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Obtaining the gravitational force corresponding to arbitrary spacetimes.
The Schwarzschild’s case.
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G.I.F.T. Depto de F́ısica. Facultad de Ciencias,
La Universidad del Zulia (LUZ), Maracaibo 4001 -Venezuela,

∗ e-mail: tsoldovi@luz.ve,
∗∗ agmunoz@luz.ve

Recibido el 19 de junio de 2002; aceptado el 6 de diciembre de 2002

Making use of the classical Binet’s equation a general procedure to obtain the gravitational force corresponding to an arbitrary 4-dimensional
spacetime is presented. This method provides, for general relativistic scenarios, classics expressions that may help to visualize certain
effects that Newton’s theory can not explain. In particular, the force produced by a gravitational field which source is spherically symmet-
rical (Schwarzschild’s spacetime) is obtained. Such expression uses a redefinition of the classical reduced mass, in the limit case it can be
reduced to Newton’s universal law of gravitation and it producestwodifferent orbital velocities for test particles that asimptotically coincide
with the Newtonian one. As far as we know this is a new result.
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Se presenta, haciendo uso de la ecuación de Binet cĺasica, un procedimiento general para obtener la expresión de la fuerza gravitacional
correspondiente a un espacio-tiempo tetradimensional arbitrario. Este método provee expresiones clásicas para escenarios relativistas, lo que
podŕıa ayudar a visualizar efectos que no pueden ser explicados por la teorı́a newtoniana. En particular, se obtiene la fuerza producida por un
campo gravitacional, cuya fuente es esféricamente siḿetrica (espacio-tiempo de Schwarzschild). Tal expresión emplea una redefinición de la
masa reducida clásica, en el caso lı́mite se reduce a la ley de gravitación universal de Newton y producedosvelocidades orbitales diferentes
para part́ıculas de prueba insertas en el campo, que coinciden asintóticamente con la velocidad orbital newtoniana. Hasta donde conocen los
autores,́este es un resultado nuevo.

Descriptores: Ley de gravitacíon universal; corrimiento del perihelio; potencial de Schwarzschild; masa reducida.
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1. A historical introduction

The obtention of an expression for the gravitational force was
first published in 1687 in the well known bookPhilosophiae
Naturalis Principia Mathematica[1], in which Newton, us-
ing his three laws, deduces [2] an expression according to
which the intensity of gravitational attraction is proportional
to the product of the interacting masses and decreases as the
square of the distance between them. In vectorial notation
this expression can be written as

−→
F = −G

Mm

r2
ûr, (1)

whereG is the constant of universal gravitation,M andm
the source and the test particle masses respectively,r the dis-
tance separating the bodies andûr a versor in radial direction.
As everyone knows, with this set of laws Newton satisfacto-
rily explained the movement of planets and the other celes-
tial bodies, giving, in this way, the foundations of modern
astronomy.

Even though Newton’s gravitation theory gave a good ex-
planation of orbital phenomena happening in the heavens,
with time, observations demonstrated that certain discrepan-
cies that could not be adequately explained did exist. Af-
ter Newton, Laplace and Poisson rewrote the gravitational

law, giving it a both mathematical and physical more ele-
gant formalism, but which still did not solve the aforesaid
discrepancies. In fact, in 1895 Simon Newcomb, after nu-
merous attempts to find a solution to the problem, suggested
that perhaps the Newtonian law of the inverse square “is in-
exact when applied on short distances” [3]. It is with the re-
lease of Einstein’s theory of general relativity (TGR) in 1915
when our conception of gravitational phenomena radically
changed. This theory is able to account for the discrepan-
cies that we have been talking about, particularly, the one
which turned out to be one of its most notorious predictions:
Mercury’s perihelionshift. Additionally, TGR demonstrated
that, in the low velocity limit relative to the speed of light and
in presence of weak gravitational fields, it was equivalent to
Newton’s gravitation theory.

