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The Wigner function in paraxial optics II. Optical diffraction pattern
representation
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The Wigner distribution function is a tool to visualize a signal in the space-frequency domain. Moreover, it can be produced by purely optical
means. We describe the Brenner-Lohmann optical setup with monochromatic light, which produces the Wigner function. A signal composed
of rectangle functions (optically produced by slits) has a Wigner function with a “sand clock” form. We point out the strong oscillations of
the Wigner function between two interfering components, which has been called thesmile functionof a “Schr̈odinger’s cat” state. This bears
interesting optical diffraction patterns in our figures.
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La función de distribucíon de Wigner permite visualizar a una función en el dominio mixto espacio-frecuencia. Además, puede producirse
con arreglos puramentéopticos. En este artı́culo se describe el arreglóoptico de Brenner-Lohmann iluminado con luz monocromática que
produce la funcíon de Wigner. Una sẽnal compuesta por funciones rectángulo (producidáopticamente con rendijas) tiene una función de
Wigner en forma de “reloj de arena”. Es importante notar las fuertes oscilaciones de la función de Wigner de dos componentes que interfieren
y que han sido llamadas la “función sonrisa” del estado de gato de Schrödinger y que genera patrones de difracción de gran inteŕes.

Descriptores: Funcíon de distribucíon de Wigner;́optica de Fourier.

PACS: 42.25.Hz; 42.30.kq

1. Introduction

Every signal —such as a music piece— can be described in
at least four ways, shown in Fig 1. We may plot its air pres-
sure profileu(t) as a function of timet (top left), or its tem-
poral Fourier transform̃u(ν) (top right). Both descriptions
are complete and equivalent, but useless for the performing
musician. He needs to read which note, of frequencyν, he
must produce at each timet. The community of world mu-
sicians has converged on the representation of such signals
by their musical score (bottom left). This score satisfies the
musician but not necessarily the scientist [1, 2], because he
knows that the uncertainty principle prevents him from spec-
ifying the monochromatic frequency at an instant of time.
One needs a finite time interval to measure a small frequency
range —for practical matters, at least a full cycle. Longer in-
tervals improve the accuracy of the frequency measurement
but degrade the sharpness of the time measurement. This con-
flict between the musician and the scientist is resolved by the
Wigner function (bottom right).

The Wigner quasiprobability distribution function or
Wigner function was originally applied for the understanding
of quantum corrections in thermodynamical equilibrium [3].
Since then, it has come to be used extensively in quan-
tum optics because it provides a clear interpretation of pure

and mixed states in phase space [4–7]. Applications of the
Wigner function to signal analysis in the space–momentum

FIGURE 1. A time-dependent signal can be represented in several
forms. This Figure shows an acoustical signal as a function of time
(top-left) and as a function of frequency (top right). Musicians use
the musical score, a time-frequency representation (bottom-left).
The WDF is a mathematical mixed-domain completed representa-
tion.
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and time–frequency domains are relatively recent and the
new interpretation has been fruitful [8–11]. The Wigner func-
tion represents one-dimensional optical wave fields on the
two-dimensional phase-space plane, by a height plot which is
intuitively appealing and is rich in mathematical properties.
In a recent paper, it was discussed with Zhao and ourselves
the properties of the Wigner function that can be applied to
optical lens systems related to this paper [12,13].

We recall that the Wigner function of the signalE(x)
(x ∈ <, assumed to be square-integrable) is a function of
the space and frequency domain (x, k ∈ <) defined by

W (x, k)=
∫ ∞

−∞
dx′E(x+ 1

2x′)E∗(x− 1
2x′) exp(−ikx′), (1)

or equivalently in the frequency domain, by

W (x, k)=
∫ ∞

−∞
dk′Ẽ(k+ 1

2k′)Ẽ∗(k− 1
2k′) exp(ik′x), (2)

where E(x, k) and Ẽ(x, k) are a pair of Fourier trans-
forms [1–13], whereλ is the wavelength andk = 2π/λ.

2. Experimental setup

To produce optically the Wigner function of some simple
one-dimensional signals, we used the coherent-astigmatic
processor proposed by Lohmannet al. in Ref. [1, 2], a ma-
jor part of which is the sphero-cylindrical lens pair shown in
Fig. 2. A coherent processor is an array consisting of a spa-
tial filter and thin spherical lenses. When it is convenient to
replace some spherical lenses by cylindrical lenses, the sys-
tem is said to be an astigmatic processor. A powerful feature
of coherently illuminated optical systems is that the Fourier
transform of a signal exist in space. As a result, one can im-
plement filtering operations directly in the Fourier domain.
Spatial frequencies describe signals in space (such as images)
in the same way that temporal frequencies describe signals in
time.

