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Two-particle correlations in the one-dimensional Hubbard model: a ground-state
analytical solution
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Recibido el 29 de abril de 2002; aceptado el 27 de noviembre de 2002

A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a
real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U ) and the nearest-neighbor (V )
interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a
higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement
with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2].
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Se resolvío el hamiltoniano de Hubbard extendido para dos partı́culas en una red unidimensional, usando el método del mapeo en el espacio
real y la t́ecnica de la función de Green. Este hamiltoniano considera las interacciones intra-atómicasU e inter-at́omicasV . El método mapea
el problema de muchos cuerpos correlación de un problema equivalente de amarre fuerte en un espacio de mayor dimensión. Haciendo un
ańalisis del problema en este espacio se obtuvo la solución anaĺıtica para la energı́a de enlace del estado base. Los resultados están en
completo acuerdo con la soluciones obtenidas tanto numéricamente [1] como en el espacio recı́proco [2].

Descriptores: Modelo de Hubbard, fermiones en dimensiones reducidas, sistemas electrónicos fuertemente correlacionados.

PACS: 71.10.fd; 71.10Pm; 71.10Li; 71.27.+a

1. Introduction

The one-dimensional Hubbard model is a good prototype for
an exactly solvable model of correlated electrons in narrow-
band systems [3, 4], where at half-filling the ground state is
found to be antiferromagnetic and insulating for a repulsive
potential. The other exact solution for the Hubbard Hamilto-
nian is the case an infinite dimensional lattice [5]. The exact
solutions, particularly those obtained using the Bethe ansatz,
have brought a very important progress in the understanding
of strongly correlated systems. However, the conditions for
integrability using the Bethe ansatz are very restrictive, and
only a very limited class of realistic models can be solved
with this technique [6]. For instance, it is difficult to include
additional interactions in the Hubbard model so that the re-
sulting Hamiltonian is still integrable.

The Hubbard model [7] is the simplest one used to de-
scribe correlations in narrow-band systems and has been
studied extensively. However, even when the Hubbard model
is conceptually very simple, this model is very difficult to
solve in general, with few tractable limits. When the bond-
ing dominates, we have the so called weak coupling limit,
which leads to a non-interacting electron gas and is therefore
fairly well understood. But even in weak coupling there are
some surprises. For a bipartite lattice at half-filling, an in-
finitesimal short-range Coulomb repulsion drives the system
through a metal-insulator transition [8], a result which is not
contained in the free electron description. Strong-coupling

limit is hardly understood at all. At half-filling, the model
maps onto an insulating spin-half Heisenberg model [8]. If
the charge density is away from half-filling, the behavior re-
mains a mystery.

The Hubbard model has been applied successfully to de-
scribe some new electronic phenomena where electronic cor-
relations are very important, such as the metal-insulator tran-
sition [9], itinerant magnetism [10], charge density and spin
density waves [11] and local pair formation, which may play
a significant role in the explanation of the high-Tc supercon-
ductors [12, 13] and the superconductivity in heavy fermions
systems [14].

In this paper we wish to address the low-density limit,
two-electrons in a one-dimensional empty lattice. An analyti-
cal solution of this problem for the extended Hubbard Hamil-
tonian, using a real-space mapping method and the Green
function technique, is presented.

The diluted limit of the Hubbard model has been
previously studied by analytical and numerical meth-
ods [1, 12, 15], including different kinds of disorder in the
model [16–18] and also including the bond-charge interac-
tion [2, 19–21].

In Sec. II we give a brief description of the Hamiltonian
and the mapping method, we also present in this section the
analytical solution for the two particles in an empty lattice.
Finally, in Sec. III we summarize our results.
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2. Two correlated particles in an empty lattice

The extended Hubbard Hamiltonian may be written in real
space as

H=
∑

<i,j>,σ

ti,jc
+
i,σcj,σ+U

∑

i

ni,↑ni,↓+
V

2

∑

<i,j>

ninj , (1)

where< i, j > denotes nearest-neighbor sites,c+
i,σ (ci,σ) is

the creation (annihilation) operator with spinσ =↓ or ↑ at
site i, and ni = ni,↑ + ni,↓ where ni,σ = c+

i,σci,σ. The
transfer integralti,j is written asti,j = t, which means that
all hopping processes have the same probability. It is worth
mentioning that in principle, the parametersU andV are pos-
itive because they are direct Coulomb integrals. However,U
and V could be negative if attractive indirect interactions,
through phonons or other bosonic excitations, are included
and are stronger than direct Coulombic repulsions.

