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The steady viscous flow between two infinite parallel planes, is used to illustrate the possibility of minimizing the global entropy generation
rate by cooling the external surfaces convectively in an asymmetric way. The flow is generated by both an axial pressure gradient and the
uniform motion of the upper surface (generalized Couette flow). The temperature field is determined using boundary conditions of the third
kind. The analytic expressions for the velocity and temperature fields of the fluid are used to calculate the global entropy generation rate
explicitly. In dimensionless terms, this function depends on the dimensionless ratio of the two possible velocity scales (characterized by the
magnitudes of the pressure gradient and the upper surface velocity), the dimensionless ambient temperature and the convective heat transfer
coefficients (Biot numbers) of each surface which, in general, are not assumed to be the same. When the Biot numbers for each surface
are equal, the entropy generation rate shows a monotonic increase. However, when the Biot numbers are different this function displays a
minimum for specific cooling conditions. Besides, we calculate the local Nusselt number at the upper wall for minimum entropy generation
conditions.

Keywords: Entropy generation minimization; optimization; heat transfer.

Se estudia el flujo de un fluido viscoso entre dos planos paralelos infinitos con el objetivo de ilustrar la posibilidad de minimizar la producción
global de entroṕıa a trav́es del enfriamiento asiḿetrico por convección del sistema. El flujo se debe a un gradiente de presión axial y al
movimiento uniforme del plano o pared superior del sistema (flujo de Couette generalizado). El campo de temperatura se determina usando
condiciones de frontera del tercer tipo. Las expresiones analı́ticas de los campos de velocidad y temperatura del fluido se utilizan para
calcular expĺıcitamente la producción global de entroṕıa del sistema. Esta función, expresada en forma adimensional, depende de la razón
de las dos posibles escalas de velocidad (una caracterizada por la magnitud del gradiente de presión y la otra por la velocidad del plano
superior), de la temperatura ambiente adimensional y de los coeficientes de transferencia de calor por convección de cada plano (números
de Biot), los que, en general, se consideran distintos. Cuando los números de Biot de cada superficie son iguales, la producción global de
entroṕıa tiene un comportamiento monótono creciente; sin embargo, cuando los números de Biot son diferentes, esta función muestra un
mı́nimo para condiciones de enfriamiento especı́ficas. Adeḿas, se calculó el número local de Nusselt de la pared superior para condiciones
de ḿınima disipacíon de enerǵıa.

Descriptores: Minimización de la producción de entroṕıa; optimizacíon; transferencia de calor.

PACS: 05.70.Ln; 44.27.+g; 47.27.Te

1. Introduction

The minimization of the entropy generation rate has proven
to be a suitable method to optimize the operating conditions
of a given process or device by reducing the intrinsic irre-
versibilities to a minimum, according to the physical con-
straints imposed on the system [1,2]. The method relies on
the knowledge of the dynamical and thermal fields through
which the entropy generation rate characterizes the energy
dissipation in the system [3]. Once this function is known
explicitly, it can be minimized with respect to the relevant
physical parameters in order to find conditions that lead to
minimum dissipation. In this paper, the entropy generation
minimization method is applied to the analysis of the steady
viscous flow between two infinite, parallel plane walls of fi-
nite thickness, that exchanges heat with the ambient follow-
ing Newton’s cooling law. The flow is generated by both an
axial pressure gradient and the uniform motion of the upper
surface (generalized Couette flow). This problem, while re-
maining sufficiently simple to allow an almost fully analyti-
cal treatment, is used to demonstrate the possibility of mini-

mizing the global entropy generation rate by cooling the ex-
ternal surfaces convectively in an asymmetric way. We solve
the heat transfer equation with thermal boundary conditions
of the third kind, assuming that the heat transfer coefficients
for each surface are in general different. From the analytic
expressions for the velocity and temperature fields, the local
and global entropy generation rates are determined. Extend-
ing a previous analysis on the asymmetric convective cool-
ing [4], in the present work the local Nusselt number for
minimum entropy generation conditions is explicitly found.
Under these conditions an optimum value of the dimension-
less ambient temperature that maximizes the heat transfer is
derived. The asymptotic behavior of the optimum local Nus-
selt number for large ambient temperatures is also explicitly
determined.

