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Band structure for the cladding of a hollow core photonic crystal fibre
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We calculate the photonic band structure of a two dimensional (2D) photonic crystal (PC) formed by a hexagonal array of circular rings
embedded in air. This crystal has been used as the cladding of a photonic crystal fibre whose core is composed of air. We solve the Maxwell
equations using the plane wave method to expand the fields and the dielectric constant. Our calculations reveal that for propagation in the
plane of periodicity, the PC possesses no complete photonic band gaps. However we demonstrate the existence of complete photonic band
gaps for propagation out of the plane of periodicity.
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Calculamos la estructura de bandas fotónica para un cristal fotónico bidimensional formado por un arreglo hexagonal de aros circulares en
una matriz de aire. Este cristal se ha usado como la envolvente de una fibraóptica de cristal fot́onico, cuyo ńucleo est́a compuesto de aire.
Resolvemos las ecuaciones de Maxwell y usamos el método de ondas planas para expander los campos y la constante dieléctrica. Nuestros
cálculos revelan que, para la propagación en el plano de periodicidad, el cristal fotónico no posee brechas fotónicas completas. Sin embargo,
demostramos la existencia de brechas fotónicas completas para propagación fuera del plano de la periodicidad.

Descriptores: Estructura de bandas, cristales fotonicos, fibras opticas.

PACS: 71.20.-b, 42.70.Qs, 42.81.-i

1. Introduction

Photonic crystal fibres (PCF’s) are optic fibres which guide
light through a defect surrounded by a periodic array of air
holes running along the entire length of the fibre. These fibres
have been shown to possess numerous unusual properties,
including highly tuneable dispersion, nonlinearity, and sin-
gle mode operation at all wavelengths [1-4]. Such properties
are of fundamental interest in several areas, including soliton
propagation and supercontinuum generation [5-7]. Two dif-
ferent guiding mechanisms for PCF’s have been identified.
The first mechanism is conventional guiding, which relies
on total internal reflection and requires that the core have a
higher refractive index than the cladding. The second em-
ploys a defect mode in a two-dimensional photonic band gap.
This mechanism uses the structure which stops the propaga-
tion in any transverse direction, and can, in principle, allow
light to propagate in an air core. Recently a fibre has been
fabricated in which light can be guided in a hollow core [8].
In this type of fibre, light is trapped in the air by a full two-
dimensional photonic band gap of the cladding instead of by
total internal reflection.

In this work, we calculate the cladding’s photonic band
structure for the hollow core photonic crystal fibre reported in
Ref. 8. The cladding of this fibre can be considered as a 2D
hexagonal array of infinitely long rings of silica embedded in
air. We consider both propagation in the plane of periodicity
and propagation out of the plane of periodicity. Our results
show that for propagation out of the plane of periodicity the
structure possesses a complete photonic band gap. We solve
Maxwell’s equations using the plane wave expansion.

2. Theoretical model

The photonic band structure is obtained solving Maxwell’s
equations, with no sources and currents. Taking the time de-
pendence asH(r, t) = H(r)eiωt, and eliminating the electric
field, we obtain

∇×
[

1
ε(r)

∇×H(r)
]

=
(ω

c

)2

H(r). (1)

Because we have a periodic system, we expand the inverse of
the dielectric constantη(r) = 1/ε(r) and the magnetic field
H(r) as

η(r) =
∑

G

η(G)eiG·r, (2)

H(r) =
∑

G

H(G)ei(k+G)·r, (3)

whereG = la∗ + mb∗ + nc∗ is a vector of the reciprocal
lattice. If we substitute these expansions in Eq. (1) we obtain

−
∑

G′
η(G−G′) [(k + G)× [(k + G′)×H(G′)]]

=
(ω

c

)2

H(G), (4)

which is an algebraic eigenvalue problem. In the previous
equation,η(G−G′) are the Fourier coefficients of the func-
tion η(r) = 1/ε(r). In general, they are given by

η(G) =
1
Vc

∫

Vc

η(r)e−iG·rdr, (5)
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where the integration is over the volume unit cell. In this
work we are interested in a two-dimensional (2D) photonic
crystal formed by a hexagonal array of circular infinitely long
cylinders of silica with dielectric constantεa = 2.1025, em-
bedded in air(εb = 1) [8]. The cylinders have internal ra-
dius r1 and external radiusr2 = a0/2, the lattice constant
beinga0 . The inset of Fig. 1 shows schematically the dis-
tributions of rings where for clarity, the repeated unit cell of
this periodic system appears in the centre. For 2D photonic
crystals, the Fourier coefficients of the functionη(G) are