One of the most common techniques to study the Hub-
bard model is the mean-field approximation (MFA), used
to analyze different problems [12], because the many-body
problem can be reduced to a one-body problem in an effective
medium. However, it is well known that the MFA is not suf-
ficient to describe electronic correlations, since fluctuations
are not included within this approximation. Another useful
technique to deal with the Hubbard model is the slave-boson
formalism [11, 22]. However, in this formalism the Hilbert
space of fermion states is replaced by an enlarged Hilbert

space of fermion and boson states where approximations are
still necessary. On the other hand, the quantum Monte Carlo
techniques [23] provide a natural framework for numerical
calculations in strongly interacting electron models, but these
techniques have been used only for small clusters. The renor-
malization group method [24] has been used for very large
systems. This method consists in constructing iteratively a
variational ground state by dividing the system into many
cells. Since for each step only the lowest-lying energy states
in each cell are taken into account, sometimes the results are
far away from the exact solution. Finally, the exact diago-
nalization method is the most desirable one. However, this
method is applicable only to small systems, since the dimen-
sion of the Hamiltonian matrix increases very rapidly with
the number of sites and the number of particles [25]. In
the following subsection we will describe briefly the mapping
method, which allows us to diagonalize exactly the Hubbard
Hamiltonian for an infinite lattice and which is very useful in
finding analytical solutions for two interacting electrons in a
one-dimensional empty lattice.

2.1. Mapping method

The mapping method is explained in detail in Ref. [1, 26]
for different lattice topologies. In order to present a brief ex-
planation of the mapping method, let us consider the case
of two electrons with opposite spins in anN -site chain
(N = 2, 3, 4, · · · ). ForN = 4, the state configuration is

|1〉 = | ± 000〉, |2〉 = |+−00〉, |3〉 = |+ 0− 0〉, |4〉 = |+ 00−〉,
|5〉 = |0 + 0−〉, |6〉 = |0 +−0〉, |7〉 = |0± 00〉, |8〉 = | −+00〉,
|9〉 = | − 0 + 0〉, |10〉 = |0−+0〉, |11〉 = |00± 0〉, |12〉 = |00 +−〉,
|13〉 = |000±〉, |14〉 = |00−+〉, |15〉 = |0− 0+〉, |16〉 = | − 00+〉, (2)

where+ and− represent an electron with spin up and spin
down, respectively, and0 represents an empty site. Further-
more,± indicates a doubly occupied site. In general, the
number of two-electron states is given byN2.

The states of Eq. (2) have a geometric representation in
a square lattice (see Fig. 1), which can be described by a
one-body tight-binding effective Hamiltonian with (3N − 2)
ordered site-impurities. Among these impurities,N are lo-
calized on sites along the principal diagonal of the square
lattice with a self-energyU and the others,2(N − 1), are lo-
calized on the two next-diagonals with a self-energyV . The
new one-body Hamiltonian is written as follows [27]:

H =
∑

i

εib
+
i bi +

∑

i,j

ti,jb
+
i bj , (3)

where the operatorb+
i create the many-body states,|i〉, given

by Eq. (2) andεi represents the self-energy of the two-

electron states (see Fig. 1). Sites in Fig. 1 represent the two-
body states and not the usual Wannier wave function.

A simple way to obtain the solution is to take advan-
tage of the translational symmetry of the site-impurities and
projecting the two-dimensional lattice of states onto a lin-
ear chain of effective states as it is shown in Fig. 1, where
β = 2tcos(Ka/

√
2), the lattice parametera = 1, andK is

the wave vector in the projection direction.