2. Generalized Couette flow

Let us consider the steady flow of a viscous fluid between
two infinite parallel walls in the presence of a longitudi-
nal pressure gradient,dp/dx, and where the upper plate



HEAT TRANSFER IN ASYMMETRIC CONVECTIVE COOLING AND OPTIMIZED ENTROPY GENERATION RATE 339

is moving with velocityU . The upper plate is located at
y′ = a/2 and the lower plate is aty′ = −a/2, y′ denoting
the transversal coordinate. The dimensionless velocity field,
subjected to the dimensionless no-slip boundary conditions
u(y = −1/2) = 0 andu(y = 1/2) = 1, is

u =
G

8
(1− 4y2) +

1
2

+ y, (1)

where the velocity,u, has been normalized by the boundary
valueU, the dimensionless transversal coordinate,y, is nor-
malized bya, andG = − (

a2/ηU
)
dp/dx is the dimension-

less ratio of velocities, one characterized by the magnitude
of the pressure gradient

(
(a2/η)dp/dx

)
and the other by the

magnitude of the upper surface velocity(U) . Here,η is the
dynamic viscosity of the fluid.

We note that the form of the velocity distribution depends
on the magnitude of the dimensionless ratio of velocities.
When G = 0, the fluid motion is only due to the motion
of the upper wall, and the velocity field reduces to a linear
shear flowu = 1/2 + y.

With the velocity field given by Eq.(1), we proceed to
solve the energy balance equation considering viscous dissi-
pation. The temperature field reaches a steady state because
the surfaces of the slab are bathed by a fluid of fixed am-
bient temperatureTa with which the system exchanges heat
following Newton’s cooling law. In dimensionless terms, the
heat transfer equation for this system reduces to

d2Θ
dy2

+
(

du

dy

)2

= 0, (2)

where the dimensionless temperature is now given by
Θ = k (T − Ta) /ηU2, with T andk being the temperature
and the thermal conductivity of the fluid, respectively. Evi-
dently, the thermal behavior of the system, particularly heat
flow irreversibilities, strongly depends on boundary condi-
tions. Here the heat transfer equation is solved using bound-
ary conditions of the third kind that indicate that the normal
temperature gradient at any point in the boundary is assumed
to be proportional to the difference between the temperature
at the surface and the external ambient temperature. Hence,
the amount of heat entering or leaving the system depends on
the external temperature as well as on the convective heat
transfer coefficient. Let us assume that the external fluid
streams that wash each wall are in general different. Then,
the convective heat transfer coefficients, although taken to be
constant, do not have the same value on both walls. There-
fore, Eq. (2) must satisfy the boundary conditions

dΘ
dy

+ Bi1Θ = 0, at y =
1
2
, (3)

dΘ
dy

−Bi2Θ = 0, at y = −1
2
, (4)

where the Biot numbers

Bi1 = (heff )1a/k and Bi2 = (heff )2a/k

are the dimensionless expressions of the effective convec-
tive heat transfer coefficients of the upper and lower walls,
(heff )1 and(heff )2, respectively, that take into account the
existence of walls of finite thickness. Here

(heff )j =
1

(δw)j

(kw)j
+

1
(he)j

, j = 1, 2 , (5)

whereδw andkw are the wall thickness and the wall ther-
mal conductivity, respectively, while(he)1 and(he)2 are the
external convective heat transfer coefficient of the upper and
lower walls, respectively.

The solution for the temperature field is given in the form

Θf (y, Bi1, Bi2) = −G2 y4

12
+ G

y3

3
− y2

2
+ Cy + D, (6)

where

C=−2G (3Bi1+3Bi2+Bi1Bi2) +(Bi1−Bi2)
(
G2+12

)

24 (Bi1+Bi2+Bi1Bi2)
,

and

D=
1

192Bi2
[96C (2+Bi2)+24(4+Bi2)

+8G(6+Bi2)+G2(8+Bi2)].