It is important to remark that the new theory, for the sake
of a covariant expression (universal principle of covariance)
of physical laws, does not use Newton’s formulation based on
forces, which arbitrarily depends on the selected coordinate
system to describe the phenomenon, but instead uses tensor
field equations which expressions are independent from the
chosen coordinate systems. In this way, this equations, called
Einstein’s Field Equations (EFE), satisfy the theoretical need
to express a covariant law of gravitation in the TGR. As we
know, in tensor notation and conventional units, we can write
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them as

Gµν =
8πG

c2
Tµν , (2)

whereGµν is Einstein’s tensor,c the light’s speed andTµν

is the energy-momentum tensor. The way this equation re-
lates geometry (left side) with physics (right side) is the rea-
son why the TGR is often called “geometrodynamics”. How-
ever, to get the EFE’s solution means to solve, in the general
case, ten second-order partial differential equations, a tire-
some work even with today’s constant advances in the com-
putation processors’ technology. This is an important reason
because, unless physical conditions demands TGR (speeds
close to the speed of light and strong gravitational fields),
Newton’s gravitation law is still commonly used as a per-
fectly valid theory.

In recent years the exploration of non-relativistics
schemes to calculate astrodynamics effects has become more
and more active (see for example the references of Wang’s
quantum-corrected newtonian force [4], the Caluraet al.
post-Newtonian planetary equations [5] or the Jefimenko’s
Gravito-Cogravitism theory [6]). However, it is important to
remind that it is indeed possible [7–9] to generalize the no-
tion of force, originally defined in a 3d-space, in order to be
able to use it in TGR’s 4d-space (Minkowski’ s force). For
the case of the obtention of a gravitational force generalized
to a 4d-space that includes relativistic effects, Adler, Bazin,
and Schiffer [10] and Weinberg [11] propose interesting pro-
cedures worth consulting. However, it is also possible to find
an expression for a gravitational force of this kind beginning
with a given solution of the EFE and the use of an equa-
tion which possesses -as Eq. (2) does- a geometro-dynamical
character: Binet’s equation.

In this paper we want to present a general scheme de-
veloped for obtain classical gravitational forces from general
relativistic settings. This expressions can describe purely rel-
ativistic effects (as perihelionshift, for example) with just the
use of Newtonian theory. The application of the procedure is
briefly described in the Sec. 2 and 3 for the Schwarzschild
case. The general method is summarized and the discussion
is presented in Sec. 4. Finally, we are using here the MKS
system.

2. Movement of a test particle in a gravitational
field

We are interested in the dynamic study of a test particle
placed in a gravitational field. In any advanced Mechanic’s
text [12–14], it is possible to find the procedure to obtain Bi-
net’s equation

d2u

dθ2
+ u = −F (u−1)

µh2u2
, (3)

whereu = 1/r, µ = (Mm)/(M + m) is the reduced mass,
andh = r2θ̇ (the dot means a classical time derivative) is the

angular momentum per mass unit andF is the force involved.
Thus, this equation relates the orbit’s geometry (left side) to
the particle’s dynamics (right side). As long as the orbit is
given, the force that determines it can be obtained and vice
versa.

Now, if F is given by Newton’s universal gravitation law,
which means, if we study the classical case, we can find
with (3) that

u(θ) =
A

h2
[1 + e cos(θ)] , (4)

whereA ≡ G(M + m), e ≡ Ch2

A (eccentricity) andC is an
integration constant.

This is the essence of the method we want to introduce.
For the relativistic case, it is first necessary to solve the EFE
for certain physical conditions. In this paper, to make it sim-
pler, a static and spherically symmetrical mass distribution is
going to be taken as the source of the gravitational field. Un-
der these conditions, from (2), Schwarzschild’ s solution [15]
is obtained, and we can write it as the following line element:

ds2=
(

1−2mg

r

)
dt2−

(
1−2mg

r

)−1

dr2−r2dΩ2, (5)

where,dΩ2 ≡ dθ2 + sen2θdφ2 is the differential solid angle
and

mg =
GM

c2
(6)

is called geometrical mass or gravitational radius.

From the study of the geodesics obtained from (5) it re-
sults that the trajectory followed by the test particle in the
discussed gravity field is given, using a first-order perturba-
tion method and after some simplifications, by [8]

ũ(θ) ∼= mgc
2

h̃2
{1 + e cos [θ (1− ε)]} (7)

in non-geometrized units, where

ε = 3
m2

gc
2

h̃2
(8)

is the perturbation parameter, a very small quantity, andh̃ is
the relativistic angular momentum per mass unit.

