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Following Halevi’s procedure for 3D degenerate free-electron gas (3D-DEG), we investigate the response function in the hydrodynamic
model (HM) for 2D-DEG confined in low dimensional systems when collisions are included. For small wavevectors we found from the two-
dimensional Boltzmann-Mermin model a useful expression for the HM complex stiffness parameter of the nonlocal dielectric functionβ,
which isβ2 = [((3ω/4) + i(ν/2)) /(ω + iν)]v2

F , whereω andν are the circular and collisional frequencies andvF is the Fermi velocity.

Keywords: Theories and models of many-electron systems; optical properties of low dimensional materials; theory of electronic transport;
scuttering mechanisms.

Siguiendo el procedimiento de Halevi para un gas libre degenerado de electrones en 3D (3D-GED), investigamos la función de respuesta en el
modelo hidrodińamico (MH) de un 2D-GED confinado en sistemas de baja dimensionalidad cuando las colisiones son incluidas. Utilizando
el modelo bidimensional de Boltzmann-Mermin, encontramos en el MH para vectores de onda pequeños una expresión útil para el paŕametro
de rigidez complejo de la función dieĺectrica no localβ, la cual esβ2 = [((3ω/4) + i(ν/2)) /(ω + iν)]v2

F , dondeω y ν son las frecuencias
circular y de colisíon yvF es la velocidad de Fermi.

Descriptores: Teoŕıa y modelos de sistemas de muchos electrones; propiedadesópticas de materiales de baja dimensionalidad; teorı́a de
transporte electrónico; mecanismos de dispersión.

PACS: 71.10.-w; 78.66.-w; 72.10.-d

Since its inception [1], the hydrodynamic model (HM), also
known as the warm-plasma approximation, has proved to
be very useful in describing electrical, transport and optical
properties of conductors and plasmas. In particular, it can
yield information on diverse physical properties of conduct-
ing systems, such as the nonlocality or spatial dispersion of
electromagnetic response of conduction electron gas, the ex-
istence of charge fluctuations (bulk plasmons), coupling be-
tween plasmons and transverse waves at inhomogeneities [2]
including derivation of boundary conditions at interfaces of
local and nonlocal conductors [3]. The main advantage of
the HM approach lies in the simplicity of accounting for non-
locality or spatial dispersion, which often leads to analytical
results in the wavevector dependence of the dielectric func-
tion [4]. On the other hand, advances in manufacturing tech-
niques have given experimental access to systems of reduced
dimensionality such as two-dimensional (2D) electron gases,
one-dimensional quantum wires and quantum dots. Recent
examples of applications of the HM in low-dimensional sys-
tems are studies of electron flow in high-mobility wires [5],
magnetic field dependence of 2D static shielding [6], scatter-
ing of plasmons in quasi-2D electron gas containing a fixed-
point charge [7], nonlocality effects of a bulk semiconductor
plasma in interaction with quantum-well bound states [8] and
superlattice plasmons [9], negative differential conductance
in a voltage-biased GaAs superlattice [10], and synchroniza-
tion and chaos in miniband semiconductor superlattices [11].

The purpose of this paper is to obtain, within the HM, an
analytical expression for the stiffness parameter of a 2D de-
generate free-electron gas (2D-DEG) valid for the full range
of frequencies. To perform this task for 2D-DEG we follow
the same procedure used for the 3D-DEG case [12].

The HM can be employed for long range oscilations or
small wave vectors and it is derived from the continuity equa-
tion and Newton’s second law for a charge carrier of effec-
tive massm, chargeq, and average velocityv experienc-
ing electric an magnetic fieldsE andB, a phenomenological
damping force proportional to the collision frequencyν, and
a pressure force proportional to the pressure gradient;

m
dv
dt

= q
(
E+

v
c
×B

)
−mνv−∇p

n
, (1)

wherec is the speed of light in vacuum. The last term charac-
terizes the HM and describes the inhomogeneity of the carrier
densityn. E andB can include both internal and external
contributions. On the other hand the continuity equation is
given by

∂n

∂t
+∇·(nv) = 0, (2)

and the Poisson equation is

∇ ·E = −4πqn. (3)