We now proceed to calculate the entropy generation rate
using the previous velocity and temperature fields.

2.1. Entropy generation rate

In the flow of a monocomponent viscous fluid, the local en-
tropy generation rate,̇S, can be written explicitly in dimen-
sionless terms as [1,3]

Ṡ =
1

(Θ+Θa)2

(
dΘ
dy

)2

+
1

Θ+Θa

(
du

dy

)2

, (7)

whereṠ is normalized byk/a2 and the dimensionless am-
bient temperature is given byΘa = kTa/ηU2. In writing
Eq. (7), we have taken into account irreversibilities caused
by both viscous dissipation and heat flow. The global entropy
generation rate per unit length in the axial direction,〈Ṡ〉, is
obtained by integratinġS from y = −1/2 to y = 1/2. The
explicit result reads

〈Ṡ〉= Bi1F1

F1 + 24Θa(Bi1 + Bi2 + Bi1Bi2)

+
Bi2F2

F2 + 24Θa(Bi1+Bi2+Bi1Bi2)
, (8)

where
F1 = (2 + Bi2)(12 + G2)− 4Bi2G, (9)

F2 = (2 + Bi1)(12 + G2)− 4Bi1G. (10)
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Notice that this quantity only depends on the dimensionless
parametersBi1, Bi2, G andΘa. Since the global entropy
generation rate considers the whole dissipation produced by
irreversibilities in the system, we can look for values of the
parameters that minimize the function〈Ṡ〉. Let us first ex-
plore the behavior of〈Ṡ〉 when the Biot numbers of each sur-
face are the same (Bi1 = Bi2). This corresponds to sym-
metric convective cooling. In Fig. 1 we show the global en-
tropy generation rate as a function of the single Biot number
for different values of the dimensionless ambient tempera-
tures (Θa=5, 7 and 9) and for different dimensionless ratios
of velocities (G = 0 and2). For instance,Θa = 7 is ob-
tained using the physical properties of engine oil [5] at an
ambient temperatureTa = 20oC. As can be observed from
Fig. 1, for this case the global entropy generation rate is al-
ways a monotonous increasing function ofBi and reaches,
for givenΘa andG, a limiting value asBi →∞.

Let us now consider conditions of asymmetric convective
cooling, namely, the case when the Biot numbers for each
surface are different. In this case, it is possible to find an
optimum Biot number for one of the surfaces which leads to
a minimum global entropy generation rate provided the di-
mensionless ambient temperature, the dimensionless ratio of
velocities and the Biot number of the other surface remain
fixed. For instance, if we fixΘa, G and the lower surface
Biot number,Bi2, it is found that the value of the upper sur-
face Biot number,Bi1, that minimizes〈Ṡ〉 is given by

(Bi1)opt =
1
2β

(
−α +

√
α2 − 4Γβ

)
, (11)

where

α = 4{576(6 + 2G + 3Bi2) + 4G2(12 + 48G + G2)

×(18 + 5Bi2) + G5(8 + G (2 + Bi2)) + 12Θa

×{(144 + G2)(4 + 10Bi2 + 3Bi22 + 3Bi32)

+8G[G(12 + 30Bi2 + 7Bi22) + (12 + G2)

×(2 + 3Bi2)]}+ 288ΘaBi2{(12 + G2)

×(2 + 3Bi2) + 4GBi2}},

β =
(
1728 + G2

)
(2 + Bi2) + 4G{(144 + G4)(4 + Bi2)

+G(12 + G2)(26 + 5Bi2) + 8G2 (12 + Bi2)}+ 24Θa

×{(144 + G4)(4 + 7Bi2 + 2Bi22) + 8G[G(12 + 19Bi2

+2Bi22) + (12 + G2)(2 + 3Bi2)]}+ 576Θ2
a{(12 + G2)

×(2 + 7Bi2 + 6Bi22 + Bi32) + 4G(Bi2 −Bi32)},
and

Γ = 4 (2 + Bi2) (1728 + 432G2 + 36G4 + G6)− 16Bi2

×G(12 + G2)2 + 24Θa{8Bi2(12 + G2)2 + Bi32(−144

+96G− 40G2 + 8G3 −G4)}+ 576Θ2
aBi22

×{12 + G2(2−Bi2) + 4Bi2G}.

