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The steady viscous flow between two infinite parallel planes, is used to illustrate the possibility of minimizing the global entropy generation
rate by cooling the external surfaces convectively in an asymmetric way. The flow is generated by both an axial pressure gradient and the
uniform motion of the upper surface (generalized Couette flow). The temperature field is determined using boundary conditions of the third
kind. The analytic expressions for the velocity and temperature fields of the fluid are used to calculate the global entropy generation rate
explicitly. In dimensionless terms, this function depends on the dimensionless ratio of the two possible velocity scales (characterized by the
magnitudes of the pressure gradient and the upper surface velocity), the dimensionless ambient temperature and the convective heat transfer
coefficients (Biot numbers) of each surface which, in general, are not assumed to be the same. When the Biot numbers for each surface
are equal, the entropy generation rate shows a monotonic increase. However, when the Biot numbers are different this function displays a
minimum for specific cooling conditions. Besides, we calculate the local Nusselt number at the upper wall for minimum entropy generation
conditions.
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Se estudia el flujo de un fluido viscoso entre dos planos paralelos infinitos con el objetivo de ilustrar la posibilidad de minimizar lé@producci
global de entrofa a traes del enfriamiento asietrico por convecéin del sistema. El flujo se debe a un gradiente de @meskial y al
movimiento uniforme del plano o pared superior del sistema (flujo de Couette generalizado). El campo de temperatura se determina usando
condiciones de frontera del tercer tipo. Las expresionedtmaal de los campos de velocidad y temperatura del fluido se utilizan para
calcular explkitamente la producen global de entrda del sistema. Esta furimi, expresada en forma adimensional, depende de éa raz

de las dos posibles escalas de velocidad (una caracterizada por la magnitud del gradientérly faestra por la velocidad del plano
superior), de la temperatura ambiente adimensional y de los coeficientes de transferencia de calor podrcaleveada plano (meros

de Biot), los que, en general, se consideran distintos. Cuanddifosros de Biot de cada superficie son iguales, la prodogobal de
entropa tiene un comportamiento maiono creciente; sin embargo, cuando lésneros de Biot son diferentes, esta famcmuestra un
minimo para condiciones de enfriamiento esfieas. Adenas, se calcd el nfimero local de Nusselt de la pared superior para condiciones
de minima disipaddn de enert.

Descriptores: Minimizacion de la producéin de entrofa; optimizacdn; transferencia de calor.

PACS: 05.70.Ln; 44.27.+g; 47.27.Te

1. Introduction mizing the global entropy generation rate by cooling the ex-

S ] ternal surfaces convectively in an asymmetric way. We solve
The minimization of the entropy generation rate has proveRpe neat transfer equation with thermal boundary conditions

to be a suitable method to optimize the operating conditiongt the third kind, assuming that the heat transfer coefficients
of a given process or device by reducing the intrinsic ire-for each surface are in general different. From the analytic
versibilities to a minimum, according to the physical con- gypressions for the velocity and temperature fields, the local
straints imposed on the system [1,2]. The method relies 034 global entropy generation rates are determined. Extend-
the. knowledge of the dyna_mlcal and thermal_ fields througr]ng a previous analysis on the asymmetric convective cool-
which the entropy generation rate characterizes the energyq 4], in the present work the local Nusselt number for

dissipation in the system [3]. Once this function is known minimum entropy generation conditions is explicitly found.

explicitly, it can be minimized with respect to the relevant ynger these conditions an optimum value of the dimension-
physical parameters in order to find conditions that lead tqgss ambient temperature that maximizes the heat transfer is
minimum dissipation. In this paper, the entropy generationyerived. The asymptotic behavior of the optimum local Nus-

minimization method is applied to the analysis of the steadye|t number for large ambient temperatures is also explicitly
viscous flow between two infinite, parallel plane walls of fi- yatermined.

nite thickness, that exchanges heat with the ambient follow-

ing Newton’s cooling law. The flow is generated by both an2, Generalized Couette flow

axial pressure gradient and the uniform motion of the upper

surface (generalized Couette flow). This problem, while redet us consider the steady flow of a viscous fluid between
maining sufficiently simple to allow an almost fully analyti- two infinite parallel walls in the presence of a longitudi-
cal treatment, is used to demonstrate the possibility of mininal pressure gradienyp/dxz, and where the upper plate
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is moving with velocityU. The upper plate is located at are the dimensionless expressions of the effective convec-
y' = a/2 and the lower plate is af = —a/2, y’ denoting tive heat transfer coefficients of the upper and lower walls,
the transversal coordinate. The dimensionless velocity fieldih.¢)1 and(hes )2, respectively, that take into account the
subjected to the dimensionless no-slip boundary conditionsxistence of walls of finite thickness. Here
u(y = —1/2) = 0andu(y =1/2) = 1,is 1
(heff)j = 7N 1
w=S0 a2ty (@) Ouw)y 1
8 2 (kw)j (he)j
where the velocityy, has been normalized by the boundary )
valueU, the dimensionless transversal coordinatés nor- ~ Whered,, andk,, are the wall thickness and the wall ther-

malized bya, andG = — (a2 /nU) dp/dzx is the dimension- mal conductivity,_ respectively, whiléhe)_l _and(he)g are the
less ratio of velocities, one characterized by the magnitudgxternal convective .heat transfer coefficient of the upper and
of the pressure gradiefita® /n)dp/dz) and the other by the lower walls, respectively.