Note the similarity between Eqs. (7) and (4). From this
relativistic result Mercury’s perihelionshift can be obtained,
whereas with (4) this effect does not appear. Note also that (7)
must be equal to (4) whenε = 0, obtaining this way the rela-
tion between the classical and relativistic momentum:

h̃ =

√
M

M + m
h. (9)
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3. Gravitational force from the Schwarzschild’s
metric

Having already noticed that Eq. (7) contains relativistic in-
formation (in fact, it is a solution of the EFE) and that it is
precisely an orbital equation, we can, from a mathematical
point of view, introduce it into Binet’ s equation (3), obtain
the corresponding force and study the physical consequences
of it all.

We would like to know how should the force’s expression
be on (3) in order for (7) to become its solution. Thus, let us
rewrite (3) in this way

d2ũ

dθ2
+ ũ = − F̃ (ũ−1)

µ̃h2ũ2
, (10)

whereũ = 1/r andµ̃ has been written instead ofµ (the re-
duced mass) because we do not know if, in such a procedure,
the definition of reduced mass remains unaltered.

Noting that Eq. (7) involve a first-order perturbation
method, from (8), (9) and (10), after tedious calculations and
neglecting second order terms inε, we obtain

F̃ = −G(M + m)(6mg + r)
r3

µ̃

+
[
G(M + m)(3mg + 2r)

r3
µ̃

]
ε. (11)

We must now require that as long asε → 0 , our

F̃ → −G
Mm

r2
,

doing this we can find that

µ̃ =
Mmr

(M + m)(6mg + r)
, (12)

which, as we shall see, is some kind of “generalized reduced
mass“.

If we now substitute (12) in (11), the general first-order
gravitational force for the Schwarzschild’s solution is ob-
tained:

F̃ = −G
Mm

r2
+ 3

m2
gc

2GMm
(
2c2r + 3MG

)

h̃2r2 (c2r + 6MG)
. (13)

We can see in the second term of (13) the relativistic an-
gular momentum per mass unith̃ = r2θ̇ (here the point in-
dicates a derivative with respect of proper-time). Remember
that for conservative systems the angular momentum is con-
served, sõh is constant. But we can still rewrite (13); for
example, note that if very low speeds related to the speed of
light, c, are considered (as in the Solar System), it is possible
to write

h̃ ∼= V r, (14)

whereV is the orbital velocity of the test particle. We then
obtain,

F̃ = −G
Mm

r2
+ 3

G3M3m
(
2c2r + 3MG

)

c2r4V 2 (c2r + 6MG)
. (15)

If we wish to express the forcẽF in (15) as a function ofr
alone, without the orbital velocityV of the test particle, we
proceed as in the classical scheme: given that we are working
with a classical force, we assume Newton’s laws are valid for
it, and we make (15) equal to the centrifuge force

Fc = m
V 2

r
, (16)

obtaining

V1 = ± c

6rD

×
√

3D (D − r)
(
Dr +

√
Dr (3r2 −Dr −D2)

)
(17)

and

V2 = ± c

6rD

×
√

3D (D − r)
(
Dr −

√
Dr (3r2 −Dr −D2)

)
, (18)

whereD = r + 6mg.
Substituting any of these expressions in (15) we can

write F̃ as a function ofr alone.

4. Analysis and conclusions

We have presented the procedure directly applied to the
Schwarszchild solution. It should be convenient to summa-
rize the general method as follows:

1. Select an arbitrary spacetime. The line element must
be completely determined.

2. Obtain the radial equation of motion for a test parti-
cle via the corresponding geodesic equation. Note the
order of the perturbation method(s) involved, if any.

3. Introduce the equation of motion in the Binet’s equa-
tion, (10). The corresponding force should be writen in
terms of the perturbation parameter(s). Check out the
concordance with the order of the perturbation(s).

4. Require that as the perturbation parameter(s) tends to
zero, the preliminar force tends to Newtonian force.
This condition provides thẽµ factor.

5. Write the resulting expression only in terms of classi-
cal variables.
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With the application of this method, we have derived the
expression (15), the Schwarzschild’s force from now on, in-
cluding relativistic effects and which, in strong fields, dif-
fers from Newton’s law of universal gravitation. Figure 1
shows this difference for a Sun-Mercury-like system at very
small distances from the source. Note that this is in accord
with Newcomb’s idea [3]. Certainly, when we come near the
source, the field’s intensity increases, and it is precisely at this
moment when the relativistic effects contained in the second
term of the Schwarzschild’s force are notorious. The asymp-
totic behaviour of the expression (15) is in perfect agreement
with the predictions of Newton’s gravitational law (1) as it
might have been expected.

