
RESEARCH Revista Mexicana de Fı́sica63 (2017) 82–88 JANUARY-FEBRUARY 2017

Continued fraction approximations to the temperature integral
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The simplest phenomenological model describing thermoluminescence becomes the one-trap-one recombination center model (OTOR). As
it is known, the analysis of thermoluminescence data greatly benefits from separation of a glow curve into separate glow peaks. The shape of
the peaks in thermoluminescence dosimetry can be represented by the so-called temperature integral. The highly important and close relation
between the complementary incomplete gamma functionΓ(a, z) and the temperature integral in thermoluminescence dosimetry has engaged
specialists to pursue a more accurate calculation ofΓ(a, z). In this work, new approximations for the temperature integral, considering
the fast convergence of continued fractions and the straightforward evaluation of the algebraic expressions are obtained. The new reported
approximants improve the calculation efficiency of the temperature integral. The simplicity or precision of resent approximations, have a
strong effect on values of physical quantities obtained from thermoluminescence data.
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1. Introduction

The Γ(a, z) function is of most concern in the calcula-
tion of the temperature integral (TI) and it is closely re-
lated to both thermogravimetry (TGA) [1,2], and thermo-
luminescence dosimetry (TLD) [3,4]. The TI integral has
been approximated by several methods, mainly by asymp-
totic series [3,5] and continued fractions as the most sought-
after [6,7]. Likewise, a number of smart algebraic equations
have also been proposed in order to approximate, analyze and
compare the TI [8-12] from the fact thatΓ(a, z) is a linear
function. In some of these approximations, ranging from the
least-squares fitting technique to a simple straight line (with
respect toz), it is possible to obtain algebraic equations that
accurately estimate theΓ(a, z) function [11,13-17]. In this
paper, some approximations by continued fractions to func-
tionΓ(a, z) and two for the particular case ofa = −1 are pre-
sented. These function approximations involve one to six fit-
ting parameters, and show to have relative errors from 0.15%
to 0.00042% within the interval5 ≤ Re(z) ≤ 100. These ap-
proximations were obtained from a multidimensional least-
squares fitting code NLREG. Considering the fast conver-
gence of continued fractions and the straightforward evalu-
ation of the algebraic expressions, the new reported approx-
imants improve the calculation efficiency of the temperature
integral. In this work, new approximations for the tempera-
ture integral, considering the fast convergence of continued
fractions and the straightforward evaluation of the algebraic
expressions are obtained. The new reported approximants
improve the calculation efficiency of the temperature inte-
gral. The simplicity or precision of resent approximations,
have a strong effect on values of physical quantities obtained
from thermoluminescence data.

2. Basic equations

The upper incomplete gamma functionΓ(a, z) is defined for
z ∈ C, by

Γ(a, z) =

∞∫

z

exp(−x)xa−1dx, (1)

for all a with Re(z) > 0, and Re(a) < 0 if Re(z)=0. This in-
tegral is of great importance in several areas of mathematical-
physics surging along a diversity of contexts and applica-
tions, such as the application ofΓ(a, z) in the analysis of the
peaks shape in thermoluminescence dosimetry (TLD) [1].

Equation (1) can be written as

Γ(a, z) =
exp(−z)
zR−a+1

h(a, z), (2)

whereh(a, z) is defined as

h(a, z) =

∞∫
z

exp(−x)
x1−a

dx

exp(−z)
zR−a+1

. (3)

The coupling of Eqs. (2) and (3) is carried out in a similar
way by Chen and Liu [16]. Here, the multiplierzR is intro-
duced (crucial in our methodology), andR is a real number.
Equation (3) can be transformed to

h(a, z)
exp(−z)
zR−a+1

=

∞∫

z

exp(−x)
x1−a

dx, (4)

and by differentiating Eq. (4) once inz, we obtain
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h(a, z)
dz

≡ h(1)(a, z)

= h(a, z)
(

1 +
R− a + 1

z

)
− zR. (5)

Repeating several times this procedure, we obtain then + 1
order derivative in the form

h(n+1)(a, z) =
n∑

k=0

(
n

k

)
h(n−k)(a, z)ξ(k)