To explain how Lohmann’s apparatus works, we follow
Goodman [14] in a didactic and direct (simple) description
way: a ray entering a thin lens at the point of space coordi-
nates(x, y) will exit approximately at the same point on the
opposite face. A thin lens solely produces thus, a delay in the
phaseδφ(x, y), given by

δφ(x, y) = kn d(x, y),

wherek is the propagation number of the optical field, andn
andd(x, y) are the index of refraction and the width of the
lens at(x, y), respectively. The effect of a thin lens is thus
the multiplicative phase transform

tl(x, y) = exp[ik(d0 + (n− 1)d(x, y))], (3)

whered0 = d(0, 0) is the width of the ‘thin’ lens on the opti-
cal axis. Hence, ifE(x, y) is the optical field distribution on
the plane just before the lens, then the optical field on the

FIGURE 2. A coherent astigmatic optical processor (sphero-
cylindrical) lens pair. An input transparency is on the front focal
plane Pi of the cylindrical lens. This lens produces the Fourier-
transform on its back focal plane Pf along its power meridian di-
rection. The, a spherical lens produces another Fourier-transform
operation on its back-focal plane Po resulting in an inverted image
of the input transparency along the power meridian direction(−x)
and the Fourier-transform along the axis meridian direction(k).

plane immediately after the lens is given by

E′(x, y) = E(x, y) exp[ik(d0 + (n− 1) d(x, y))]. (4)

We follow here the common convention where rays prop-
agate from left to right, and the radius of curvature is counted
positive when the lens surface is convex, and negative when it
is concave. In the paraxial approximation, one considers only
the quadratic terms in the Taylor expansion of the surface
function, that is,d(x, y)−d0 ≈ gxxx2+2gxyxy+gyyy2. Un-
less otherwise specified, we imply that the lenses are spher-
ical (gxx = gyy, gxy = 0); when astigmatic, such quadratic
surfaces can be brought always to principal axes by means of
a rotation of the lens around the optical axis, or replaced by a
spherical and a cylindrical lens in contact. So, whenR1 > 0
andR2 < 0 are the radii of curvature of the first and second
surfaces of the lens, respectively; then the width of the lens
at all other points is approximated by

d(x, y) = d0 −
(

1
R1

− 1
R2

)(
x2 + y2

2

)
. (5)

In the paraxial approximation therefore, (4) yields the
lens transformation

E′(x, y) = E(x, y) exp
[
ik

(
nd0 − 1

2f
(x2 + y2)

)]
, (6)

where an important parameter of the lens is thefocal length
f , defined by

1
f

= (n− 1)
(

1
R1

− 1
R2

)
. (7)

The pupil functionP (x, y) for a lens of diameterD, is

P (x, y) =
{

1, x2 + y2 ≤ (D/2)2,
0, x2 + y2 > (D/2)2, (8)

and accounts for the finite aperture of a real lens. The most
remarkable property of converging lenses,i.e., their ability
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to perform a two-dimensional Fourier transform, stems from
Fresnel’s diffraction integral

E′(x′, y′) =
eikz

iλz
exp

ik

2z

(
x′2 + y′2

)

×
∫∫ ∞

−∞
dx dy

[
P (x, y) E(x, y) exp

ik

2z

(
x2 + y2

)]

× exp
ik

2z
(xx′ + yy′). (9)

Rearranging the integrals and exponents, one thus finds that a
thin lens between two empty spaces will transform an object
optical fieldE(x, y) into an image fieldE′(x′, y′), which is
the convolution of the Fourier transform of the object field
Ẽ(x′, y′) (generally, rescaled and multiplied by a quadratic
phase with the Fourier transform of the pupil function). A
spherical lens has the same focal length somewhere through
its optical axis, hence it performs an isotropic Fourier trans-
form. A cylindrical lens has infinite focal length in one plane,
and can thus perform the Fourier transform only in the per-
pendicular direction.

Three distinct optical configurations have been used to
perform the Fourier transform. (In all cases, one assumes
that the illumination is monochromatic and that the distribu-
tion of light amplitude across the back focal plane of the lens
is constant). In the first configuration, the object is placed di-
rectly on the lens surface; in the second, the object is placed
at a distanced in front the lens; and in the third case, the ob-
ject is placed behind the lens, at a distanced from the focal
plane. Here we shall be concerned only with the more gen-
eral geometry of the second case. So the object is atd to the
left of the lens, and it is illuminated by a normally incident
field of amplitudeA.

