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Continued fraction approximations to the temperature integral
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The simplest phenomenological model describing thermoluminescence becomes the one-trap-one recombination center model (OTOR). As
it is known, the analysis of thermoluminescence data greatly benefits from separation of a glow curve into separate glow peaks. The shape of
the peaks in thermoluminescence dosimetry can be represented by the so-called temperature integral. The highly important and close relation
between the complementary incomplete gamma fundtian z) and the temperature integral in thermoluminescence dosimetry has engaged
specialists to pursue a more accurate calculatiofi(ef z). In this work, new approximations for the temperature integral, considering

the fast convergence of continued fractions and the straightforward evaluation of the algebraic expressions are obtained. The new reported
approximants improve the calculation efficiency of the temperature integral. The simplicity or precision of resent approximations, have a
strong effect on values of physical quantities obtained from thermoluminescence data.
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1. Introduction 2. Basic equations

The upper incomplete gamma functibiu, z) is defined for
The I'(a, z) function is of most concern in the calcula- , ¢ C, py

tion of the temperature integral (TI) and it is closely re-

lated to both thermogravimetry (TGA) [1,2], and thermo- ®
luminescence dosimetry (TLD) [3,4]. The Tl integral has I'(a,z) = /eXp(—x)x“‘ldL (1)
been approximated by several methods, mainly by asymp- p

totic series [3,5] and continued fractions as the most sought- ) ) o

after [6,7]. Likewise, a number of smart algebraic equationd0r &l a with Re(z) > 0, and Rea) < 0if Re(z)=0. Thisin-
have also been proposed in order to approximate, analyze afg@ral is of greatimportance in several areas of mathematical-
compare the Tl [8-12] from the fact th&l(a, 2) is a linear phySICS surging along' a Q|ver5|ty of contexts ar!d applica-
function. In some of these approximations, ranging from theions, such as the application bfa, z) in the analysis of the
least-squares fitting technique to a simple straight line (witH?€2ks shape in thermoluminescence dosimetry (TLD) [1].
respect to), it is possible to obtain algebraic equations that ~ Equation (1) can be written as

accurately estimate the(a, z) function [11,13-17]. In this

paper, some approximations by continued fractions to func- I(a,z) =
tionT'(a, z) and two for the particular case @f= —1 are pre-

sented. These function approximations involve one to six fitwhereh(a, z) is defined as

ting parameters, and show to have relative errors from 0.15%

to 0.00042% within the interval < Re(z) < 100. These ap- Texp(_ﬂf) du
proximations were obtained from a multidimensional least- h(a, ) = = z'—e
squares fitting code NLREG. Considering the fast conver- ’ exp(—z)
gence of continued fractions and the straightforward evalu- »R—a+1
ation of the algebraic expressions, the new reported approx- . . . : -
imants improve the calculation efficiency of the temperatur()eﬁ—he coupling of qu. (2) and (3) is carne'd .OUI n a similar
integral. In this work, new approximations for the tempera—Way by Che_n a_nd Liu [16]. Here, the mgltlpheﬁ IS intro-
ture integral, considering the fast convergence of continueguced_ (crucial in our methodology), aritlis a real number.
fractions and the straightforward evaluation of the algebrai quation (3) can be transformed to

exp(—z)

e h(a,2), @

®)

expressions are obtained. The new reported approximants oo
improve the calculation efficiency of the temperature inte- h(a, 2) exp(=z) _ / exp(~2) da, ()
gral. The simplicity or precision of resent approximations, zR-a+l zt=e

z

have a strong effect on values of physical quantities obtained
from thermoluminescence data. and by differentiating Eq. (4) once i) we obtain
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h(a, 2) = h(l)(a 2) Similarly, the rational fractions foR = 0,1 andn > 2 re-
dz ’ spectively, can be put together in a similar way as in Eqn.
R— 1 (10) to obtain,
— h(a, 2) (1 + “) _RE (B)
z [(a,2) 1
Repeating several times this procedure, we obtaimthel z0exp(—z) z—a+1
order derivative in the form -
n 1 (n—1)z
n+1 _ n n—~k k K
WD (a,2) = Z <k)h( (a, 2)e™ ta <z —a+z—a—(n— 1)> ’
k=0
" a€C, |argz| <m, (11)
- [[[R-G-1], n>1, (6
i=1