In Fig. 2 we display the optimum upper wall Biot num-
ber,(Bi1)opt, as a function ofBi2 for different values ofG
andΘa = 7.

It is found that asBi2 increases,(Bi1)opt approaches a
limiting value which explicitly reads

lim
Bi2→∞

(Bi1)opt =
(

1 +
1

2Θa
− G (4−G)

24Θa

)1/2

. (12)

It is also observed that for small values ofBi2, (Bi1)opt takes
negative values which evidently have no physical meaning.
In fact, for these negative values of(Bi1)opt no minimum
values of〈Ṡ〉 are found. For instance, whenG = 0 minimum
values of〈Ṡ〉 are observed to occur for a givenBi1

FIGURE 1. Global entropy generation rate as a function of the sin-
gle Biot number for different ambient temperatures andG = 0
and2 (symmetric convective cooling).

FIGURE 2. Optimum upper wall Biot number as a function of the
lower wall Biot number for different dimensionless ratios of veloc-
ities. Θa = 7.

Rev. Mex. F́ıs. 49 (4) (2003) 338–343



HEAT TRANSFER IN ASYMMETRIC CONVECTIVE COOLING AND OPTIMIZED ENTROPY GENERATION RATE 341

providedBi2 > 2 and whenG = 2 minimum values of
〈Ṡ〉 are observed providedBi2 > 4. In Fig. 3 we have dis-
played〈Ṡ〉 as a function ofBi1 for Θa = 7, different values
of Bi2 (20, 25 and30) andG = 0 and2. For each curve,
the function〈Ṡ〉 is normalized by its value atBi1 = 0. As
Bi2 increases the optimum value ofBi1 also increases but
it reaches the limit given by Eq. (12) asBi2 → ∞. The
foregoing results indicate, therefore, that the minimum dissi-
pation can be reached by extracting heat in the system in an
asymmetric way.

Let us now calculate the local Nusselt number at the up-
per wall, based on the internal convective heat transfer coef-
ficient,hi, namely [6],

hi = − k

Tw − Tb

(
∂T

∂y′

)

y′=a/2

, (13)

whereTb andTw are the dimensional expressions of the bulk
temperature (i.e. the cross-section averaged temperature of
the stream) and the temperature at the wall, respectively.
Hence, the local Nusselt number at the upper wall is given
by

Nu =
hia

2k
= −

(
dΘ
dy

)

y=1/2

2(Θ(y = 1/2) + Θa −Θb)

=
Bi1Θ(y = 1/2)

2(Θ(y = 1/2) + Θa −Θb)
, (14)

where the dimensionless bulk temperature is defined as

Θb =

1/2∫
−1/2

u(Θ + Θa)dy

1/2∫
−1/2

udy

.

FIGURE 3. Normalized global entropy generation rate as a func-
tion of the upper wall Biot number for different lower wall Biot
numbers and different dimensionless ratios of velocities.Θa = 7.

Figure 4 shows the local Nusselt number evaluated at the
optimum upper wall Biot number,(Bi1)opt, as a function
of Θa for different lower wall Biot numbers andG = 0. This
local Nusselt number for minimum entropy generation condi-
tions displays a maximum value, namely, there is an optimum
value of the dimensionless ambient temperature,(Θa)opt,
where the heat transfer is maximum, once we fixG andBi2.
Although we have not been able to derive the value of the
maximum analytically, in Fig. 5 we present the numerically
determined maximum Nusselt number,(Nu)max, evaluated
at the optimum upper wall Biot number, as a function ofBi2
for simple Couette flow(G = 0). The maximum Nusselt
number shows a monotonic increase withBi2.