In general, this method maps the original many-body
problem onto a one-body one with some ordered site-
impurities in annd-dimensional lattice,n being the number
of electrons andd the dimensionality of the original system.
In this hyper-space lattice, the on-site(U) and the nearest-
neighbor(V ) interactions from the original Hubbard Hamil-
tonian become the self-energies of the site-impurities. So,
in order to find a solution for then-interacting particles we
should solve the new effective Hamiltonian given by Eq. (3).
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FIGURE 1. Geometric representation of the two-electron states for
a chain of four sites. The states are represented by circles with site-
energy indicated inside, and the numeration of states is according
to Eq. (2). The direction of the projection procedure is shown by
dashed lines. The final chain is formed by effective states, repre-
sented by ellipses, and the effective hopping parametersβ.

2.2. Analytical solution

As already explained, to find the ground-state analytical so-
lution of the two-interacting electrons in a one-dimensional
lattice, we must find the solution of the impurity chain repre-
sented by ellipses in Fig. 1, but using now the new effective
tight-binding Hamiltonian. The Hamiltonian for the sites im-
purities can be written as

H = H0 +
n∑

i=1

Hi, (4)

where

H0 = ε0
∑
m

|m〉 〈m|+ β
∑

<n,m>

|n〉 〈m| (5)

and

Hi = |i〉 εi 〈i| . (6)

H0 gives the Hamiltonian for a periodic lattice (without im-
purities) in the Dirac representation andHi represents the
perturbation associated to the site impurities.

For the n-site impurity problem the Green operator
is [28]

Gn = Gn−1 +
Gn−1 |n〉 εn 〈n|Gn−1

1− εn 〈n|Gn−1 |n〉 , (7)

where 〈n|Gn−1 |n〉 represents all matrix elements of the
Green operator at the site of the impurityn with energyεn.
Equation (7) is valid for systems having at least one impurity.

The poles of Eq. (7) give the eigenvalues of the Hamilto-
nian [28]. So, in order to find the energy(E) associated to

the impurities we must solve equation

〈n|Gn−1 |n〉 =
1
εn

. (8)

The one-dimensional impurity chain (see Fig. 1) has
three impurities, one at the central site with energyε1 = U
and two at the nearest-neighbors with energiesε2 = V (at the
positionl = 1) andε3 = V (at the positionl = −1). Let us
analyze all three possible cases for the ground stateK = 0
(β = 2t) and find the corresponding binding energies.

(a) The first case corresponds to the central impurity with
energyε1 = U and the other two impuritiesε2 = ε3 = 0.
The Green function for the perfect linear chain is given
by [28]

〈p|G0 |q〉 = G0(p, q; E) =
1√

E2 −B2
ρ|p−q|, (9)

where

ρ =
E

B
−

√(
E

B

)2

− 1, (10)

andB = |2β| is the semi-band width for the case of two par-
ticles within the independent particle approximation. How-
ever, using Eq. (8 ) for the central impurity and evaluating
Eq. (9) at the central site a relationship forU is obtained:

〈0|G0 |0〉 =
1√

E2 −B2
=

1
U

; for E2 > B2. (11)

Hence, the binding energy∆ ≡ |E| −B is given by

∆ = B




√
1 +

(
U

B

)2

− 1


 ; for U < 0. (12)

This is the binding energy for a two-interacting electrons in a
one-dimensional lattice with an attractive on-site interaction
U and a nearest-neighbor interactionV = 0 [1].

(b) The second case corresponds to the system with a cen-
tral impurity with energyε1 = U and a second impurity at
the positionl = 1 with energyε2 = V and the third impu-
rity ε3 = 0. The Green function of a linear chain having a
central impurity with energyU is given by

〈p|G1 |q〉 = G1(p, q; E)

=
ρ|p−q|

√
E2 −B2

+
Uρ|q|ρ|p|√

E2 −B2
(√

E2 −B2 − U
) . (13)

Using Eq. (8) for the impurity with energyε2 = V and eval-
uating Eq. (13) at the positionl = 1, it means forp = q = 1,
we obtain

