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A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a
real-space mapping method and the Green function technique. This Hamiltonian considers theloh it the nearest-neighbdv’)
interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a
higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreemet
with the numerical solution obtained previously],[and with those obtained in the reciprocal spagg¢ [
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Se resolvd el hamiltoniano de Hubbard extendido para dosipalds en una red unidimensional, usando etado del mapeo en el espacio
real y la &cnica de la funéin de Green. Este hamiltoniano considera las interacciones ibtraeatsU e inter-abmicasV’. El método mapea
el problema de muchos cuerpos corredacile un problema equivalente de amarre fuerte en un espacio de mayor dimétetiendo un
analisis del problema en este espacio se obtuvo la smluanaitica para la eneiig de enlace del estado base. Los resultad@s est
completo acuerdo con la soluciones obtenidas tantcenigamente ] como en el espacio rgaroco P].

Descriptores: Modelo de Hubbard, fermiones en dimensiones reducidas, sistemaémilasrfuertemente correlacionados.

PACS: 71.10.fd; 71.10Pm; 71.10Li; 71.27.+a

1. Introduction limit is hardly understood at all. At half-filling, the model
_ _ _ maps onto an insulating spin-half Heisenberg modid! [
The one-dimensional Hubbard model is a good prototype fothe charge density is away from half-filling, the behavior re-
an exactly solvable model of correlated electrons in narrowmains a mystery.
band systems 3[ 4], where at half-filling the ground state is .
found to be antiferromagnetic and insulating for a repulsive 1€ Hubbard model has been applied successfully to de-

potential. The other exact solution for the Hubbard Hamilto-SC1ibe some new electronic phenomena where electronic cor-
nian is the case an infinite dimensional latticd. [The exact relations are very important, such as the metal-insulator tran-

solutions, particularly those obtained using the Bethe ansatition [, itinerant ngljneulsm 1Df] charge deﬂgthy and slpm
have brought a very important progress in the understanding€ns!ty waves 1] and local pair formation, which may play
of strongly correlated systems. However, the conditions fo significant role in the explanation of the high-Tc supercon-

integrability using the Bethe ansatz are very restrictive, an&juctors 12, 13] and the superconductivity in heavy fermions
only a very limited class of realistic models can be solved®YStems [4]

with this technique §]. For instance, it is difficult to include In this paper we wish to address the low-density limit,
additional interactions in the Hubbard model so that the retwo-electrons in a one-dimensional empty lattice. An analyti-
sulting Hamiltonian is still integrable. cal solution of this problem for the extended Hubbard Hamil-

The Hubbard model7] is the simplest one used to de- tonian, using a real-space mapping method and the Green
scribe correlations in narrow-band systems and has beefnnction technique, is presented.
studied extensively. However, even when the Hubbard model
is conceptually very simple, this model is very difficult to
{solve n .general, with few tractable limits. When th_e bo.nd._ods [1,12,15], including different kinds of disorder in the
ing dominates, we have the so called weak coupling limit, : : .

. ; . } model [16-18] and also including the bond-charge interac-
which leads to a non-interacting electron gas and is therefore

) ; . tion [2,19-21].

fairly well understood. But even in weak coupling there are
some surprises. For a bipartite lattice at half-filling, an in-  In Sec. Il we give a brief description of the Hamiltonian
finitesimal short-range Coulomb repulsion drives the systenand the mapping method, we also present in this section the
through a metal-insulator transitior8]] a result which is not  analytical solution for the two particles in an empty lattice.
contained in the free electron description. Strong-coupling=inally, in Sec. Il we summarize our results.

The diluted limit of the Hubbard model has been
previously studied by analytical and numerical meth-
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2. Two correlated particles in an empty lattice  space of fermion and boson states where approximations are
still necessary. On the other hand, the quantum Monte Carlo
The extended Hubbard Hamiltonian may be written in rea'techniques 13] provide a natural framework for numerical
space as calculations in strongly interacting electron models, but these
\% technigues have been used only for small clusters. The renor-
H= Z tixjcz‘facjﬁJrUZni’T”i’le? Z ning, (1) malization group method 2fi] has been used for very large
)= ! systems. This method consists in constructing iteratively a
where< i,j > denotes nearest-neighbor siteﬁﬁ (ci,s) is  variational ground state by dividing the system into many
the creation (annihilation) operator with spin=] or T at  cells. Since for each step only the lowest-lying energy states
sited, and n; = n; 1 +n;,; where n;, = cifncz-,(,. The in each cell are taken into account, sometimes the results are
transfer integrat; ; is written ast; ; = t, which means that far away from the exact solution. Finally, the exact diago-
all hopping processes have the same probability. It is worttmalization method is the most desirable one. However, this
mentioning that in principle, the parametéfgindl” are pos- method is applicable only to small systems, since the dimen-
itive because they are direct Coulomb integrals. HoweVer, sion of the Hamiltonian matrix increases very rapidly with
and V' could be negative if attractive indirect interactions, the number of sites and the number of particlezs].[ In
through phonons or other bosonic excitations, are includethe following subsection we will describe briefly the mapping
and are stronger than direct Coulombic repulsions. method, which allows us to diagonalize exactly the Hubbard
One of the most common techniques to study the HubHamiltonian for an infinite lattice and which is very useful in
bard model is the mean-field approximation (MFA), usedfinding analytical solutions for two interacting electrons in a
to analyze different problems13], because the many-body one-dimensional empty lattice.
problem can be reduced to a one-body problem in an effective
medium. However, it is well known that the MFA is not suf- 2 1. Mapping method
ficient to describe electronic correlations, since fluctuations
are not included within this approximation. Another useful The mapping method is explained in detail in Refl, 26]
technique to deal with the Hubbard model is the slave-bosofor different lattice topologies. In order to present a brief ex-
formalism [11,22]. However, in this formalism the Hilbert planation of the mapping method, let us consider the case
space of fermion states is replaced by an enlarged Hilbexf two electrons with opposite spins in aN-site chain
| (N =2,3,4,---). ForN = 4, the state configuration is