where¢ = 1+ (R — a + 1)/2. Noticing that the magni- Ia,z) 1
tude of the derivatives foh(a, z) is always lower than that z%exp(—z) z—a+2
for the function itself (for increasing), we can approximate 0o
the left hand side of Egs. (5) and (6) to zero. Thus, we ob- JK( (n—1)z
tain the solution of thes + 1-th equation which contains all n=2\z—a+z—a—(n—-1))’
the other lower order solutionge., we obtain different ap- aeC, |argz] <. (12)

proximations fori(a, z). From equation (5), and taking into

account the first two equations from (6) we have The other one arises from the combinationnofind R

2B+ values, respectively. Substituting the continued fractions for
h(a, 2)n=1 = c+R—atl (M) h(a, »), obtained from the first five rational fractions with a
set of pairs{n, R} = {1,...,5;0,...,4} (Table 1V), into
R+1 _ ) s s Iy Uy )
h(a, z)n—2 Z (e42R—at]) (8) Eq. (2) we get th&'(a, z) function in the form [18]

" 242(R—a+1)z+(R—a+1)(R—a)’

h(a, 2)n=s = [z (2" + (BR — 20 + 2)2 + 3R(R — a) Pla,2) _ 1 ((”—1)(a—n+1))
“ - - 1+ n=2 _ m—1 )
+a2—1)]/[2* +3(R—a+ 1)z ztexp(—z) z—a+1+ —a+2n

+3(R—a+1)(R—a)z
Expression (13) is the well-known representation by contin-

+t(R-at+D(E-—a-1)(R-a], ©)  Yed fractions ofl'(a, z) reported in textbooks [5]. Equa-
where the sub-index denotes the n-th order approximant. Ition (13) was applied to thermoluminescence dosimetry in
Egs. (7-9) as for all the system of equations (6), no restricRefs. 19 and 20. All these arrangements of rational frac-
tions are imposed to the value &f despite that in our case tions by continued ones, Egs. (10-13), were obtained from
these values are just represented by continued fractions of thie “confrac” Maple function [21].
functionh(a, ) (with different degree of approximation and

a€C, |argz| < (13)

complexity). TABLE |. Rational fractions forh(a, z),/z"*' obtained with
R=-1.
3. Numerical approximations to I'(a, z) with n @ 2)n
real z AR

1
In this section we show a family of continued fractions that ! z—a .
approximate thd'(a, z) function. Among the whole set of 2 Fmaz

2 _ 2
rational fractions fori(a, z) there are four subsets charac- N i%‘fﬁ(ﬁ@"_al)w @+ 3042

terized by the!r simplicity of a continued fraction. Three of 3 533, + (3a + 3a2)z — 2a — 3a% — a®
theg are obtained qu :b—l, 0,1 (Tagl;:‘s I to ”I)ﬁm . [2* — (14 3a)2> + (2 + Ta + 3a%)z — 6 — 6>
ne representation by continued fractionslgt, z) is 3 4 3 2 2
: . S —1la — —4 6 6
obtained forkR = —1 in the form (we adopt the notation in- a—a’] /2[Z Sz a+(6a”+ Qa)z . 5
troduced in Ref. 18) +(—8a — 12a* — 4a”)z + 6a + 11a” + a” + 6a ]
T(a,2) 1 5  [2'—(1+4a)z® + (12a + 64> + 2)2* + (—29a — 6
2@ exp(—2) = _a —21a* — 4a®)z + 24 + 50a + a* + 35a® + 10a”] /
- [2° — 5z%a + (10a + 10a%)2® — (20a + 30a”
K ( (n—1)z ) 0eC, |ags|<n (10) +10a%)22 + (55a2 + 5a* + 30a® + 30a)z — 24a
n=2 \z—-a—(n-1) ’ ~354° — 5002 — a® — 10a"]
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TABLE Il. Rational fractions forh(a, z),/z+' obtained with ~ TABLE IV. Rational fractions forh(a, z),/2"" obtained for