η(G) =





fηa + (1− f)ηb, G = 0

(ηa − ηb) 1
Aa

∫
Aa

e−iG·rdr, G 6= 0

wheref = AA/AC is the fraction of the unit cell occupied
by the”atoms” forming the crystal. For the case considered
heref = π(r2

2 − r2
1)/AC , and the integration is over the area

occupied by the rings. For the special configuration of rings
shown in Fig. 1, the Fourier coefficients forG 6= 0 are

η(G 6=0)=2(ηa−1)
[
(f−f1)

J1(|G|r2)
|G|r2

−f1
J1(|G|r1)
|G|r1

]
, (6)

wheref1 = πr2
1/AC , J1 is the Bessel function of order 1,

and we have substituted the value of the dielectric constant
of the background,εb = 1.0. If we consider propagation in
the plane of periodicity, thenk andG are 2D vectors, and we
can uncouple Eq. (4) in two sets of equations,

∑
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η(G−G′)(k+G) · (k+G′)Hz(G′)=
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c
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Hz(G), (7)
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c

)2

HT(G). (8)

FIGURE 1. Photonic band structure for the TE and TM modes of a
hexagonal array of circular rings embedded in air. The propagation
is in the plane of periodicity along the principal directions of the
Brillouin zone. The inset shows the distributions of rings, and the
unitary cell.

Equation (7) has the magnetic field parallel to the cylinders
and it describes the propagation of electromagnetic waves
with the electric field transversal to the axis of the cylinders.
This is referred to as transversal electric (TE) modes. Equa-
tion (8) is referred to as transversal magnetic (TM) modes,
since the magnetic field is in the plane of periodicity. We have
used Eqs. (6)-(8) and the parameters reported in Ref. [8].
These parameters are: lattice constant 4.9µ, andr1 = 1.45µ.
Figure 1 shows the photonic band structure along the princi-
pal directions of the Brillouin zone for both the TE and the
TM modes. As we can see from the figure, there is no com-
plete photonic band gap for both polarisations. We have done
calculations for different values of the inner radiusr1, but
close to the reported value. In all the cases considered here
there is not a complete photonic band gap for propagation in
the plane of periodicity. However, if we consider propaga-
tion of electromagnetic waves out of the plane of periodicity,
complete photonic band gaps start to open up. In this case
the propagation vectork is no longer two dimensional, and
we cannot obtain equations for the TE and TM modes. In
this case we must solve directly Eq. (4). Figure 2 shows
the photonic band structure for propagation out of the plane
of periodicity for kz = 5.0 (kz is in units of 2π/a0). As
we can see from the figure there are two complete photonic
band gaps which are indicated by the shadowed area. Figure
3 shows the frequencies of the band edges against the compo-
nent of the propagation vector out of the plane of periodicity.
As we can see from this figure, complete photonic band gaps
exist if thekz component is sufficiently large. If we introduce
a defect breaking the periodicity of the structure to form the
core of an optical fibre, any guided mode with propagation
constant(β = kz) within a complete photonic band gap can-
not penetrate the cladding and must be totally localised in the
core. This is in fact the result reported in Ref. 8. In Fig. 4 of
Ref. 8, the authors observed a peak in the intensity spectrum
of the transmitted light through the air core for a wavelength
around 810 nm. This means that the photonic crystal sur-

FIGURE 2. Photonic band structure for propagation out of the plane
of periodicity, along the principal directions of the Brillouin zone
for kz = 5.0, kz is in units of2π/a0.
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FIGURE 3. Full 2D photonic band gaps for propagation out of the
plane of periodicity.

rounding the core must have a complete photonic band gap at
around(ω/c) = 7.75µm−1. We obtain a complete photonic
band gap at that value of(ω/c) for kz = 10.93.

3. Conclusions

We have calculated the photonic band structure for the
cladding of a hollow core crystal fibre. We show that for
propagation out the plane of periodicity the cladding pos-
sesses complete photonic band gaps, allowing light to propa-
gate along the hollow core.
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