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Conserved quantities in the variational equations
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Noether’s theorem relating continuous symmetries of a Lagrangian system to the existence of conserved quantities is shown to be valid at
the level of the variational equations of the system. This result can be helpful in the study of perturbations and of integrability in various
areas of current interest. As examples, we derive conserved quatities in linearized general relativity and obtain conserved quantities valid in
perturbed classical dynamics.
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Demostramos que el teorema de Noether, que relaciona simetrı́as continuas de un sistema lagrangiano con la existencia de cantidades
conservadas, es también v́alido para las ecuaciones variacionales del sistema. Este resultado puede ser de utilidad tanto en la teorı́a de
perturbaciones como en estudios sobre integrabilidad en diversasáreas de interés actual. A guisa de ejemplo encontramos una cantidad
conservada en relatividad general mediante el análisis de las simetrı́as de la gravitación linealizada, y, por otro lado, obtenemos una cantidad
conservada muy simple que es válida en la mećanica cĺasica perturbada.
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The equations of motion of many physically relevant systems
can be obtained within a Lagrangian framework. The sys-
tems are described using a Lagrangian density through the
Euler-Lagrange equations. To these equations of motion we
can associate another set of equations obtained by linearizing
the Euler-Lagrange equations around one of its particular so-
lutions. Such linearized equations are called thevariational
equations[1], are important in studies of stability [2–4] and
for defining quantities as the Lyapunov exponents or some
forms of entropy in dynamical system theory [2, 5]. Also
they are the equations of geodesic deviation in general rela-
tivity and other metric theories of gravitation [6–10]. They
are in general useful for describing perturbations from the
original dynamics and have been variously used in analysing
non-linear evolution equations [11], in studies of stability in
galactic dynamics [12], in performing the Painlevé test [13],
and in geometric control theory [14,15].

It has been shown that if the field equations can be casted
in Hamiltonian form and if any solution of the variational
equations can be expressed as the Poisson bracket of a field
variable,φa, with any other dynamical variable, then this dy-
namical variable is necessarily a constant of motion [11]. The

converse of this result has been proved earlier in [16]. The
variational equations and its symmetry properties are also im-
portant for studying solitonic solutions to certain non-linear
wave equations [4]. It is also known that if the original La-
grangian is invariant under a translation in any space-time
direction andψ is one of its solutions, then the directional
derivative ofψ along such direction is then a solution of the
variational equations [16].

Thus, given the relevance of the variational equations in
many aspects of physics, and of the relationship [11, 16] be-
tween constants of motion and properties of the solutions of
the original equations, in this work we want to pursue the
relation between symmetries and constants of motion in the
first-order dynamics. To accomplish this task, a Lagrangian
description of the variational equations is very convenient.
Though this description does not appear easy to attain—
given the use of particular (and explicitly space-time depen-
dent) solutions of the original equations for deriving the vari-
ational equations— a complete Lagrangian characterization
of the variational equations of Lagrangian systems has been
advanced recently [17], see also [7, 10] for previous related
results. The idea is the following, given the Lagrangian den-
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sity associated with a system,L, a new density needs to be
defined [14,17] as

γ =
∂L

∂φa
εa +

∂L

∂φa
,µ

εa
,µ, (1)

where theεa and theεa
,µ correspond, respectively, to devia-

tions from the original field variables and to their space-time
derivatives. These deviations are assumed to connect two
nearby solutions of the original Euler-Lagrange equations.
In (1), as in all of the paper, the summation convention is
implied, we also useψ,µ ≡ ∂ψ/∂xµ, Latin indices corre-
spond to internal variables, and Greek indices to space-time
coordinates:xµ, µ = 0, . . . , 3. From a strictly mathematical
viewpoint the densityγ can be interpreted as the prolongation
of L [14].

Using the densityγ we can further define an alternative
action functional as

Σ =
∫

Ω

γ(φa, εa, φa
,µ, εa

,µ) d4x, (2)

whereΩ is an appropriate space-time region. This action is
fundamental for our formulation.

The extremalization of (2) gives [17] both the Euler-
Lagrange equations,

(
∂L

∂φa
,µ

)

,µ

− ∂L

∂φa
= 0, (3)

and the associated variational equations,

(
∂2L

∂φa
,µ∂φb

,ν

)
εb
,µν +

[(
∂2L

∂φa
,µ∂φb

,ν

)

,µ

+
∂2L

∂φa
,ν∂φb

− ∂2L

∂φb
,ν∂φa

]
εb
,ν +

[(
∂2L

∂φa
,µφb

)

,µ

− ∂2L

∂φa∂φb

]
εb = 0. (4)

In the form given above, the variational equations do not
have to be regarded as explicitly dependent on the space-time
coordinates unless the original Lagrangian densityL is so
from the start. This property, shared by the functionγ, is
analogous to what occurs with the Lagrangian densityL it-
self, which is not considered space-time dependent despite
being an explicit function of the fieldsφa(x) which, in prin-
ciple, also depend onxµ. The form (4) of the variational
equations and their origin from (2) is closely connected with
properties of the Jacobi equation of interest for the study of
geodesics in Riemannian manifolds and gives a way for de-
riving the associated curvature tensor from a variational for-
mulation [2, 18]. It should be clear thatγ plays the role of
a new form of the density associated with the system. From
the existence of the action (2) it can be easily proved thatγ is
invariant under arbitrary point transformations on its configu-
ration manifold comprised by theφa, theεa, and their space-
time derivatives [14, 17]. The functionγ thus describes both
the system and its variational equations.