R=0. n=1...5andR=0...4.
n h(avz)n n }{ h(a,z)n
SR+1 SR+l
1 _ 1 0 1
z—a-+1 z—a—+1
9 z—a+1 9 1 z—a+3
22+ (—2a+2)z—a+a? 22+ (—2a+4)z4+a>—3a+2
5 24 (~2a+2)z —1+a? 3 2 [°+(8-2a)z—6a+11+a%]/
2% +(=3a+3)2” + (=3a +3a%)z —a® +a [2° + (9 — 3a)2z* + (18 + 3a® — 15a)z — a®

4 [2° +(=3a+3)z>+ (—a—2+3a°)z+a+2—d®
—2a°] / [2* + (4 — 4a)z® + (—6a + 6a*)2”
+(4a — 4a®)z — 2a + 2a° — a® + a’

5  [2*+(4—4a)z® + (—3a+ 6a® — 3)2% + (6a+ 4
—6a” — 4a®)z — 6 — 5a + a* + 5a* + 5a”] /
[2° + (5 — 5a)z" + (—10a + 10a%)2*
+(10a — 10a®)2? 4 (—5a® + 5a* + 10a® — 10a)z
+6a — 5a® 4 5a® — a® — 5a4]

+6a° + 6 — 11a]

4 3 [®+(—3a+15)2" + (58 — 25a + 3a”)z
+50 4 10a® — 35a — a®] / [z* + (—4a + 16)2°
+(—42a + 72 + 6a%)2* 4 (96 — 104a + 364>
—4a3)z + 24 — 50a + 35a% — 10a® + aﬂ

5 4 [z'+ (24— 4a)z® 4 (—63a + 177 + 6a°) 2>
+(444 — 254a + 54a”® — 4a®)z + 274 + 85a°
—225a — 15a° + a*] /
[2° + (25 — 5a)z* + (200 + 10a® — 90a)2®

TABLE Ill. Rational fractions forh(a, z),/2"** obtained with +(600 — 470a — 10a® + 120a?)2>
R=1. +(=770a + 355a% + 600 — 70a® 4 5a*)z — a®
n a2 +15a* + 225a% + 120 — 274a — 854
ZR+1
1 1 TABLE V. Relative truncation errors for the first 20 approximants
z—a+2 s —a+3 in |T'(a, )| for a = 1/2 from the most rapidly convergent expan-
2 22+ (4 —2a)z —3a+ 2+ a? sion (13).
3 [22 +(—2a+5)z—3a+2+ a2] / z I'(a,z) Relative truncation
[2° + (=3a+6)z% + (6 — 9a + 3a®)z — 2a errors
—a® + 3a?] 0.01 1.573119 3.2x107"
4 [2° + (7T —3a)2> + (6 — 9a + 3a®)z + 2a° + a 0.1 1.160462 1.0 x 1072
—a® —2] / [z* + (8 — 4a)2® + (12 — 18a + 6a®)2” 0.5 5.624182 x 1071 1.8 x 1075
+(—8a + 124 — 4a®)z + 2a — a® — 2a° + a”] 2 8.064712 x 1072 3.5 x 10710
5 [2* + (9 — 4a)2® + (12 — 18a + 6a°)z> 10 1.372627 x 107° 1.6 x 10720
+(—6+a+9a®> —4a’)z + 4 — 5a® + a*| / 50 2.701168 x 1023 3.9 x 10738
[2° + (10 — 5a)z* + (—30a + 10a® + 20)2° 100 3.701748 x 10747 7.2x 1078
+(—10a® — 20a + 30a%) 2>+ 500 3.183031 x 1072° 1.7 x 1077