<i,j>

[1) = |4£000), [2) =]+ —00), |3)=|4+0—0), |4) =]+ 00-),

[5) = ]04+0-), |6)=|04+—0), |7) =|0=+00), |8) =|— 400},

9) = |—=0+0), [10) =|0—+0), [11) =[00+0), [12) = |00+ —),

[13) = ]000+), |14) =|00— +), |15) = |0 —0+), |16) =] — 00+), 2

where+ and — represent an electron with spin up and spin

down, respectively, and represents an empty site. Further—I . o
more, + indicates a doubly occupied site. In general, thetlectron states (see Fig. 1). Sites in Fig. 1 represent the two-
number of two-electron states is given by body states and not the usual Wannier wave function.

The states of Eq. (2) have a geometric representation in A simple way to obtain the solution is to take advan-
a square lattice (see Fig. 1), which can be described by &ge of the translational symmetry of the site-impurities and
one-body tight-binding effective Hamiltonian witA)y —2)  projecting the two-dimensional lattice of states onto a lin-
ordered site-impurities. Among these impuritiéé,are lo-  €ar chain of effective states as it is shown in Fig. 1, where
calized on sites along the principal diagonal of the squaré® = 2tcos(Ka/v/2), the lattice parameter = 1, and K is
lattice with a self-energy/ and the others)(\NV — 1), are lo-  the wave vector in the projection direction.
calized on the two next-diagonals with a self-enevgyThe
new one-body Hamiltonian is written as follow&7]:

In general, this method maps the original many-body
problem onto a one-body one with some ordered site-
impurities in annd-dimensional latticep being the number

H = Z eibi by + Z ti;bib;, 3) of electrons and the dimensionality of the original system.

- i In this hyper-space lattice, the on-s{€) and the nearest-
neighbor(V) interactions from the original Hubbard Hamil-
tonian become the self-energies of the site-impurities. So,

where the operatds] create the many-body statés, given  in order to find a solution for the-interacting particles we
by Eq. (2) ande; represents the self-energy of the two- should solve the new effective Hamiltonian given by Eq. (3).
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w, », B, & the impurities we must solve equation
(U (v (o (o
A - L . N’ ]_
\ \ (n] Gy In) = —. (8)
t Nt Nt t €n
AN NN 10 15 ) _ _ _ _ _
(V ek U el V el O The one-dimensional impurity chain (see Fig. 1) has
" /"\ A b o &« three impurities, one at the central site with energy= U
t NE2 N2 and two at the nearest-neighbors with energies V (at the
P . N\ I10>t\ ) |11>t\ . 12> position! = 1) andes = V (at the positionl = —1). Let us
o { .Vz\ U, i, D analyze all three possible cases for the ground dtate 0
. . N ¢ AN . AN - (6 = 2t) and find the corresponding binding energies.
|16>t [15) AN [14) t\ 113\ N of ¢ (a) The first case corresponds to the central impurity with
(o) (o) v \/'U _ »J"" energye; = U and the other two impurities, = €3 = 0.
- l s N vi# The Green function for the perfect linear chain is given
N J
N = by [28]
N "
— 1 _
\}}43 (p|Golg) = Go(p,¢; E) = \/ﬁp‘p a4, (9
—\/,0\43 where
f 6 2
O E E
S o)
FIGURE 1. Geometric representation of the two-electron states for B B

a chain of four sites. The states are represented by circles with SiteéndB _

energy indicated inside, and the numeration of states is accordinqicles within the independent particle approximation. How-

to Eq. (2). The direction of the projection procedure is shown by . . . .
dashed lines. The final chain is formed by effective states, repre-ever’ using Eq. (8 ) for the central impurity and evaluating

sented by ellipses, and the effective hopping parameters Eqg. (9) at the central site a relationship téiis obtained:

1 1
2.2. Analytical solution (0] Go|0) = VP U

|25] is the semi-band width for the case of two par-

for E2> B%  (11)