− zR−n
n∏

i=1

[R− (i− 1)] , n ≥ 1, (6)

whereξ = 1 + (R − a + 1)/z. Noticing that the magni-
tude of the derivatives forh(a, z) is always lower than that
for the function itself (for increasingn), we can approximate
the left hand side of Eqs. (5) and (6) to zero. Thus, we ob-
tain the solution of then + 1-th equation which contains all
the other lower order solutions,i.e., we obtain different ap-
proximations forh(a, z). From equation (5), and taking into
account the first two equations from (6) we have

h(a, z)n=1 =
zR+1

z + R− a + 1
, (7)

h(a, z)n=2=
zR+1(z+2R−a+1)

z2+2(R−a+1)z+(R−a+1)(R−a)
, (8)

h(a, z)n=3 = [zR+1(z2 + (3R− 2a + 2)z + 3R(R− a)

+ a2 − 1)]/[z3 + 3(R− a + 1)z2

+ 3(R− a + 1)(R− a)z

+ (R− a + 1)(R− a− 1)(R− a)], (9)

where the sub-index denotes the n-th order approximant. In
Eqs. (7-9) as for all the system of equations (6), no restric-
tions are imposed to the value ofR despite that in our case
these values are just represented by continued fractions of the
functionh(a, z) (with different degree of approximation and
complexity).

3. Numerical approximations to Γ(a, z) with
real z

In this section we show a family of continued fractions that
approximate theΓ(a, z) function. Among the whole set of
rational fractions forh(a, z) there are four subsets charac-
terized by their simplicity of a continued fraction. Three of
them are obtained forR = −1, 0, 1 (Tables I to III).

One representation by continued fractions ofΓ(a, z) is
obtained forR = −1 in the form (we adopt the notation in-
troduced in Ref. 18)

Γ(a, z)
za exp(−z)

=
1

z − a

+

∞

K
n=2

(
(n− 1)z

z − a− (n− 1)

)
, a ∈ C, | arg z| < π (10)

Similarly, the rational fractions forR = 0, 1 andn ≥ 2 re-
spectively, can be put together in a similar way as in Eqn.
(10) to obtain,

Γ(a, z)
za exp(−z)

=
1

z − a + 1

+

∞

K
n=2

(
1

z − a +
(n− 1)z

z − a− (n− 1)

)
,

a ∈ C, | arg z| < π, (11)

Γ(a, z)
za exp(−z)

=
1

z − a + 2

+

∞

K
n=2

(
1

z − a +
(n− 1)z

z − a− (n− 1)

)
,

a ∈ C, | arg z| < π. (12)

The other one arises from the combination ofn andR
values, respectively. Substituting the continued fractions for
h(a, z), obtained from the first five rational fractions with a
set of pairs{n,R} = {1, . . . , 5; 0, . . . , 4} (Table IV), into
Eq. (2) we get theΓ(a, z) function in the form [18]

Γ(a, z)
za exp(−z)

=
1

z − a + 1 +

∞

K
n=2

(
(n− 1)(a− n + 1)

z − a + 2n− 1

)
,

a ∈ C, | arg z| < π (13)

Expression (13) is the well-known representation by contin-
ued fractions ofΓ(a, z) reported in textbooks [5]. Equa-
tion (13) was applied to thermoluminescence dosimetry in
Refs. 19 and 20. All these arrangements of rational frac-
tions by continued ones, Eqs. (10-13), were obtained from
the “confrac” Maple function [21].

TABLE I. Rational fractions forh(a, z)n/zR+1 obtained with
R = −1.

n h(a, z)n

zR+1

1
1

z − a

2
z − a− 1

z2 − 2za + a2 + a

3
z2 + (−2a− 1)z + a2 + 3a + 2

z3 − 3z2a + (3a + 3a2)z − 2a− 3a2 − a3

4
[
z3 − (1 + 3a)z2 + (2 + 7a + 3a2)z − 6− 6a2

−11a− a3
]
/

[
z4 − 4z3a + (6a2 + 6a)z2

+(−8a− 12a2 − 4a3)z + 6a + 11a2 + a4 + 6a3
]