(5a* — 5a* + 10a — 10a®)z — 4a + 5a° — a°]

approximation to th&(a, z) function. However, all approx-

. . . imations can be useful in several applications abraad,
The relative truncation errors of Eq. (13) assuming a rea bp g

is resumed in Table (V). where the relative truncation err rn the calculation of the thermoluminescence line shape [22]
gdsefienseljd aes able (V), where the relative truncation e Owhere only the real values af > 5 with accuracy of up to

Fl(a,z) — F,(a,2) two or thr.ee significgnt figures of merit are needed. Ther_e—
Fla,2) ) fore, continued fractions Egs. (10-13) can be employed with
’ up to five approximants. Another criterion used to compare

heren corresp_ond; to the-th approximant and”(a, 2) is  several approximations fat(a, z) is the maximal relative er-
the full approximation td*(a, z). ror given by

The evaluation of the special function for the selected
arguments is rounded to exact seven decimal digits ang(q, ») = sgn(l _ F(a’z)) max‘1 _ F(a’z)’ % 100%,
the truncation errors are upward rounded to 2 decimal dig- I'(a, 2) I(a, 2)
its. Equations (11-12) are the standard approximations to th&his criterion will be used in the following, as well as the
gamma function and Eq. (10) becomes the least accuratessumption of a real.
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4. Two simple approximations for a realz

85

Now, we obtain better approximations as compared to
Egs. (14) and (15). Equation (9) with = 2, as a contin-

In order to simplify the first three approximants of continuedeq fraction takes the form,
fraction, Eqg. (13), we account for the fact that the polynomial

order in the numerator is less that one as compared to the or-
der in the denominator. In this sense, we look for a ratio of

polynomials of ordefn — 1)/n in the form

or

I'(a, z)

1

= 14
2% exp(—z) z+A (14)
Foat z—a+ At
r 24+ A2+ Bla—1
(a’?z) _ z + Z+ (a ) (15)

zoexp(—z)

22(z—a+C) 7’

['(a, z) _ 1 ' (16)

a—1
z—a+1l+——
z—a+3

2% exp(—z)

Introducing the quantity = z—a+1in Eq. (16), this results

In
['(a, z) _ 1 . (17)

2@ exp(—z) Lol
! (v +2)

where A, B and C' are the parameters to be fitted. The ra- ding the d inator in E 17) into a bi ial
tional approximations on the right hand side of Egs. (14_15)E_xpan ing the denominator in Eqn. (17) into a binomial se-

have been taken as test functions in the least-squares l‘ittinafes and conserving only the first two terms, we have
looking for the minimal number of coefficients to be fitted. I'(a,z) 1

) 1 - +
( (v +2)

The least-squares fitting using the NLREG code [23], gives m = 5
the parametersl, B andC' accounting for the set of values

a ={-4,-3,-2,-1,0,1,2} andz = {5,6,7,---,100}  Equation (18) is valid for. € (—4,1/2) andz >> 1 and can
resulting in 576 points. The fitted values are summarized ithe simplified, for example, by factorizing thevariable in
Table VI. The Eq. (14) has the peculiarity of using a singléthe denominator of the second term in brackets and expand-
fitting parameter. ing into binomial series, we get

1—a

0(713)) . @8)

