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Conserved quantities in the variational equations
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Noether’s theorem relating continuous symmetries of a Lagrangian system to the existence of conserved quantities is shown to be valid at
the level of the variational equations of the system. This result can be helpful in the study of perturbations and of integrability in various
areas of current interest. As examples, we derive conserved quatities in linearized general relativity and obtain conserved quantities valid in
perturbed classical dynamics.
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Demostramos que el teorema de Noether, que relaciona Esewntinuas de un sistema lagrangiano con la existencia de cantidades
conservadas, es tan@i valido para las ecuaciones variacionales del sistema. Este resultado puede ser de utilidad tantoiandi teor
perturbaciones como en estudios sobre integrabilidad en divaérsas de inté&s actual. A guisa de ejemplo encontramos una cantidad
conservada en relatividad general mediante &lisis de las simelas de la gravitadin linealizada, y, por otro lado, obtenemos una cantidad
conservada muy simple que eslida en la megnica chsica perturbada.

Descriptores: Teorema de Noether, ecuaciones variacionalesagtagrangianas.

PACS: 45.10.Db; 04.20.Fy; 45.20.J]

The equations of motion of many physically relevant systemgonverse of this result has been proved earlier in [16]. The
can be obtained within a Lagrangian framework. The sysvariational equations and its symmetry properties are also im-
tems are described using a Lagrangian density through thgortant for studying solitonic solutions to certain non-linear
Euler-Lagrange equations. To these equations of motion wevave equations [4]. It is also known that if the original La-
can associate another set of equations obtained by linearizirggangian is invariant under a translation in any space-time
the Euler-Lagrange equations around one of its particular sadirection andy is one of its solutions, then the directional
lutions. Such linearized equations are calledvhgational  derivative ofy) along such direction is then a solution of the
equationg1], are important in studies of stability [2—4] and variational equations [16].

for defining quantities as the Lyapunov exponents or some  Thys, given the relevance of the variational equations in
forms of entropy in dynamical system theory [2, 5]. Also many aspects of physics, and of the relationship [11, 16] be-
they are the equations of geodesic deviation in general relgween constants of motion and properties of the solutions of
tivity and other metric theories of gravitation [6-10]. They the original equations, in this work we want to pursue the
are in general useful for describing perturbations from thee|ation between symmetries and constants of motion in the
original dynamics and have been variously used in analysingst-order dynamics. To accomplish this task, a Lagrangian
non-linear evolution equations [11], in studies of stability in gescription of the variational equations is very convenient.
galactic dynamics [12], in performing the Pairdetest [13],  Though this description does not appear easy to attain—
and in geometric control theory [14, 15]. given the use of particular (and explicitly space-time depen-
It has been shown that if the field equations can be castedent) solutions of the original equations for deriving the vari-
in Hamiltonian form and if any solution of the variational ational equations— a complete Lagrangian characterization
equations can be expressed as the Poisson bracket of a figfithe variational equations of Lagrangian systems has been
variable,¢,, with any other dynamical variable, then this dy- advanced recently [17], see also [7, 10] for previous related
namical variable is necessarily a constant of motion [11]. Theesults. The idea is the following, given the Lagrangian den-
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sity associated with a systerh, a new density needs to be Using the densityy we can further define an alternative
defined [14,17] as action functional as
oL oL
— a _|_ a , 1

’y a(ba € a(ba“ E,p, ( )
where thee® and thee, correspond, respectively, to devia-
tions from the original field variables and to their space—time\m1ereQ is an appropriate space-time region. This action is
derivatives. These deviations are assumed to connect two - oo for our formulation
nearby solutions of the original Euler-Lagrange equations. '
In (1), as in all of the paper, the summation convention is
implied, we also use),, = 0v/0x*, Latin indices corre-

E:/Q'y(¢“76“,¢?“,e?u)d4x, )

The extremalization of (2) gives [17] both the Euler-
Lagrange equations,

spond to internal variables, and Greek indices to space-time
: . . . oL oL
coordinatesz*, u = 0,...,3. From a strictly mathematical - - = =0, (3)
viewpoint the densityy can be interpreted as the prolongation 99, " 9%
of L [14].