We proceed to linearize these model equations. Thus, denot-
ing by “0” equilibrium quantities (which are homogeneous
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for bulk electron gas) and by “1” small out-of-equilibrium
quantities (which are inhomogeneous),

∇p = ∇p(1) =
∂p(1)

∂n(1)
∇n(1). (4)

The relevant parameterβ (usually called the stiffness con-
stant of the gas or plasma since it yields information of the
compressibility of the system) is defined as

β2 =
1
m

∂p(1)

∂n(1)
, (5)

to yield after linearization for the HM dielectric function

εH = 1 +
4πiσH

ω
, (6)

in which the HM conductivityσH is given by

σH ∝ 1
ω (ω + iν)− β2q2

, (7)

where the Lorentz force has been neglected in the absence of
an external magnetic field since it is of second order.

To obtain these expressions it is assumed in the HM that
all particles move with the same average velocity for a given
value of the field, as shown in Eq. (1). It is clear that a bet-
ter physical description requires a more complete statistical
information about particle velocities, as contained in more
sophisticated models such as random-phase approximation
(RPA) or Boltzmann model. Furthermore, the HM, as ap-
plied to the degenerate free-electron gas, has a serious short-
coming, namely, it is valid only for frequenciesω that are ei-
ther very small or very large in comparison to the collisional
frequencyν. Forω ¿ ν collisions dominate, and thus a con-
duction electron possesses three degrees of freedom. In the
opposite limit,ωÀ ν, the influence of collisions is negligible
and the particle motion is essentially limited to the direction
of the electric field. Recently, Halevi [12] extended the HM
of the 3D degenerate free-electron gas (3D-DEG) by general-
izing its application for arbitrary values ofω/ν. His approach
was based on a straightforward comparison of the HM dielec-
tric function with the Boltzmann equation including the Mer-
min correction [13]. This correction is necessary in order to
conserve local carrier density when collisions are taken into
account within a relaxation time approximation, that is,ω
cannot be merely replaced byω + iν. Within the same spirit,
here we follow Halevi’s procedure to explore the 2D-DEG
case. Namely, we write here the expresions of the dielectric
functions; the HM model and the Boltzmann-Mermin model
and compare them for small values of the wave vector. In this
way we are able to fit the important parameterβ2 in the HM
to the Boltzmann-Mermin results for all frequencies.

For 2D-DEG, the Boltzmann dielectric function with the
Mermin correction (Boltzmann-Mermin model)εBM is sim-
pler than the corresponding RPA, and is written in terms of
the Boltzmann longitudinal dielectric functionεB as [13]

εBM (q, ω)−1=
$ [εB (q, $)−1]

ω+iν [εB (q, $)−1] / [εB (q, 0)−1]
, (8)

where wavevectorq = |q| is 2D,$ = ω+iν, andεB is given
by

εB(q, ω)− 1 =
4π

ω
e2

∫
(q.v)2 /q2

ω − q.v
df0

dE
dv. (9)

At zero-temperature, the Fermi distribution is a Heaviside
step function;f0 (v) = θ (vF − |v|), beingv the 2D velocity
andvF the Fermi velocity.

The normal modes of the system are obtained by requir-
ing εBM (q, ω) = 0. Since the HM is a good model for small
wavevectors, we will proceed to compare the Boltzmann-
Mermin model [Eq. (8)] for smallq = |q| with the corre-
sponding HM dielectric functionεH in which σH for small
q is given by

εH(q, ω)− 1 ∝ σH ∝ 1
ω$

(
1 +

β2q2

ω$

)
, (10)

We now assume that carriers are confined in 2D to obtain

εB(q, ω)− 1 =
4πvF e2

m

[
1

ω2 − q2v2
F

]
. (11)

To find εBM (q, ω) for small q, we need, on one hand, to
evaluateεB(q, ω) atω = 0 and, on the other hand, to expand
εB(q, ω) in powers ofqvF /ω, to yield

εBM (q, ω)− 1 ∝ − 1
ω$

[
1 +

3
4

q2v2
F

$2

](
1 + i

ν

ω

v2
F q2

2$2

)
.