As already explained, to find the ground-state analytical soHence, the binding energy = |E| — B is given by

lution of the two-interacting electrons in a one-dimensional

lattice, we must find the solution of the impurity chain repre- U\ 2

sented by ellipses in Fig. 1, but using now the new effective =~ A& =B | {/1+ (B) —1]; for U <0. 12)
tight-binding Hamiltonian. The Hamiltonian for the sites im-

purities can be written as This is the binding energy for a two-interacting electrons in a
n one-dimensional lattice with an attractive on-site interaction
H=Ho+ Z Hi, 4) vanda nearest-neighbor interactign= 0 [1].
=1 (b) The second case corresponds to the system with a cen-
where tral impurity with energye; = U and a second impurity at
Hy = ¢ Z Im) (m| + 3 Z In) (m| (5) the positionl = 1 with energye; = V" and the third impu-
™ <mm> rity es = 0. The Green function of a linear chain having a
and central impurity with energy/ is given by
H;i = i) e; (il - (6) (| G1lg) = Gi(p,¢; E)
H, gives the Hamiltonian for a periodic lattice (without im- plp—dl Uplalpl!
rities) in the Dirac representation represents th = + - (13)
purities) e Dirac representation aiif} represents the JVEI_B? | JEr_B? (\/EQ — B _ U)

perturbation associated to the site impurities.

For the n-site impurity problem the Green operator Using Eq. (8) for the impurity with energgs = V' and eval-
is [28] uating Eq. (13) at the positidn= 1, it means fop = ¢ =1,
Gr1|n) €n (n| Gy @ we obtain

1—é€p(n|Gp_1|n)’ B2+ 2U+E? — B2 —2EU
where (n| G,,—1 |n) represents all matrix elements of the B2 (VE?2-B2-U)
Green operator at the site of the impuritywith energye,,. 1
Equation (7) is valid for systems having at least one impurity. = —; for E? > B2, (14)

The poles of Eq. (7) give the eigenvalues of the Hamilto- 4

nian [28]. So, in order to find the energyF) associated to S0, the binding energy for our system is

Gn = Gn—l +
(11Gi[1) =
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20V (U +V) — (2UV — B2) /(U — V) + B?
B (B2 —4UV) a

A=B (15)

Equation (15) is valid fof/, V' < 0 and the case§ > 0,V < 0orU < 0,V > O are limited toUV + B(U +V)/2 < 0.
(c) The most general case corresponds to a system with three impurities: one impurity at the central site with energy
€1 = U, a second impurity with energyy = V' at the positiorl = 1 and a third impurity with energys = V' at the position
Il = —1. The associated Green function of a linear chain with two impurities, one at the central site with Enanglythe
second with energy, = V' at the positiori = 1 is given by

plp—dl Uplal plr!

(|G2lg) = Ga(p,q;E) = VE? - B2 + VE? — B2 (\/E2 _ B2 _ U)

+

v plt—dl N Upldlp plP=1l N Uppl?!
VBB VBB (E-D-U) \VE-B VE-BEWE-F-U))
<

1-V ! s
\VER VP BRWE-B-U)

Finding the poles of Eq. (8) for the impurity with energy= V" and evaluating Eq. (16) at the positiba= —1, it means
forp = ¢ = —1, we obtain

1l |1y BB (VBT B B) 4V (E-U) (VE2-B2-E)° 1 an
T BRBWVEBE-B-U-V)+20V (E-VE - B?)) V'

which is valid for£? > B2.
The solution of Eq. (17), give us a binding enedyy= —B(1 — |z|), with z given by

1 —403 1002 + 4v%u? 18 1
r=—|Cy+ e Gl e vt +v24+4dvu—1), for v <0; (18)
6v Co -
and
1 — 43 1002 + 4v%u? 48 1
N o v2u + 10v* + dv u” + v VU + +2—8vu—21)2
12v Cs
1 — 43 1002 + 4v2u? 48 1
B[y A T Y Z St L) g s o, (19)
12v CQ
where
E v and 2V (20)
==, U= —= V= —.
B B B
The coefficients”; andC5, are given by
C1 = 6V —3u2 — 420202 + 42vu + 36vu3 — 3vtu2 + 1203u3 — 1202u? + 30t + 3302 — 6v3u — 3, (21)
Ch = (—6v°u + 120"u2 — 420%u + 150" + 390 — 8v%u® + 24022 + 08 + 1200 — 1+ Cy)/° . (22)
In our limit of low concentration, the pairing condition is
14+u)(l+v)—1<0. (23)

This is the analytical solution for the binding energy of two-interacting electrons in a one-dimensional infinite lattice with
an on-site interactio®/ and a nearest-neighbor interactibh The analytical expression is in complete agreement with the
numerical solutions obtained previously in real spatk |
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of our study is that we have worked in real space, so we could

) ) ] o be able to analyze electronic correlation in non-periodic lat-
In this paper we studied the dilute limit of the Hubbard tices or disorder systems.

model, using a real-space mapping method and the Green
function technique. In the case of two-interacting particles
using an extended Hubbard Hamiltonian in an infinite oneACKknowledgement
dimensional empty lattice we have carried out the analyti-
cal solution for the ground state binding energy. The resultd his work was partially supported by grants from CONACyT
are in agreement with the numerical solution obtained previMéxico 33630-E, from UNAM through IN106600 and by
ously [1]. It is worth mentioning that one of the advantages DGEP-UNAM.
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