In the above paragraphs, we have discussed that a con-
verging spherical lens produces, up to a phase factor, the
Fourier-transform of a input transparency placed a distance
d in front of it; this Fourier-transform is on the focal plane
of the lens. This Fourier-transform operation is due to the re-

fracting power of the lens, so if we regard the optical field dis-
tribution only as a function of the spatial coordinatex, E(x)
on the input transparency plane, we get the Fourier-transform
on thekx axis, which is parallel to thex-axis, on the focal
plane.

A cylindrical lens has refracting power only along a plane
perpendicular to its axis meridian. If we put a cylindrical
lens with its axis (power meridian) perpendicular to thex-
axis after a spherical lens, we get the Fourier-transform of
the Fourier-transform of the input transparency, that is, the
inverse image of the input transparency.

Because a cylindrical lens has no refracting power along
its axis direction, it only introduces a change of phase on the
y-axis, but the spherical lens produces the Fourier-transform
along this direction. Finally, on the focal plane of the cylin-
drical lens we get the irradiance of the optical field distribu-
tion as a function of the space-coordinatex, and the wave
numberk on they-axis.

Paying attention to the definition of the Wigner function
in Eq. (1), we see that Fresnel diffraction (9), while providing
the Fourier transform of

F (x, y) = E(x + 1
2y) E∗(x− 1

2y), (10)

will also provide the Wigner function of the signalE(x). In
case of real one-dimensional signals, the shifted product (10)
can be produced in several ways. The one followed by us
was to put two “identical” objects (generally two copies of
a bar code transparency, but in our case a single slit, a pair
of parallel slits, etc.), rotated one with respect to the other
around the optical axis. The optical setup used in this paper
was limited to one-dimensional signal. The rectangular slits
were homogenously illuminated with a He-Ne laser, so a one-
dimensional homogeneous optical field distribution along the
horizontal axis is produced.

The square modulus of the Wigner function of a single
slit, double slit and a triple slit and the “Schrödinger’s cat”
was obtained with the experimental array shown in Fig. 3,

FIGURE 3. A coherent astigmatic optical processor (Experimental setup). A slit is illuminated by a He-Ne laser beam. The sphero-cylindrical
lens pair (SL-CL) produces the WDF of the optical -field leaving the slit- on the back-focal plane of the CL. The WDF is amplified by a
microscope (MC) and recorded on a photographic film or by a CCD camera (not shown). The laser beam is spatial-filtered (SF), attenuated
(AT) and collimated by a spherical lens (CSL) before goes through the slit.
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where the slits and optical processor are located before a mi-
croscope. The single slit was described by arectanglefunc-
tion given by

E(x) = rect
(x

a

)
, (11)

where the rect(x) function is defined as usually by

rect (x) ≡




1, |x| < 1/2
1/2, |x| = 1/2
0, |x| > 1/4.

(12)

The WDF for the single slit is given by

W (x, k) =
2 sin [k (−2|x|+ a)]

k
, |x| < a/2 . (13)

A counter-clockwise rotation of one slit around the beam
propagation direction (see Fig. 4a and 4b) introduces a one-
dimensional distribution along thex′ direction which made
an angleθ with thex-axis, so that one-dimensional distribu-
tion along thex− axis is given as

E(x′ = x cos θ + y sin θ) = E(cos θ(x + y tan θ))

so, if θ = 260 33′ 54.18” then the optical field strength takes
the formE (0.8944 (x + y/2)).

The double slit can be represented by the sum of two rect-
angular functions

E(x) = rect
(

x− b/2
a

)
+ rect

(
x + b/2

a

)
, (14)

and the WDF for the double slit is

W (x, k; E)

=





4
k

sin [k (−2|x|+a)] cos (kb) , |x|<a/2

2
k

sin
[
k

(−2
∣∣|x|− b

2

∣∣ +a
)]

, |x−b/2|<a/2,

(15)

The triple-slit signal and its WDF can be represented, re-
spectively, as

E(x)=rect
(

x−b

a

)
+rect

(x

a

)
+rect

(
x+b

a

)
, (16)

and

FIGURE 4.1 One slit (left). (a) A one-dimensional signal function
E(x). (b) Two-dimensional wavefield functionE(x, y) = E(x)
on the object plane. (c) Function on the plane rotated counterclock-
wise by an angle ofθ = 26◦34′ around the origin. (d) Product
of two copies ofE(x, y) rotated by±θ is the object wave field
E[a(x + (1/2)y)] E[a(x − (1/2)y)] that will be Fourier trans-
formed.