The Schwarzschild’s force, is also in concordance with
the predicted general relativity correction to Newtonian grav-
itational motion (see Refs. 10 and 16; ther−3 corrective po-
tential can be derived from Eq. (25.42) in Ref. 17). In fact,
for weak fields, but still non Newtonian fields (for example,
in the Sun casemg = 1.4766 km), we have

G3M3m
(
2c2r + 3MG

)

c2r4V 2 (c2r + 6MG)
' 2

G3M3m

c2r4V 2
, (19)

and the Schwarzschild Force has an explicitr−4 term.
Naturally, from (15) is possible to find the perihelionshift

advance, so it can help to show, just via classical mechan-
ics, this important result of the TGR. Bearing this in mind,
it is also illustrative to compare the Schwarzschild’s force
with the results of the Gravito-Cogravitism approach to find
the periastron advance [18]: the total gravito-cogravitational
force has a roughly similarr−4 dependent term.

Figure 2 shows the comparisson between the classical ve-
locity and the obtained expressions (17) and (18). It is im-
portant to remark that for short distances velocitiesV1 andV2

are slower than the Newtonian one, but asimptotically agrees
with the former. This is due to the fact that the second term
in Eq. (15) is important when the field is strong, making the
Schwarzschild’s forcẽF less intense than the classical force
(1), as seen in Fig. 1; therefore, the equilibrium condition be-
tween gravitational and centrifugal force demands Eqs. (17)
and (18) to be lesser than the classical orbital velocity. As the
field becomes weaker, the Schwarzschild’s force matchs the
Newton’s force, and there is nota priori way to distinguish

FIGURE 1. Newtonian (solid) and obtained (dots) forces.

FIGURE 2. Classical velocity (dotdashed) and expressions (17),
with solid line, and (18) with dots.

between the velocities. Note that the velocities matching
occurs for diferents distances. Indeed, for a Sun-Mercury-
like system, as the one presented in Fig. 2,V1 coincides
with Newtonian orbital velocity forr1 & 4x102Km from
the source, whileV2 coincides forr2 & 5x105Km.

It is an interesting issue that there aretwovelocities, [(17)
and (18)], that satisfies the equilibrium condition between
centrifugal and gravitational forces instead of one. We re-
port that as a curiosity of the ansatz we have used since we
had not find any physical reason to discard Eq. (18). As far as
we know this is a new result, and, since this bifurcation oc-
curs for very near distances from the source it could be quite
difficult to prove the existence (or not) of this effect.

On the other hand, we also have obtained the interest-
ing Eq. (12) that is a mass depending on the separation be-
tween the interacting bodies and which, in the weak fields
limit (small mg), turns into the known expression for the re-
duced mass of a two bodies system. Also observe that the
same asymptotic behaviour occurs when the bodies’ separa-
tion is quite large (Fig. 3). The origin of (12) can be attributed
to the fact that the effects spawned from space-time curvature
in TGR have been transfered, into the present scheme, in the
variation of this generalized mass with respect to the interact-
ing bodies’ distances.

As we have mentioned at the introduction, Eq. (10) pos-
sesses a geometro-dynamical character in the sense that it re-
lates the test particle’s trajectory (geometry) to the force (dy-
namics) acting on it. Note too thatµ̃ is present in the denom-
inator of the dynamical member of (10): from this we can de-
duce that as long as we approach the source, the effects on the
geometrical member become increasingly notorious, mean-
ing that the trajectory will progressively differ from the one
predicted by Newton’s law of gravitation. Examples of this
are Mercury and Icarus because of their nearness to the Sun.
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FIGURE 3.Reduced mass (solid line) and̃µ parameter (dots line).

Finally, we want to point out that more detailed future in-
vestigations are necessary to explore all the wealth of this
ansatz; this method possesses a great deal of conceptual
value, because it shows the way to describe purely relativis-
tic effects through the use of a completely classical scheme.
Moreover, it is general: given a trajectory predicted in a rel-
ativistic setting, it can be obtained a corresponding gravita-
tional force “only” expressed in classical notions.
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Ferḿın showed helpful in the development of the investiga-
tion.

1. I. Newton,Philosophie Naturalis Principia Mathematica(Edi-
torial Tecnos, S.A., Madrid, 1987).

2. Ibid. p. 80.
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