|  and the associated variational equations,
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In the form given above, the variational equations do no{ the transformation group (5) are thus
have to be regarded as explicitly dependent on the space-time
coordinates unless the original Lagrangian densitis so a 8F§ o [OFF
from the start. This property, shared by the functignis G = ows ’ s = <5ws)w507
analogous to what occurs with the Lagrangian denbiit- we=0
self, which is not considered space-time dependent despite ¢ — <W> @)
being an explicit function of the fields®(x) which, in prin- s ows ) oo
ciple, also depend om*. The form (4) of the variational ) _
equations and their origin from (2) is closely connected withIf t_he set of trans_formauons (5-7) [or (8)] is a symmetry of
properties of the Jacobi equation of interest for the study of » it could stem directly from a symmetry of the %r|g|nal_ La-
geodesics in Riemannian manifolds and gives a way for degranglanL and, in this case, we could ha¥® = F¢'. Butit

riving the associated curvature tensor from a variational for!> also possible that this will not be the case, for the symme-

mulation [2, 18]. It should be clear thatplays the role of tries ofy are expected to be larger than thoselot-as can

a new form of the density associated with the system. Fron€ SIMPly ascertained by thinking about the possible trans-
the existence of the action (2) it can be easily proved4hiat o'mations that leave (3) and (4) unchanged. Our examples

invariant under arbitrary point transformations on its configu—beIOW show simple mstances of such case.

ration manifold comprised by the?, thee?, and their space- That the transformation group (5) be a symmetryyof

time derivatives [14,17]. The functionthus describes both M€aNs that_the actioll (Eq. 2) remains invariant under the

the system and its variational equations. t_ra_nsformat_lqns generated by the group. A necessary and suf-

To establish the connection between symmetries and corficient condition for this to be true is that

servation laws in the variational equations, let us consider 89" . o 00°

a prolonged Lagrangian density and assume it invariant v (¢ "ozt ) D =~(¢ " opn’ ); ©)

(or quasi-invariant, but in what follows we use invariant for

short) under the following continuous group of transforma-where D = det (0z*/0x") is the Jacobian determinant of

tions the transformation. Eq. (9) is the fundamental equation al-
3 = Fg(xﬂ’ 6%, € w), ) lowing us to epriciFIy write the relat?onship between the gen-

erators of the continuous symmetriesyofind the conserved

e = FH (2", 9%, ", w®), (6)  quantities in the variational equations [19].
o Wi caa s To see how the extension can be accomplished, differen-
ot = Fy (2", 0% € w’), (") tate partially this equality (9) with respect to*, noting that

where thew® are ther parameters of the group, defined in the right hand side is independent of such parameters, and
such a way that the transformation reduces to the identitgvaluate inw® = 0 after the differentiation. After some ma-
when all thew® vanish. The infinitesimal generators of nipulations this yields
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Finally, use the equations of motion [Eqgs. (3) and (4)] to ob—l, ) )
tain is divergenceless and hence generates a conserved quantity.

ok This is a rather useful tensor that was employed (and had

= =0, (11)  to be evaluated using direct calculations) in Ref. 20 to calcu-
late the conserved quantities of Newman and Penrose. Notice
also that thig-* is a conserved quantity &nyvacuum space-
Oy (o —goer) + vy (2 — €2e”) time in General Relativity. We have thus managed to derive
g, *>° s dea, NTE VR using our result (12) one of the results in Ref 7. Moreover,

(12) v can be also shown to be invariant under the one parameter

&roup of transformations

oxH
where the divergenceless tensgris defined by

T =€+

This is the conserved tensor associated with the variation
equations. It is to be noted that this result can be regarded
as the Noether’s theorem for the variational equations —that
can be checked following the steps for the demonstration of =gzt and & ="+ e'w, (18)
Noether’s theorem that can be found in many places, for ex-
ample in Ref. 19. The conservation 0f{12) was to be ex-
pected sincey is indeed a Lagrangian function on its own. With the infinitesimal generatogs= 0, ¢(* = 0, andn# = ¢*.
The conserved quantities are simply related to the infinitesiln this case (12) leads directly to the divergence less tensor
mal generators (8) of the symmetry group of the variational
equations, as Eq. (12) explicitly shows.

