INVESTIGACION REVISTA MEXICANA DE FiSICA 49 (3) 231-234 JUNIO 2003
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Following Halevi's procedure for 3D degenerate free-electron gas (3D-DEG), we investigate the response function in the hydrodynamic
model (HM) for 2D-DEG confined in low dimensional systems when collisions are included. For small wavevectors we found from the two-
dimensional Boltzmann-Mermin model a useful expression for the HM complex stiffness parameter of the nonlocal dielectricgunction
which is 8% = [((3w/4) +i(v/2)) /(w + iv)]v%, wherew andw are the circular and collisional frequencies andis the Fermi velocity.

Keywords: Theories and models of many-electron systems; optical properties of low dimensional materials; theory of electronic transport;
scuttering mechanisms.

Siguiendo el procedimiento de Halevi para un gas libre degenerado de electrones en 3D (3D-GED), investigams teftespuesta en el
modelo hidrodiamico (MH) de un 2D-GED confinado en sistemas de baja dimensionalidad cuando las colisiones son incluidas. Utilizando
el modelo bidimensional de Boltzmann-Mermin, encontramos en el MH para vectores de ondepequeexpresi Util para el paametro

de rigidez complejo de la funon diekctrica no local3, la cual es3? = [((3w/4) +i(v/2)) /(w +iv)v}, dondew y v son las frecuencias
circular y de colisbn yvr es la velocidad de Fermi.

Descriptores: Teofia y modelos de sistemas de muchos electrones; propiedpteas de materiales de baja dimensionalidad;idede
transporte electmico; mecanismos de dispési

PACS: 71.10.-w; 78.66.-w; 72.10.-d

Since its inceptionT[], the hydrodynamic model (HM), also The purpose of this paper is to obtain, within the HM, an
known as the warm-plasma approximation, has proved t@nalytical expression for the stiffness parameter of a 2D de-
be very useful in describing electrical, transport and opticagenerate free-electron gas (2D-DEG) valid for the full range
properties of conductors and plasmas. In particular, it camwf frequencies. To perform this task for 2D-DEG we follow
yield information on diverse physical properties of conduct-the same procedure used for the 3D-DEG casy.

ing systems, such as the nonlocality or spatial dispersion of The HM can be employed for long range oscilations or
electromagnetic response of conduction electron gas, the esmall wave vectors and it is derived from the continuity equa-
istence of charge fluctuations (bulk plasmons), coupling betion and Newton’s second law for a charge carrier of effec-
tween plasmons and transverse waves at inhomogeneiies [tive massm, chargeq, and average velocity experienc-
including derivation of boundary conditions at interfaces ofing electric an magnetic fields andB, a phenomenological
local and nonlocal conductors3][ The main advantage of damping force proportional to the collision frequengyand

the HM approach lies in the simplicity of accounting for non- a pressure force proportional to the pressure gradient;
locality or spatial dispersion, which often leads to analytical dv v Vp

results in the wavevector dependence of the dielectric func- mor =4 (E-F; X B) - Ve (1)

tion [4]. On the other hand, advances in manufacturing tech-

) ) ) wherec is the speed of light in vacuum. The last term charac-
nigues have given experimental access to systems of reduc?d

dimensionality such as two-dimensional (2D) electron gaseserlzes the HM and describes the inhomogeneity of the carrier

: . . dtensityn. E andB can include both internal and external
one-dimensional quantum wires and quantum dots. Recen

examples of applications of the HM in low-dimensional Sys_contrlbunons. On the other hand the continuity equation is

tems are studies of electron flow in high-mobility wiré$, [ given by
magnetic field dependence of 2D static shieldifig $catter- on +V-(nv) =0 @)
ing of plasmons in quasi-2D electron gas containing a fixed- ot ’

point charge T], nonlocality effects of a bulk semiconductor and the Poisson equation is