TABLE VI. Fitted parameters and their maximal relative error I(a, z) 1 1—a 1
&(a, z) for proposed approximations a =-(1+t— +0(z)). Q9
: : z%exp(=z) v gl gl
i i 0,
Equation Fitted Constants €(@.2)%)  Einally, turning back the value of = = — a + 1 in (19) we
number obtain
A B C
(21) 1.44 —1.54 x 107* Lz __ 1 (1 + 1—a 2) . (20)
(14) 1.215 9.28 x 1072 srexp(—z)  z—a+l (z—a+1)
—2
(15) 1132 0.3100 2124 6.64 <10 In Eq. (19), the constant numberin the denominator
(22) 1.567 —5.08 x 107? in brackets on the right hand side becomes the unique free
(23) 1.632  1.875 —2.20 x 1072 variable. Thus, intuitively we can choose the following ap-
(24) 3.190  1.272 6.08 x 103 proximations forward that maintain the structure of Eq. (19)
[ 1—a
14— 21
* (z—a+ A)?2|’ (21)
[ 1—a)yz
PR k)L (22)
2((z—a—1)y/z+ 3)4
r 1 [ 2A(1 —
(02) _ A (i-o ] -
z%exp(—z) z—a+1 (Bz+ A(1 —a) +1)2
[ 1-a A(B —a)?
1 24
+(z—a—i—A)2 (z—a+2)4]’ (24)
[, 1-a  AB-a?) (C0-wP EFE-a)]
(z—a+ A2 (z—a+2* (z—a+2)5 (z—a+2)8|’ (25)

Rev. Mex. Fis63(2017) 82—-88
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where A, B,C and&(a, z) in Egs. (21-24) are the param-

eters determined by a bi-dimehsion_al least-squares fittingagLe VII. Values for fitted parameters in approximation Egs.
with respect toe and z (summarized in Table VI). In case (28-32) for thel'(a, z) function and their maximal relative error

of the Eq. (25), we obtaiml = 1.7256, B = 1.3219, E(a, 2).
C = 0.29606, D = —3.0279, E = 3.6887, F = 0.51297, - - .
andé (a, 2)(%) = 4.16 x 104, Equation Fitted E(a, z)(%)
The fitting is carried out, as previously, comparing the constants
left hand side of Eqgs. (21-25) for several valuesiaind z (28) (Ref. 13) A =9.9441 x 1074 1.91
with test functions as on the right hand side. From the fitted B = 0.93695599
rgsults, we obsgrve _that the more complicated the test func- (29) (Ref. 17) A= 1.00145 119
tions the approximations result better.
B = 0.00069
. . . . C =0.94733
5. Comparison with other published approxi-
. . D = 1.8887
mations with a real z
(30) (Ref. 16) A = 1.00141 2.35
The generalized temperature integral is defined as [24], B = 0.00060
) C = 1.89376
P(m,z) = /exp(—x)x_m_Qda:. (26) D = 0.95276
2 (31) (Ref. 14) A = 0.99954 —3.08 x 107!
There are several algebraic expressions that approximate B = —0.044967
Eq. (26) using thd (a, z) function. To show the close re- ¢ = 0.58058
lation between Eq. (26) and tH&a, z) function, we make D = 0.94057
m = —a — 1in (1), and obtain the relation E = 2.5400
o0 (32) (Ref. 14) A = 0.74981 —1.05
I'(a,z) = P(—a—1,z) = /exp(—:c)xafldx. (27) B = —0.06396
2 C = 1.00017
Six reported approximations for tHg«, z) function are D = 0.00013
given by [13,14,16,17,25] E =2.73166
| F = 0.92246
1
, 28
z+(1—a)(A+ B) (28)
exp{—[(A+ B(—a—1))z+ C(1 —a)In(z) + D(a — 1)]}, (29)
1
, 30
Ma.7) (A+B(—a—1))z+ (C + D(—a—1)) (30)
a,z .
Ziexp(—z) Az + B(-a—1) +C)7 (31)
(z+D(—a—1)+FE
2 H(z+ A+ B(-a-1)) (32)
(C+D(-a—1))z+ E+F(-a—1)’
l1—a
— 3 z
z7 > k1 Ak (szk) ’ (33)