To give examples of the usefulness of this result, we next o — v e
derive (in admittedly simplistic instances) conserved quanti- de,
ties starting from well-known Lagrangian symmetries.

_ papby
Example 1Let us consider the Lagrangian density = R, (19)
1
L=-R""x, ,2p,, (13)
.2 _ which due to the symmetry properties &, happens
WhereE““b” = sz”““ is the Rlemann tgnsor_. . ~ toidentically vanish. Nevertheless, we have illustrated in a
This Lagrangian (13) describes Einstein equations in &imple instance that the symmetriesiotan be larger than
vacuum. The density associated with (13) is those ofL. It should be noticed that the ‘extended’ symme-
I auby _ try [Egs. (18)] is the original symmetry of the Lagrangian
T3 (R ),p € Ta oy + B 2o pern;  (14) just applied to the perturbation variables. We must point out

in this casey describes linearized gravitation in a vacuum. also that the idea for this example is taken from [7] where it

Taking into consideration the properties Bf#%”, it is not IS used to relate symmetry transformations to the existence
difficult to realize thaty is invariant under the one parameter Of divergence less quantities in a first-order approximation to

group of transformations Einstein theory.

t =¥ + 2fw, and € =€, (15) There are other potential uses of our main result (11) in

o _ P general relativity and in other field theories. For example, for

trLe ;nf(')mt\iz ;hm?gszgar;tgfﬁezr:r:g%; i(r){ﬁﬁi tesimxal’gaenndera_investigating perturbations_to known metrics [21] and to con-

?ors est;alblished the extended Noether’s theorem predicts thtr bute to the study of certain angular mom_entum amb|gU|t|es

the quantity ' recent interest [22]. The excellent review [23] d|scusse§
some other contemporary uses of perturbation methods in

. 657 co cosmological models in the context of general relativity.
T

Example 2.0ur result can be also profitably applied to par-
= (R““b”)‘c €cThy Ta + R e, 1,  (16)  ticle mechanics by a simple reinterpretation of the symbols
by ' used in Eqg. (12) and the replacement of the four spacetime
= R"™e,, 2q a7 parameters® by the timet. To give a simple example, let us
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consider a Lagrangian function describing a system of partiappearing in Eq. (22), is, as it should be, a constant of motion
cles in which one of the coordinates is ignorable. In this casegn its own. These results are direct and simple examples of
the original Lagrangian and the functigrcan be written as  conserved quantities which may be important (in more com-
plex instances) in the analysis of classical perturbation meth-

1 v . 0
L= gmapg ‘" —U(q), (20)  ods with astronomical interest [24].
ou To summarize, we have established a form of Noether’s
¥ = Mapg®e® — a—qae“, (21)  theorem that encompasses the variational equations and have

illustrated its use with direct examples. The conserved quan-
wherem,,, is a symmetric ‘mass’ matrix formed by the sec- tities encountered can be useful in perturbation theory as our
ond derivatives of the system’s kinetic energy respect to théormalism can be regarded as a starting point for studying
generalized velocitieg®, and U(q) is its potential energy perturbations in all kind of Lagrangian problems. More-
function. For the purposes of the example we are assumpver, if we take into consideration the Lagrangian founda-
ing thatm,; does not depend on the generalized coordinatefions of the path integral approach our formalism could be
q“, but this is of no important for the argument —it just sim- yseful in approaching approximate schemes in quantum field
plifies a little the form of the associated conserved quantitytheory [25]. We also consider it as possibly important for
The invariance under translations in the, let us gdydirec-  studying properties of solitonic solutions in nonlinear equa-
tion (i. e. the transformation ig* = ¢* + w, e* = e* +w,  tions [4]. Besides, the formalism could have some bearings to
the rest of the coordinates and velocities remain unchangeghodern mathematical developments in Lagrangian field the-

can be associated with the infinitesimal generagossO and  ories [26].
¢4 =n4 =1, and so using (12) we can obtain that
o oy
TAT 9eA T 9gA
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