From Fig. 4, it is also observed thatNu reaches a lim-
iting value asΘa → ∞. In fact, this limiting value can

FIGURE 4. Local Nusselt number for minimum entropy generation
conditions as a function of the dimensionless ambient temperature
for different lower wall Biot number.G = 0.

FIGURE 5. Maximum Nusselt number for minimum entropy
generation conditions as a function of the lower wall Biot
number.G = 0.
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be determined analytically, namely,

lim
Θa→∞

(Nu)opt

=
lim

Θa→∞
(Bi1)opt (6 + G)F1

6
[
F3 − lim

Θa→∞
(Bi1)opt (F4 + F5)

] , (15)

where

lim
Θa→∞

(Bi1)opt =
−Bi2F6

(1 + Bi2)F7
,

F3 = 0.0642Bi2 (3.5475+G)
(
8.7658−5.1031G+G2

)
,

F4 = 0.0190Bi2 (5.8959+G)
(
17.8087−0.6459G+G2

)
,

F5 = 0.1024 (4.7391 + G)
(
12.3662 + 2.7493G + G2

)
,

F6 =
(
12 + G2

) (
2 + Bi2 −Bi22

)− 4Bi22G (1 + Bi2) ,

F7 =
(
12 + G2

) (
2 + 5Bi2 + Bi22

)
+ 4Bi2G

(
1−Bi22

)
.

This limiting value ofNu depends on the lower wall Biot
number and the dimensionless ratio of velocities.

Figure 6 shows the local Nusselt number evaluated at
the optimum upper wall Biot number,(Bi1)opt, as a func-
tion of Bi2 for different dimensionless ambient temperatures
andG = 0. It is of interest to note that at large values

FIGURE 6. Local Nusselt number for minimum entropy generation
conditions as a function of the lower wall Biot number for different
dimensionless ambient temperature.G = 0.

of Bi2 a discontinuity of the curveNu = f(Bi2) (Nu→∞)
is possible and in such circumstances the Nusselt number be-
comes negative. The negative values ofNu correspond to the
temperature profiles with inflections, when the cross-section
averaged temperature of the flow is greater than the wall tem-
perature and hence the heat flux reverses.

3. Concluding remarks

In this paper, the steady viscous flow between two infinite
parallel planes, has been used to illustrate the possibility of
minimizing the global entropy generation rate by cooling the
external surfaces convectively in an asymmetric way. The
flow is generated by both an axial pressure gradient and the
uniform motion of the upper surface (generalized Couette
flow).

The analytic expressions for the velocity and temperature
fields were used to calculate the global entropy generation
rate explicitly. In dimensionless terms, this function depends
on the dimensionless ambient temperature, the dimensionless
ratio of the two possible velocity scales (characterized by the
magnitudes of the pressure gradient and the upper surface
velocity) and the convective heat transfer coefficients (Biot
numbers) of each wall.

The heat transfer problem was solved using thermal
boundary conditions of the third kind, assuming different
heat transfer coefficients for each wall. Under these condi-
tions, the global entropy generation rate displayed a mini-
mum for a given value of the upper wall Biot number when
the lower wall Biot number, the dimensionless ambient tem-
perature and the dimensionless ratio of velocities were kept
fixed. Therefore, this determines the conditions that mini-
mize the irreversibilities due to viscous friction and heat flow
and, consequently, can be used to obtain optimal operation
conditions that minimize the energy loss in the system.

On the other hand, the behavior of the local Nusselt num-
ber and its value for minimum entropy generation conditions
was also explored. A maximum local Nusselt number was
found for a given value of the dimensionless ambient tem-
perature, namely, there is an optimum value of the dimen-
sionless ambient temperature,(Θa)opt, for which both the
heat transfer is maximum and the global entropy generation
is minimum, when we fix the lower Biot number and the di-
mensionless ratio of velocities.
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