5
[
z4 − (1 + 4a)z3 + (12a + 6a2 + 2)z2 + (−29a− 6

−21a2 − 4a3)z + 24 + 50a + a4 + 35a2 + 10a3
]
/[

z5 − 5z4a + (10a + 10a2)z3 − (20a + 30a2

+10a3)z2 + (55a2 + 5a4 + 30a3 + 30a)z − 24a

−35a3 − 50a2 − a5 − 10a4
]
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TABLE II. Rational fractions forh(a, z)n/zR+1 obtained with
R = 0.

n h(a, z)n

zR+1

1
1

z − a + 1

2
z − a + 1

z2 + (−2a + 2)z − a + a2

3
z2 + (−2a + 2)z − 1 + a2

z3 + (−3a + 3)z2 + (−3a + 3a2)z − a3 + a

4
[
z3 + (−3a + 3)z2 + (−a− 2 + 3a2)z + a + 2− a3

−2a2
]
/

[
z4 + (4− 4a)z3 + (−6a + 6a2)z2

+(4a− 4a3)z − 2a + 2a3 − a2 + a4
]

5
[
z4 + (4− 4a)z3 + (−3a + 6a2 − 3)z2 + (6a + 4

−6a2 − 4a3)z − 6− 5a + a4 + 5a2 + 5a3
]
/[

z5 + (5− 5a)z4 + (−10a + 10a2)z3

+(10a− 10a3)z2 + (−5a2 + 5a4 + 10a3 − 10a)z

+6a− 5a3 + 5a2 − a5 − 5a4
]

TABLE III. Rational fractions forh(a, z)n/zR+1 obtained with
R = 1.

n h(a, z)n

zR+1

1
1

z − a + 2

2
z − a + 3

z2 + (4− 2a)z − 3a + 2 + a2

3
[
z2 + (−2a + 5)z − 3a + 2 + a2

]
/[

z3 + (−3a + 6)z2 + (6− 9a + 3a2)z − 2a

−a3 + 3a2
]

4
[
z3 + (7− 3a)z2 + (6− 9a + 3a2)z + 2a2 + a

−a3 − 2
]
/

[
z4 + (8− 4a)z3 + (12− 18a + 6a2)z2

+(−8a + 12a2 − 4a3)z + 2a− a2 − 2a3 + a4
]

5
[
z4 + (9− 4a)z3 + (12− 18a + 6a2)z2

+(−6 + a + 9a2 − 4a3)z + 4− 5a2 + a4
]
/[

z5 + (10− 5a)z4 + (−30a + 10a2 + 20)z3

+(−10a3 − 20a + 30a2)z2+

(5a4 − 5a2 + 10a− 10a3)z − 4a + 5a3 − a5
]

The relative truncation errors of Eq. (13) assuming a real
z, is resumed in Table (V), where the relative truncation error
is defined as ∣∣∣∣

F (a, z)− Fn(a, z)
F (a, z)

∣∣∣∣ ,

heren corresponds to then-th approximant andF (a, z) is
the full approximation toΓ(a, z).

The evaluation of the special function for the selected
arguments is rounded to exact seven decimal digits and
the truncation errors are upward rounded to 2 decimal dig-
its. Equations (11-12) are the standard approximations to the
gamma function and Eq. (10) becomes the least accurate

TABLE IV. Rational fractions forh(a, z)n/zR+1 obtained for
n = 1 . . . 5 andR = 0 . . . 4.

n R h(a, z)n

zR+1

1 0
1

z − a + 1

2 1
z − a + 3

z2 + (−2a + 4)z + a2 − 3a + 2

3 2
[
z2 + (8− 2a)z − 6a + 11 + a2

]
/[

z3 + (9− 3a)z2 + (18 + 3a2 − 15a)z − a3

+6a2 + 6− 11a
]

4 3
[
z3 + (−3a + 15)z2 + (58− 25a + 3a2)z

+50 + 10a2 − 35a− a3
]
/

[
z4 + (−4a + 16)z3

+(−42a + 72 + 6a2)z2 + (96− 104a + 36a2

−4a3)z + 24− 50a + 35a2 − 10a3 + a4
]

