute
the relation (10) into the left hand side of Eq. (11) obtaining

µ(ψρρ + ψzz) + µρ ψρ + µz ψz

=
(vc

(ϕ))2(
1 + (vc

(ϕ))2
) (µρρ + µzz), (15)

and introducing Eq. (15) along with Eq. (12), into Eq. (11),
we get a constrain equation among the components of the
stress energy tensor:

−
(

1− (vc
(ϕ))2

1 + (vc
(ϕ))2

)
(Tρρ + Tzz)

= e−2(ψ−γ)

(
e−2ψTtt +

e2ψ

µ2
Tϕϕ

)
. (16)

Notice that this relation must be satisfied by any stress
energy tensor which, within the approximation made in the
analysis, curves the space time in such a way that the motion
of test particles corresponds to the observed one.

Let us consider the case of a stress energy tensor corre-
sponding to a perfect fluid,

Tµν = (d + p)uµ uν + gµν p,

with d the density of the fluid andp its pressure. In this case
we are thinking on a “dark fluid”, which is not seen but it is
thought that it could be there affecting the geometry in the
way needed in order to have the observed behavior in the tan-
gential velocities of the luminous matter, as just mentioned.
Considering the dark fluid as static, the four velocity of such
dark fluid is given byuα = (u0, 0, 0, 0) which, for the line
element (2) reads:u0 = E e−2ψ, thusu0 = −E and from
uµuµ = −1, we obtain thatE = e2ψ. Therefore, the stress
energy tensor has the form

Ttt = e2ψd, (17)

Tρρ = Tzz = e−2(ψ−γ)p, (18)

Tϕϕ = µ2 e−2ψp. (19)

Substituting these expressions into (16), we obtain that in
the equatorial plane, in order to satisfy the observed behavior
on the tangential velocities, the “dark fluid” has to fulfill the
relation

−2
(

1− (vc
(ϕ))2

1 + (vc
(ϕ))2

)
p = (d + p). (20)

Let us see which are the permitted relations between pres-
sure and density of the perfect fluid providing flat rotation
curves, we thus obtain

p = −1 + (vc
(ϕ))2

3− (vc
(ϕ))2

d. (21)

From this relation thevc
(ϕ) function can be identified with

the square velocity dispersion of the dark particles, thus, the
pressure will be negative. We are now in a convenient po-
sition to constrain the state equation. As the velocities of
the gas and stars rotating in the flat region must be within
0 < v

(ϕ)2
c < 1, (the observed ones are of the order of

v
(ϕ)
c ∼ 10−3 [6]), relation (21) implies−1 < ω < −1/3,

beingp = ωd. This result coincides with the one obtained at
cosmological scale for the respective equation of state in the
Quintessence model [3, 8].

Therefore the analysis presented in this letter, gives sup-
port to the hypothesis that a Quintessence-like equation of
state could be the solution for the dark matter problem at
galactic scale. In both cases it turns out the need of an ex-
otic equation of state, withω = −0.33 at a galactic scale and
ω = −0.64 for the cosmos [2].

Thus, it has been shown that galactic dark matter satis-
fying an exotic equation of state certainly can be used to ex-
plain the observed behavior on the rotational curves of spiral
galaxies.
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