〈1|G1 |1〉 =
B2 + 2U

√
E2 −B2 − 2EU

B2
(√

E2 −B2 − U
)

=
1
V

; for E2 > B2. (14)

So, the binding energy for our system is
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∆ = B


2UV (U + V )− (

2UV −B2
)√

(U − V )2 + B2

B (B2 − 4UV )
− 1


 . (15)

Equation (15) is valid forU, V < 0 and the casesU > 0, V < 0 or U < 0, V > 0 are limited toUV + B(U + V )/2 < 0.
(c) The most general case corresponds to a system with three impurities: one impurity at the central site with energy

ε1 = U , a second impurity with energyε2 = V at the positionl = 1 and a third impurity with energyε3 = V at the position
l = −1. The associated Green function of a linear chain with two impurities, one at the central site with energyU and the
second with energyε2 = V at the positionl = 1 is given by

〈p|G2 |q〉 = G2(p, q; E) =
ρ|p−q|

√
E2 −B2

+
Uρ|q|ρ|p|√

E2 −B2
(√

E2 −B2 − U
)

+

V

(
ρ|1−q|

√
E2 −B2

+
Uρ|q|ρ√

E2 −B2
(√

E2 −B2 − U
)
) (

ρ|p−1|
√

E2 −B2
+

Uρρ|p|√
E2 −B2

(√
E2 −B2 − U

)
)

1− V

(
1√

E2 −B2
+

Uρ2

√
E2 −B2

(√
E2 −B2 − U

)
) .(16)

Finding the poles of Eq. (8) for the impurity with energyε3 = V and evaluating Eq. (16) at the positionl = −1, it means
for p = q = −1, we obtain

〈−1|G2 |−1〉 =
B4 + 2UB2

(√
E2 −B2 − E

)− 4V (E − U)
(√

E2 −B2 − E
)2

B2
(
B2

(√
E2 −B2 − U − V

)
+ 2UV

(
E −√E2 −B2

)) =
1
V

, (17)

which is valid forE2 > B2.
The solution of Eq. (17), give us a binding energy∆ = −B(1− |x|), with x given by

x =
1
6v

(
C2 +

−4v3u + 10v2 + 4v2u2 + v4 − 8vu + 1
C2

+ v2 + 4vu− 1
)

, for v / 0; (18)

and

x = − 1
12v

(
C2 +

−4v3u + 10v2 + 4v2u2 + v4 − 8vu + 1
C2

+ 2− 8vu− 2v2

)

− 1
12v

i
√

3
(

C2 − −4v3u + 10v2 + 4v2u2 + v4 − 8vu + 1
C2

)
, for v > 0; (19)

where
x =

E

B
, u =

U

B
and v =

2V

B
. (20)

The coefficientsC1 andC2 are given by

C1 = 6v
√
−3u2 − 42v2u2 + 42vu + 36vu3 − 3v4u2 + 12v3u3 − 12v2u4 + 3v4 + 33v2 − 6v3u− 3, (21)

C2 =
(−6v5u + 12v4u2 − 42v3u + 15v4 + 39v2 − 8v3u3 + 24v2u2 + v6 + 12vu− 1 + C1

)1/3
. (22)

In our limit of low concentration, the pairing condition is

√
(1 + u)(1 + v)− 1 < 0. (23)

This is the analytical solution for the binding energy of two-interacting electrons in a one-dimensional infinite lattice with
an on-site interactionU and a nearest-neighbor interactionV . The analytical expression is in complete agreement with the
numerical solutions obtained previously in real space [1].
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3. Conclusions

In this paper we studied the dilute limit of the Hubbard
model, using a real-space mapping method and the Green
function technique. In the case of two-interacting particles
using an extended Hubbard Hamiltonian in an infinite one-
dimensional empty lattice we have carried out the analyti-
cal solution for the ground state binding energy. The results
are in agreement with the numerical solution obtained previ-
ously [1]. It is worth mentioning that one of the advantages

of our study is that we have worked in real space, so we could
be able to analyze electronic correlation in non-periodic lat-
tices or disorder systems.
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