5 4
[
z4 + (24− 4a)z3 + (−63a + 177 + 6a2)z2

+(444− 254a + 54a2 − 4a3)z + 274 + 85a2

−225a− 15a3 + a4
]
/[

z5 + (25− 5a)z4 + (200 + 10a2 − 90a)z3

+(600− 470a− 10a3 + 120a2)z2

+(−770a + 355a2 + 600− 70a3 + 5a4)z − a5

+15a4 + 225a2 + 120− 274a− 85a3
]

TABLE V. Relative truncation errors for the first 20 approximants
in |Γ(a, z)| for a = 1/2 from the most rapidly convergent expan-
sion (13).

z Γ(a, z) Relative truncation

errors

0.01 1.573119 3.2× 10−1

0.1 1.160462 1.0× 10−2

0.5 5.624182× 10−1 1.8× 10−5

2 8.064712× 10−2 3.5× 10−10

10 1.372627× 10−5 1.6× 10−20

50 2.701168× 10−23 3.9× 10−38

100 3.701748× 10−45 7.2× 10−48

500 3.183031× 10−219 1.7× 10−73

approximation to theΓ(a, z) function. However, all approx-
imations can be useful in several applications abroad,e.g.
in the calculation of the thermoluminescence line shape [22]
where only the real values ofz > 5 with accuracy of up to
two or three significant figures of merit are needed. There-
fore, continued fractions Eqs. (10-13) can be employed with
up to five approximants. Another criterion used to compare
several approximations forΓ(a, z) is the maximal relative er-
ror given by

E(a, z) = sgn

(
1− F (a, z)

Γ(a, z)

)
max

∣∣∣1− F (a, z)
Γ(a, z)

∣∣∣× 100%,

This criterion will be used in the following, as well as the
assumption of a realz.
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4. Two simple approximations for a realz

In order to simplify the first three approximants of continued
fraction, Eq. (13), we account for the fact that the polynomial
order in the numerator is less that one as compared to the or-
der in the denominator. In this sense, we look for a ratio of
polynomials of order(n− 1)/n in the form

Γ(a, z)
za exp(−z)

=
1

z − a +
z + A

z − a + A4

, (14)

or
Γ(a, z)

za exp(−z)
=

z2 + Az + B(a− 1)
z2(z − a + C)

, (15)

whereA,B andC are the parameters to be fitted. The ra-
tional approximations on the right hand side of Eqs. (14-15)
have been taken as test functions in the least-squares fitting,
looking for the minimal number of coefficients to be fitted.
The least-squares fitting using the NLREG code [23], gives
the parametersA,B andC accounting for the set of values
a = {−4,−3,−2,−1, 0, 1, 2} and z = {5, 6, 7, · · · , 100}
resulting in 576 points. The fitted values are summarized in
Table VI. The Eq. (14) has the peculiarity of using a single
fitting parameter.

TABLE VI. Fitted parameters and their maximal relative error
E(a, z) for proposed approximations.

Equation Fitted Constants E(a, z)(%)

number

A B C

(21) 1.44 −1.54× 10−1

(14) 1.215 9.28× 10−2

(15) 1.132 0.3100 2.124 6.64× 10−2

(22) 1.567 −5.08× 10−2

(23) 1.632 1.875 −2.20× 10−2

(24) 3.190 1.272 6.08× 10−3

Now, we obtain better approximations as compared to
Eqs. (14) and (15). Equation (9) withn = 2, as a contin-
ued fraction takes the form,

Γ(a, z)
za exp(−z)

=
1

z − a + 1 +
a− 1

z − a + 3

. (16)

Introducing the quantityγ = z−a+1 in Eq. (16), this results
in

Γ(a, z)
za exp(−z)

=
1

γ

(
1 +

a− 1
γ(γ + 2)

) . (17)

Expanding the denominator in Eqn. (17) into a binomial se-
ries and conserving only the first two terms, we have

Γ(a, z)
za exp(−z)

=
1
γ

(
1− 1− a

γ(γ + 2)
+O(

1
γ3

)
)

. (18)