To establish the connection between symmetries and con-
servation laws in the variational equations, let us consider
a prolonged Lagrangian densityγ and assume it invariant
(or quasi-invariant, but in what follows we use invariant for
short) under the following continuous group of transforma-
tions

φ̄a = F a
φ̄ (xµ, φa, εa, ws), (5)

ε̄µ = Fµ
ε̄ (xµ, φa, εa, ws), (6)

x̄µ = Fµ
x̄ (xµ, φa, εa, ws), (7)

where thews are ther parameters of the group, defined in
such a way that the transformation reduces to the identity
when all thews vanish. The infinitesimal generators of

the transformation group (5) are thus

ζa
s =

(
∂F a

φ̄

∂ws

)

ws=0

, ηa
s =

(
∂F a

ε̄

∂ws

)

ws=0

,

ξµ
s =

(
∂Fµ

x̄

∂ws

)

ws=0

. (8)

If the set of transformations (5–7) [or (8)] is a symmetry of
γ, it could stem directly from a symmetry of the original La-
grangianL and, in this case, we could haveF a

φ̄
= Fµ

ε̄ . But it
is also possible that this will not be the case, for the symme-
tries ofγ are expected to be larger than those ofL —as can
be simply ascertained by thinking about the possible trans-
formations that leave (3) and (4) unchanged. Our examples
below show simple instances of such case.

That the transformation group (5) be a symmetry ofγ,
means that the actionΣ (Eq. 2) remains invariant under the
transformations generated by the group. A necessary and suf-
ficient condition for this to be true is that

γ

(
φ̄a,

∂φ̄a

∂x̄µ
, x̄µ

)
D = γ(φa,

∂φa

∂xµ
, xµ), (9)

whereD = det (∂x̄µ/∂xν) is the Jacobian determinant of
the transformation. Eq. (9) is the fundamental equation al-
lowing us to explicitly write the relationship between the gen-
erators of the continuous symmetries ofγ and the conserved
quantities in the variational equations [19].

To see how the extension can be accomplished, differen-
tiate partially this equality (9) with respect tows, noting that
the right hand side is independent of such parameters, and
evaluate inws = 0 after the differentiation. After some ma-
nipulations this yields
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[
γξµ

s +
∂γ

∂φa
,µ

(
ζa
s − φa

,νξν
s

)
+

∂γ

∂εa
,µ

(
ηa

s − εa
,νξν

s

)]

,µ

+

[
∂γ

∂φa
−

(
∂γ

∂φa
,µ

)

,µ

]
(
ζa
s − φa

,νξν
s

)

+

[
∂γ

∂εa
−

(
∂γ

∂εa
,µ

)

,µ

]
(
ηa

s − εa
,νξν

s

)
= 0. (10)

Finally, use the equations of motion [Eqs. (3) and (4)] to ob-
tain

∂τµ
s

∂xµ
= 0, (11)

where the divergenceless tensorτµ
s is defined by

τµ
s = γξµ

s +
∂γ

∂φa
,µ

(
ζa
s − φa

,νξν
s

)
+

∂γ

∂εa
,µ

(
ηa

s − εa
,νξν

s

)
.

(12)

This is the conserved tensor associated with the variational
equations. It is to be noted that this result can be regarded
as the Noether’s theorem for the variational equations —that
can be checked following the steps for the demonstration of
Noether’s theorem that can be found in many places, for ex-
ample in Ref. 19. The conservation ofτ (12) was to be ex-
pected sinceγ is indeed a Lagrangian function on its own.
The conserved quantities are simply related to the infinitesi-
mal generators (8) of the symmetry group of the variational
equations, as Eq. (12) explicitly shows.