plasma in interaction with quantum-well bound statdshd

superlattice plasmong], negative differential conductance VB = —dmqn. )
in a voltage-biased GaAs superlattid®], and synchroniza- We proceed to linearize these model equations. Thus, denot-
tion and chaos in miniband semiconductor superlattidé$ [ ing by “0” equilibrium quantities (which are homogeneous
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for bulk electron gas) and by “1” small out-of-equilibrium where wavevectay = |q| is 2D, = w+iv, ande g is given

guantities (which are inhomogeneous), by
8p(1) 2 2 0
Vp = Vpt) = = vn, (4) 4 2/ (a.v)” /q¢* df
on(1) ep(qw) —1 Pl e —dEdv. (9)

The relevant parametgr(usually called the stiffness con- S o
stant of the gas or plasma since it yields information of theAt zero-temperature, the Fermi distribution is a Heaviside

compressibility of the system) is defined as step function;f® (v) = ¢ (vr — [v]), beingv the 2D velocity
andvy the Fermi velocity.
2 _ iaLm (5) The normal modes of the system are obtained by requir-
m dn()’ ing s (q,w) = 0. Since the HM is a good model for small

to yield after linearization for the HM dielectric function wavevectors, we will proceed to compare the Boltzmann-

drioy Mermin model [Eq. (8)] for smaly = |q| with the corre-

eg =1+ , (6) sponding HM dielectric functiol; in which oy for small

w q is given by
in which the HM conductivity g is given by
2.2
1 ex(q,w —1o<aHo<1(1+ﬁq>, 10
OH X w(w +iu) — ﬂ2q2’ (7) ( ) ww ww ( )

where the Lorentz force has been neglected in the absence of We now assume that carriers are confined in 2D to obtain
an external magnetic field since it is of second order. 4 5 .
To obtain these expressions it is assumed in the HM that ep(q,w) —1= Ve { s ] . (11)

all particles move with the same average velocity for a given m wo = qTUE

value of the field, as shown in Eq. (1). Itis clear that a bet-___ _.
. o . . .. To find egar(q,w) for small ¢, we need, on one hand, to

ter physical description requires a more complete stausucaT

. : . " . : evaluates 5(q,w) atw = 0 and, on the other hand, to expand

information about particle velocities, as contained in more_ (q,w) in powers ofgur /w, to yield

sophisticated models such as random-phase approximatiorf kX P vr/w, 10y

(RPA) or Boltzmann model. Furthermore, the HM, as ap- [ 3qzvﬂ < ‘Vv%q2>
4

plied to the degenerate free-electron gas, has a serious shorgsi (q,w) — 1 —é 902
coming, namely, it is valid only for frequenciesthat are ei-
ther very small or very large in comparison to the collisional
frequencyv. Forw < v collisions dominate, and thus a con-
duction electron possesses three degrees of freedom. In the [ 3 v\ 2ol
(i) 28]

w2

Neglecting terms of orde?:’% we finally get

opposite limitw > v, the influence of collisions is negligible epm(qw) —1ox —— -+ i—

ww 4 2w/ w?

and the particle motion is essentially limited to the direction

of the electric field. Recently, Halevil?] extended the HM  \yhich can be compared with the expansion of the hydro-
of the 3D degenerate free-electron gas (3D-DEG) by generalyynamic dielectric functiore;; given by Eq. (10). This
izing its application for arbitrary values af/v. His approach comparison yield§4? = (3w/4 +iv/2) /(w + iv)]v for

was based on a straightforward comparison of the HM dielecop.pEG. For 3D-DEG the corresponding value obtained by
tric function with the Boltzmann equation including the Mer- jjevi is [12] [8% = (3w/5 + iv/3) /(w + iv)]v2.
min correction [3]. This correction is necessary in orderto | grder to interpret this result and check its consistency
conserve local carrier density when collisions are taken intQuith the well-known low- and high-frequency limits, let us
account within a relaxation time approximation, thatds, -gnsider an adiabatic process where the pregsisreropor-
cannot be merely replaced by+ iv. Within the same spirit,  tional ton* with x — (f +2)/f as the adiabatic constant,

here we follow Halevi's procedure to explore the 2D-DEG 4, wheref is the number of degrees of freedom, to yield
case. Namely, we write here the expresions of the dielectric

functions; the HM model and the Boltzmann-Mermin model apM p©

and compare them for small values of the wave vector. In this o~ L0y

way we are able to fit the important parame#érin the HM

to the Boltzmann-Mermin results for all frequencies. Regardless of the dimensionality, a free electron gas