Equation (18) is valid fora ∈ (−4, 1/2) andz À 1 and can
be simplified, for example, by factorizing theγ variable in
the denominator of the second term in brackets and expand-
ing into binomial series, we get

Γ(a, z)
za exp(−z)

=
1
γ

(
1 +

1− a

γ2
+O(

1
γ3

)
)

. (19)

Finally, turning back the value ofγ = z − a + 1 in (19) we
obtain

Γ(a, z)
za exp(−z)

=
1

z − a + 1

(
1 +

1− a

(z − a + 1)2

)
. (20)

In Eq. (19), the constant numberγ in the denominator
in brackets on the right hand side becomes the unique free
variable. Thus, intuitively we can choose the following ap-
proximations forward that maintain the structure of Eq. (19)

Γ(a, z)
za exp(−z)

=
1

z − a + 1
×





[
1 +

1− a

(z − a + A)2

]
, (21)

[
1 +

(1− a)
√

z

2((z − a− 1)
√

z + 3)A

]
, (22)

[
1 +

2A(1− a)
(Bz + A(1− a) + 1)2

]
, (23)

[
1 +

1− a

(z − a + A)2
+

A(B − a)2

(z − a + 2)4

]
, (24)

[
1 +

1− a

(z − a + A)2
+

(A(B − a)2)
(z − a + 2)4

+
(C(D − a))3

(z − a + 2)5
+

(E(F − a))4

(z − a + 2)8

]
, (25)
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whereA,B, C andE(a, z) in Eqs. (21-24) are the param-
eters determined by a bi-dimensional least-squares fitting
with respect toa and z (summarized in Table VI). In case
of the Eq. (25), we obtainA = 1.7256, B = 1.3219,
C = 0.29606, D = −3.0279, E = 3.6887, F = 0.51297,
andE(a, z)(%) = 4.16× 10−4.

The fitting is carried out, as previously, comparing the
left hand side of Eqs. (21-25) for several values ofa andz
with test functions as on the right hand side. From the fitted
results, we observe that the more complicated the test func-
tions the approximations result better.

5. Comparison with other published approxi-
mations with a real z

The generalized temperature integral is defined as [24],

P (m, z) =

∞∫

z

exp(−x)x−m−2dx. (26)

There are several algebraic expressions that approximate
Eq. (26) using theΓ(a, z) function. To show the close re-
lation between Eq. (26) and theΓ(a, z) function, we make
m = −a− 1 in (1), and obtain the relation

Γ(a, z) = P (−a− 1, z) =

∞∫

z

exp(−x)xa−1dx. (27)

Six reported approximations for theΓ(a, z) function are
given by [13,14,16,17,25]

TABLE VII. Values for fitted parameters in approximation Eqs.
(28-32) for theΓ(a, z) function and their maximal relative error
E(a, z).

Equation Fitted E(a, z)(%)

constants

(28) (Ref. 13) A = 9.9441× 10−4 1.91

B = 0.93695599

(29) (Ref. 17) A = 1.00145 −11.9

B = 0.00069

C = 0.94733

D = 1.8887

(30) (Ref. 16) A = 1.00141 2.35

B = 0.00060

C = 1.89376

D = 0.95276

(31) (Ref. 14) A = 0.99954 −3.08× 10−1

B = −0.044967

C = 0.58058

D = 0.94057

E = 2.5400

(32) (Ref. 14) A = 0.74981 −1.05

B = −0.06396

C = 1.00017

D = 0.00013

E = 2.73166

F = 0.92246

Γ(a, z)
za exp(−z)

=





1
z + (1− a)(A + B)

, (28)

exp{−[(A + B(−a− 1))z + C(1− a) ln(z) + D(a− 1)]}, (29)
1

(A + B(−a− 1))z + (C + D(−a− 1))
, (30)

Az + B(−a− 1) + C)
(z + D(−a− 1) + E

, (31)

z−1(z + A + B(−a− 1))
(C + D(−a− 1))z + E + F (−a− 1)

, (32)

z−1
∑3

k=1 Ak

(
z

z−Bk

)1−a

, (33)

whereA,B, C, D,E andF in Eqs. (28-32) are the fitted pa-
rameters, summarized in Table VII.