To give examples of the usefulness of this result, we next
derive (in admittedly simplistic instances) conserved quanti-
ties starting from well-known Lagrangian symmetries.
Example 1.Let us consider the Lagrangian density

L =
1
2
Raµbνxa,µxb,ν , (13)

whereRaµbν = Rbνaµ is the Riemann tensor.
This Lagrangian (13) describes Einstein equations in a

vacuum. The densityγ associated with (13) is

γ =
1
2

(
Raµbν

)
,ρ

ερxa,µxb,ν + Raµbνxa,µεb,ν ; (14)

in this caseγ describes linearized gravitation in a vacuum.
Taking into consideration the properties ofRaµbν , it is not
difficult to realize thatγ is invariant under the one parameter
group of transformations

x̄µ = xµ + xµw, and ε̄µ = εµ, (15)

the infinitesimal generators are thusξ = 0, ζµ = xµ, and
ηµ = 0. With the symmetries and the infinitesimal genera-
tors established, the extended Noether’s theorem predicts that
the quantity

τµ =
∂γ

∂xa
,µ

ζa

=
(
Raµbν

)
,c

εc xb,ν xa + Raµbνεb,ν xa (16)

= Raµbνεb,ν xa (17)

is divergenceless and hence generates a conserved quantity.
This is a rather useful tensor that was employed (and had
to be evaluated using direct calculations) in Ref. 20 to calcu-
late the conserved quantities of Newman and Penrose. Notice
also that thisτµ is a conserved quantity inanyvacuum space-
time in General Relativity. We have thus managed to derive
using our result (12) one of the results in Ref 7. Moreover,
γ can be also shown to be invariant under the one parameter
group of transformations

x̄µ = xµ, and ε̄µ = εµ + εµw, (18)

with the infinitesimal generatorsξ = 0, ζµ = 0, andηµ = εµ.
In this case (12) leads directly to the divergence less tensor

θµ =
∂γ

∂εa
,µ

ηa

= Raµbνεa xb,ν , (19)

which due to the symmetry properties ofRaµbν , happens
to identically vanish. Nevertheless, we have illustrated in a
simple instance that the symmetries ofγ can be larger than
those ofL. It should be noticed that the ‘extended’ symme-
try [Eqs. (18)] is the original symmetry of the Lagrangian
just applied to the perturbation variables. We must point out
also that the idea for this example is taken from [7] where it
is used to relate symmetry transformations to the existence
of divergence less quantities in a first-order approximation to
Einstein theory.

There are other potential uses of our main result (11) in
general relativity and in other field theories. For example, for
investigating perturbations to known metrics [21] and to con-
tribute to the study of certain angular momentum ambiguities
of recent interest [22]. The excellent review [23] discusses
some other contemporary uses of perturbation methods in
cosmological models in the context of general relativity.

Example 2.Our result can be also profitably applied to par-
ticle mechanics by a simple reinterpretation of the symbols
used in Eq. (12) and the replacement of the four spacetime
parametersxa by the timet. To give a simple example, let us
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consider a Lagrangian function describing a system of parti-
cles in which one of the coordinates is ignorable. In this case,
the original Lagrangian and the functionγ can be written as

L =
1
2
mabq̇

aq̇b − U(q), (20)

γ = mabq̇
aε̇b − ∂U

∂qa
εa, (21)

wheremab is a symmetric ‘mass’ matrix formed by the sec-
ond derivatives of the system’s kinetic energy respect to the
generalized velocitieṡqa, and U(q) is its potential energy
function. For the purposes of the example we are assum-
ing thatmab does not depend on the generalized coordinates
qa, but this is of no important for the argument —it just sim-
plifies a little the form of the associated conserved quantity.
The invariance under translations in the, let us say,qA direc-
tion (i. e. the transformation is̄qA = qA + w, ε̄A = εA + w,
the rest of the coordinates and velocities remain unchanged)
can be associated with the infinitesimal generatorsξ = 0 and
ζA = ηA = 1, and so using (12) we can obtain that

πA =
∂γ

∂ε̇A
+

∂γ

∂q̇A

= pA +
∂γ

∂q̇A
, (22)

is a constant of motion in the variational equations of the sys-
tem, wherepA = ∂L/∂q̇A is the momentum conjugate to the
coordinateqA. In fact, using the obvious invariance of (20)
under the space translation̄qA = qA + w, andε̄A = εA + w,
which corresponds to the infinitesimal generatorsζA = 1,
ηA = 1, andξ = 0, we can directly prove that the term

∂γ

∂q̇A
(23)

appearing in Eq. (22), is, as it should be, a constant of motion
on its own. These results are direct and simple examples of
conserved quantities which may be important (in more com-
plex instances) in the analysis of classical perturbation meth-
ods with astronomical interest [24].

To summarize, we have established a form of Noether’s
theorem that encompasses the variational equations and have
illustrated its use with direct examples. The conserved quan-
tities encountered can be useful in perturbation theory as our
formalism can be regarded as a starting point for studying
perturbations in all kind of Lagrangian problems. More-
over, if we take into consideration the Lagrangian founda-
tions of the path integral approach our formalism could be
useful in approaching approximate schemes in quantum field
theory [25]. We also consider it as possibly important for
studying properties of solitonic solutions in nonlinear equa-
tions [4]. Besides, the formalism could have some bearings to
modern mathematical developments in Lagrangian field the-
ories [26].
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