FIGURE 4.2 Two unequal slits (right). (a) A one-dimensional
signal functionE(x). (b) Two-dimensional wavefield function
E(x, y) = E(x) on the object plane. (c) Function on the plane
rotated counterclockwise by an angle ofθ = 26◦34′ around the
origin. (d) Product of two copies ofE(x, y) rotated by±θ is the
object wave fieldE[a(x + (1/2)y)] E[a(x− (1/2)y)] that will be
Fourier transformed. and two unequal slits (right).
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W (x, k;E) =





2
k

sin [k (−2|x|+ a)] [2 cos(2kb) + 1] , |x| < a/2

4
k

sin [k (− |2 |x| − b|+ a)] cos(kb), ||x| − b/2| < a/2

2
k

sin [k (−2 ||x| − b|+ a)] , ||x| − b| < a/2 .

(17)

3. Results

The rotation by angles±φ of the two copies of the bar-code
signalE(x) give the fieldsE(x, y) = E(x cos φ±y sin φ) on
the two-dimensional screen [1, 2, 15] (see Fig. 4). To obtain
the shifts in Eq. (10) up to a common scale, it is thus required
to rotate by the angle which fulfillssin φ/ cosφ = ±1/2, or
φ = ± arctan 1

2 ≈ 26◦34′. For simplicity, in our optical set
up, we rotate the slits a450. This angle introduces a change
in scale along thex-axis.

The functions that were mathematically considered are
shown in Fig. 4a and 4b. The characteristic “sand clock”
image is due to the sphero-cylindrical lens of the coherent
processor and is shown in Fig. 5.

On Fig. 5 (top left), we can see the brightest sand clock-
like” spot and some oscillations above and below it. These
oscillations are much less intense than the central trace, but
they can become visible easily on a photographic film. On
Fig. 5 (top right) it is shown the square modulus of the WDF
of a double slit. The trace on the extremes are produced by
each slit and the one on the center is due to the interference of
the two slits. It can be interpreted as a “optical Schrödinger’s
cat state”. On the bottom of Fig. 5, it is shown the square
modulus of the WDF of a triple slit. The first and fifth pat-
terns (from left to right) are the square modulus of the WDF
of the the first and third slits, respectively. The third pattern is
a superposition of the the square modulus of the WDF of the
second slit and the interference of the optical fields from the
first and third slits. The second and fourth patterns are due
to the interference of the fields from the first and second and
the second and third slits, respectively. The nterference pat-
terns alsp show several oscillatios (related to the “cat’s smile
fucntion”).

A computer simulation was done using Eqs. (13), (15)
and (17) to illustrate the utility of this representation and can
be seen in Fig. 6 and 7. We bring attention to the fact that
the region of strong oscillations in the Wigner function of the
diffraction and interference patterns bears a lot of information
that can be use for several applications like the characteriza-
tion of ultrashort pulses, “chirp” measurements, holographic,
laser spectroscopy and other applications [8–17].

4. Conclusions

In this paper, we have shown that the square modulus of WDF
can be easily produced with a simple optical setup, where the

sphero-cylindrical lens pair gives the images and the Fourier
transfom of the slit, simultaneously. Also, the interference
pattern of a multiple slit of a WDF can be associated to
the“Scr̈odinger cat’s smile”. The experimental data and the

FIGURE 5. Square Modulus of the Wigner Function for a uniform
illuminated single slit (top left), for a double slit (top right) and for
a triple slit (bottom).

FIGURE 6. Plot of the square modulus of the Wigner Function for
a uniform illuminated single slit.

FIGURE 7. Plot of the square modulus of the Wigner Function of a
single slit.
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mathematical approach discussed here showed a good
method to measure the distortion usually present in diffrac-
tion patterns, particularly interesting is the Wigner optical
representation. This optical technique allows to illustrate
quantum effects that are hardly shown with other methods.

On Fig. 5, the photographs clearly show the diffraction
and interference patterns with the oscillations discussed in
this paper. Fig. 6 and 7 are plots of the calculated WDF for a
single slit. These plots are related to the pattern of single slit.

A close association between physical concepts and up-
to-date optical techniques are found in the literature. Here,
we present our efforts in this direction and a brief review of
recent hot topics in the field of optics.

This presentation is our present work that we started
at the laboratory, where students of electrical engineering
and physics will be trained in these mathematical concepts,
such as Fourier transform, cross and autocorrelation for ul-
trashort pulse characterization techniques, such as FROG,

sonograms, time-frequency techniques and its vast applica-
tions in physical optics, dispersion, holography, nonlinear
optics, telecommunications, tomography and ultrafast spec-
troscopy [18].
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