From the comparison of the values for maximal relative
errors from the proposed (Table VI) and reported approxima-
tions (Table VII), we note that for those proposed ones the
error becomes smaller.

6. Case of the temperature integral for Arrhe-
nius equation (a = −1, m = 0)

An important particular case, for theΓ(a, z) function, is the
valuea = −1 in the fourth approximant (n = 4) of continued
fraction Eq. (13),
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Γ(−1, z) =
exp(−z)(z3 + 18z2 + 86z + 96)

z(z4 + 20z3 + 120z2 + 240z + 120)
. (34)

This equation represents the Senum and Yang approximation
[8] used as a test function by several authors [9,12]. The
maximal relative errors for the cases of Eqs. (24), (25), (34)
(n = 4) and (13) (n = 10) are E(−1, z) = {−4.88 ×
10−3, 3.52 × 10−4, 3.13 × 10−3, 2.5 × 10−7}, respectively.
A similar maximal relative error as for Eq. (34) is obtained
in case of the simpler approximationa = −1 from Eq. (15),
written in the form

Γ(−1, z)
z−3 exp(−z)

=
(

z2 + Az + B

z + C

)
, (35)

whereA = 1.132, B = −0.620 andC = 3.124. Consider-
ing these values as the initial ones in a least-squares fitting to
synthetic generated data from the left hand side of Eq. (35)
on a set of pointsz = {5, 6, 7, · · · , 100} we find those val-
ues forA,B andC summarized in Table VIII. In order to
reduce the maximal relative error of Eq. (24) and Eq. (25), in
a one-dimensional least-squares fitting, we propose the next
test expression

Γ(−1, z)
exp(−z)

=
1

z + 2

(
1 +

2
(z + 3)2

+
( A

z + 4

)4

+
( B

z + 3

)5

+
( C

z + 4

)6

+
( D

z + 3

)7

−
( E

z + 4

)8)
, (36)

to determine the parametersA,B, C,D andE (Table VIII).
This test equation is compared to that equation proposed in
Ref. 12, in the form

Γ(−1, z)
exp(−z)

=
1
z2

(
z3 + Az2 + Bz + C

z3Dz + Ez + F

)
, (37)

where the values for their corresponding parameters are sum-
marized also in Table VIII. Comparing the maximal relative
errors of Eq. (36) and Eq. (37), we observe that approxima-
tion Eq. (36) containing only five fitting parameters, not six
as in Eq. (37), reduces the error in two orders of magnitude.

We can observe that it is a compromise between the min-
imal error reached and the simplicity of the approximation.
Thus, expressions systematically obtained from the contin-
ued fractions method, show that these two properties could
be rather simple or become complicated as needed for nu-
merical calculations.

TABLE VIII. Values for fitted parameters and the maximal rel-
ative error for the casea = −1 evaluated in the interval
z = {5, 6, · · · , 100} and their maximal relative errorE(a, z).

Equation Fitted E(−1, z)(%)

Number

(35) A = 1.23704 3.83× 10−3

B = −0.758361

C = 3.22981

(36) A = 2.058377 −1.58× 10−7

B = 1.942060

C = 2.288145

D = 2.493742

E = 3.02144

(37) A = 9.27052 2.38× 10−5

B = 16.79440

C = 1.20025

D = 11.27052

E = 33.33602

F = 24.21457

7. Conclusions

New modifications that approximate the incomplete gamma
functionΓ(a, z) are presented. All these fractions are com-
pared by the maximal relative errorE(a, z) for a wide range
of values for the argument5 ≤ <(z) ≤ 100. All approxima-
tions obtained become highly useful for the particular case
of thermoluminescence line shape calculation and the most
important fact: they are valid for all values ofz, a required
condition in experimental data analysis. The expressions ob-
tained for the TI could be incorporated in glow deconvolu-
tion line treated by different methods such as in the project
GLOCANIN [26] and the TGCD package [27]. Thus, ex-
pressions systematically obtained from the continued frac-
tions method, show an equilibrium between the minimal error
reached and the simplicity of approximations, and could be
simple or complicated as needed for numerical calculations.
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