For 2D-DEG, the Boltzmann dielectric function with the hasu=(f/2)ksT and p”’=nkzT, whereu, kp, and T
Mermin correction (Boltzmann-Mermin modei), is sim- ~ are, respectively, the internal energy, the Boltzmann con-
pler than the corresponding RPA, and is written in terms ofstant, and the temperature. For 2D-DEG it follows that

the Boltzmann longitudinal dielectric functian; as [13] pO=nu whereu=(1/2)ep andep=(1/2)mvf. In ad-
) dition one obtaing(®) /n(9) =(1/2)ep=(1/4)mv% and since
enm(qu)-1l=— = ez (9, @) —1] . (8) 52:(1/m)(8p(1)/8n(1)) then§°=J 7. For very low fre-
w+iv[ep (g, @) —1] / [ep (q,0) —1] quencies /v — 0), the randomness of the collisions permits
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kinetic motion in the two available dimensions, thatfisz 2 002

yielding 32=(v%.) /2. For very high frequenciess(v — o), 000
the motion is deterministic and one-dimensional, with the ve-
locity parallel to the direction of the oscillating electric field; ]
[ = 1toyield 32=(3v%)/4. 0041
We found, as it happens in the 3D-DEG case, tbats 0084
a complex expression, which in turn implies a complex adi-
abatic constank(w) meaning that the pressure fluctuations
are not in phase with the density fluctuations, as explained 1Y/
by Halevi [12] for 3D-DEG. Our generalizegs® contains 0124 4/
information about a wider range of frequencies than inthe ]
usual HM model. It is important to mention that our re- . " . . . . . .
sults for small wavevectors are simpler than those coming
from more sophisticated models such as Boltzmann-Mermin
or RPA models. FIGURE 2. Same as Fig. 1, but for the imaginary part3f

Figures 1 and 2 compare our 2D results for the real and
imaginary parts of3? with those of 3D. We notice that the
real part of3? is always larger in 2D than in 3D for all fre-
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As a possible extension of this work it could be inter-
esting to investigate to which extent external magnetic fields
quencies, which reflects that a 2D-DEG is always "stiffer” could be included in this procedure for both 2D and 3D-DEG,

than its 3D counterpart due to the fact that the pressure gefiNCe the presence of such fields would yield a dielectric ten-
distributed in less degrees of freedom in a low-dimensionaP": rather than a scalar dielectric function. Besides, appli-
system. For very large frequencies/¢ — oc) the oscilla- cations of our results for any frequencies to the calculation
tions in both cases are essentially one dimensional, as it Wafg bulk plasma mode_s, one can think of calculating physical
discussed above. In the case of the imaginary pafdhe properties of conducting heterostructures (quantum wells, su-

differences between the 2D and 3D is less pronounced. perlattices, etc) in which each homogeneous part of the sys-
tem is caracterized by the paramegewhich in turn depends

Oonvg.

In summary, our results for the HM of the 2D-DEG can
be applied to arbitrary ratios /v and are consistent with
the well-known low- and high-frequency limits. Our pro-
cedure is very simple and was similar to Halevi’s for 3D-
DEG, namely, we determine the HM parametérfor arbi-
trary w by comparison of the HM with the more sophisticated
Boltzmann-Mermin model for small wavevectors. We hope
that our efforts can stimulate further experimental and theo-
retical work on the study of small-wavevector excitations in
low-dimensional systems.
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