Neglecting terms of orderq
4v4

F

$4 we finally get

εBM (q, ω)− 1 ∝ − 1
ω$

[
1 +

(
3
4

+ i
ν

2ω

)
q2v2

F

$2

]
,

which can be compared with the expansion of the hydro-
dynamic dielectric functionεH given by Eq. (10). This
comparison yields[β2 = (3ω/4 + iν/2) /(ω + iν)]v2

F for
2D-DEG. For 3D-DEG the corresponding value obtained by
Halevi is [12] [β2 = (3ω/5 + iν/3) /(ω + iν)]v2

F .
In order to interpret this result and check its consistency

with the well-known low- and high-frequency limits, let us
consider an adiabatic process where the pressurep is propor-
tional to nκ with κ = (f + 2) /f as the adiabatic constant,
and wheref is the number of degrees of freedom, to yield

∂p(1)

∂n(1)
= κ

p(0)

n(0)
.

Regardless of the dimensionality, a free electron gas
has u=(f/2)kBT and p(0)=nkBT , whereu, kB , and T
are, respectively, the internal energy, the Boltzmann con-
stant, and the temperature. For 2D-DEG it follows that
p(0)=n(0)u whereu=(1/2)εF and εF =(1/2)mv2

F . In ad-
dition one obtainsp(0)/n(0)=(1/2)εF =(1/4)mv2

F and since
β2=(1/m)(∂p(1)/∂n(1)) thenβ2= 1

4κv2
F . For very low fre-

quencies (ω/ν → 0), the randomness of the collisions permits
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kinetic motion in the two available dimensions, that is,f = 2
yieldingβ2=(v2

F )/2. For very high frequencies (ω/ν →∞),
the motion is deterministic and one-dimensional, with the ve-
locity parallel to the direction of the oscillating electric field;
f = 1 to yieldβ2=(3v2

F )/4.

We found, as it happens in the 3D-DEG case, thatβ2 is
a complex expression, which in turn implies a complex adi-
abatic constantκ(ω) meaning that the pressure fluctuations
are not in phase with the density fluctuations, as explained
by Halevi [12] for 3D-DEG. Our generalizedβ2 contains
information about a wider range of frequencies than in the
usual HM model. It is important to mention that our re-
sults for small wavevectors are simpler than those coming
from more sophisticated models such as Boltzmann-Mermin
or RPA models.

Figures 1 and 2 compare our 2D results for the real and
imaginary parts ofβ2 with those of 3D. We notice that the
real part ofβ2 is always larger in 2D than in 3D for all fre-
quencies, which reflects that a 2D-DEG is always ”stiffer”
than its 3D counterpart due to the fact that the pressure gets
distributed in less degrees of freedom in a low-dimensional
system. For very large frequencies (ω/ν → ∞) the oscilla-
tions in both cases are essentially one dimensional, as it was
discussed above. In the case of the imaginary part ofβ2 the
differences between the 2D and 3D is less pronounced.

FIGURE 1. Comparison of the real partβ2 as a function ofω/ν for
2D (solid) and 3D (dashed) systems.

FIGURE 2. Same as Fig. 1, but for the imaginary part ofβ2.

As a possible extension of this work it could be inter-
esting to investigate to which extent external magnetic fields
could be included in this procedure for both 2D and 3D-DEG,
since the presence of such fields would yield a dielectric ten-
sor, rather than a scalar dielectric function. Besides, appli-
cations of our results for any frequencies to the calculation
of bulk plasma modes, one can think of calculating physical
properties of conducting heterostructures (quantum wells, su-
perlattices, etc) in which each homogeneous part of the sys-
tem is caracterized by the parameterβ, which in turn depends
onvF .

In summary, our results for the HM of the 2D-DEG can
be applied to arbitrary ratiosω/ν and are consistent with
the well-known low- and high-frequency limits. Our pro-
cedure is very simple and was similar to Halevi’s for 3D-
DEG, namely, we determine the HM parameterβ2 for arbi-
traryω by comparison of the HM with the more sophisticated
Boltzmann-Mermin model for small wavevectors. We hope
that our efforts can stimulate further experimental and theo-
retical work on the study of small-wavevector excitations in
low-dimensional systems.
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