I
whereA, B,C, D, F andF in Eqgs. (28-32) are the fitted pa-

6. Case of the temperature integral for Arrhe-

rameters, summarized in Table VII. ’ )
_ _ _ nius equation (@ = —1, m = 0)
From the comparison of the values for maximal relative
errors from the proposed (Table VI) and reported approximaAn important particular case, for tH&a, z) function, is the
tions (Table VII), we note that for those proposed ones thevaluea = —1 in the fourth approximant{ = 4) of continued

error becomes smaller. fraction Eq. (13),

Rev. Mex. Fis63(2017) 82—-88
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exp(—2) (2 + 1822 + 862z + 96)
z(2% + 2023 + 12022 4 240z + 120)

I'(—1,2) =

TaBLE VIII. Values for fitted parameters and the maximal rel-
(34)  ative error for the cases = —1 evaluated in the interval
z={5,6,---,100} and their maximal relative err@t(a, z).

This equation represents the Senum and Yang approximation Equation Fitted E(-1,2)(%)
[8] used as a test function by several authors [9,12]. The Number
maximal relative errors for the cases of Egs. (24), (25), (34) (35) A = 1.23704 3.83 % 10~3
(n = 4) and (13) ¢ = 10) are&(—1,z) = {—4.88 x B — _0758361
1073,3.52 x 107%,3.13 x 1073,2.5 x 107}, respectively. '
A similar maximal relative error as for Eq. (34) is obtained ¢ = 322081
in case of the simpler approximatian= —1 from Eq. (15), (36) A =2.058377 —~1.58 x 1077
written in the form B = 1.942060
I(-1,2)  (22+A2+B a = 2.288145
(=) ( 1 C > ; (35) D = 2.493742
E =3.02144
whereA = 1.132, B = —0.620 andC' = 3.124. Consider- 37) A = 9.97052 238 % 10-5
ing these values as the initial ones in a least-squares fitting to B — 16.79440
synthetic generated data from the left hand side of Eq. (35) i
on a set of pointg = {5,6,7,---,100} we find those val- ¢ =1.20025
ues for A, B and C summarized in Table VIII. In order to D =11.27052
reduce the maximal relative error of Eq. (24) and Eq. (25), in E = 33.33602
a one-dimensional least-squares fitting, we propose the next F = 924.91457

test expression

I'(-1,z) 1 <1+ 2 +( A )4+( B )5 _
exp(—z) z+2 (2+3)2  \z+4 z+3 7. Conclusions

C \6 D \7 E \8
+(z—|—4> +(z—|—3) _(z—|—4) )’ (36)
pared by the maximal relative erré{a, z) for a wide range

E?hqseig:;ne 2:% r?asragieﬁfd%ﬁ];ngEétT.ggler\éug'se d .of values for the argument< R(z) < 100. All approxima-
! quation | P quation prop 'flons obtained become highly useful for the particular case

Ref. 12, in the form of thermoluminescence line shape calculation and the most
important fact: they are valid for all values of a required
condition in experimental data analysis. The expressions ob-
tained for the Tl could be incorporated in glow deconvolu-
where the values for their corresponding parameters are surfion line treated by different methods such as in the project
marized also in Table VIIIl. Comparing the maximal relative GLOCANIN [26] and the TGCD package [27]. Thus, ex-
errors of Eq. (36) and Eq. (37), we observe that approximaPressions systematically obtained from the continued frac-
tion Eq. (36) containing only five fitting parameters, not six tions method, show an equilibrium between the minimal error
as in Eq. (37), reduces the error in two orders of magnitude reached and the simplicity of approximations, and could be
We can observe that it is a compromise between the minsimple or complicated as needed for numerical calculations.
imal error reached and the simplicity of the approximation.
Thus, expressions systematically obtained from the continAcknowledgments
ued fractions method, show that these two properties could
be rather simple or become complicated as needed for nuRartial support from projects FI-003-ININ and Conacyt
merical calculations. 152905 is acknowledged.

New modifications that approximate the incomplete gamma
functionT'(a, z) are presented. All these fractions are com-

- 2Dz + FEz+ F

I(-1,2) _ 1 22+ A2+ Bz+C , (37)
exp(—z) 22
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