j:1a27 (5)

magnitude of the upper surface velociy) . Here,n is the The solution for the temperature field is given in the form
dynamic viscosity of the fluid. 4 3 9
We note that the form of the velocity distribution depends ©;(y, Biy, Bis) = —GZ% + G‘% — ‘% +Cy+ D, (6)

on the magnitude of the dimensionless ratio of velocities.

When G = 0, the fluid motion is only due to the motion where

of the upper wall, and the velocity field reduces to a linear ] ) o ] ) )

Shear ﬂO\NlL _ 1/2 + y. C:— QG (3321+3B22+B11322) —I—(BZl—BZQ) (G —|—12)
With the velocity field given by Eq.(1), we proceed to 24 (Bi1+Bia+Biy Bi) ’

solve the energy balance equation considering viscous dissi-

pation. The temperature field reaches a steady state because

the surfaces of the slab are bathed by a fluid of fixed am-, 1

bient temperaturé, with which the system exchanges heat =~  192Bi,

[96C (2+Biy) +24(4+ Bis)

following Newton’s cooling law. In dimensionless terms, the . 9 .
. - ! 8G(6+B G“(8+Bis)].
heat transfer equation for this system reduces to +8G(6+Big)+G7(8+Bia)]
420 du\ 2 We now proceed to calculate the entropy generation rate
W + (dy) =0, (2)  using the previous velocity and temperature fields.

where the dimensionless temperature is now given by 1. Entropy generation rate

© =k (T —T,) /nU?, with T andk being the temperature

and the thermal conductivity of the fluid, respectively. Evi- In the flow of a monocomponent viscous fluid, the local en-
dently, the thermal behavior of the system, particularly heatropy generation rate§, can be written explicitly in dimen-
flow irreversibilities, strongly depends on boundary condi-sionless terms as [1,3]

tions. Here the heat transfer equation is solved using bound- 5 9

ary conditions of the third kind that indicate that the normal §— 1 (d9> + 1 <d“> @)
temperature gradient at any point in the boundary is assumed (©+0,)° \ dy 0+, \dy /) ’

to be proportional to the difference between the temperature )

at the surface and the external ambient temperature. Henc&hereS is normalized byk/a* and the dimensionless am-
the amount of heat entering or leaving the system depends dient temperature is given b9, = k7,/nU?. In writing

the external temperature as well as on the convective he&d. (7), we have taken into account irreversibilities caused
transfer coefficient. Let us assume that the external fluidPy both viscous dissipation and heat flow. The global entropy
streams that wash each wall are in general different. Thergeneration rate per unit length in the axial directigfi), is

the convective heat transfer coefficients, although taken to bebtained by integrating fromy = —1/2toy = 1/2. The
constant, do not have the same value on both walls. Theré&Xplicit result reads

fore, EqQ. (2) must satisfy the boundary conditions

de Bi Iy

, 1 o
qy TPnO=0 aty=g3, 3) =910, (Bi, + Bis T Bin D)
BiyF:
46 1 "F 1216 (BiZ BB Bi)’ ®
7—BZ’2@:O7 at y=—-, (4) 2 a 1 2 1D12
dy 2
. where
where the Biot numbers Fi= (24 Bis)(12 + GQ) _4BiLC, ©)
Bi, = (heff)la/k‘ and Biy = (heff)2a/k Fy= (2 + Bil)(12 + GQ) — 4Bi,G. (10)
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Notice that this quantity only depends on the dimensionless In Fig. 2 we display the optimum upper wall Biot num-
parametersBi,, Bis, G and©,. Since the global entropy ber, (Bi1 ).y, as a function oBi, for different values of7
generation rate considers the whole dissipation produced bgndo, = 7.
irreversibilities in the system, we can look for values of the |t js found that asBis increases(Bi ),,: approaches a
parameters that minimize the functigf). Let us first ex-  |imiting value which explicitly reads
plore the behavior ofS) when the Biot numbers of each sur-
face are the same3(; = Bis). This corresponds to sym-
metric convective cooling. In Fig. 1 we show the global en- 1 a

_ : . : . : (“4-G)
tropy generation rate as a function of the single Biot number ma (le)opt = <1 + 56, 24@) . (12)
for different values of the dimensionless ambient tempera- =~ >° a a
tures P,=5, 7 and 9) and for different dimensionless ratios
of velocities (¢ = 0 and2). For instance®, = 7 is ob-  Itis also observed that for small valuesi®f,, (Bi1 )op: takes
tained using the physical properties of engine oil [5] at annegative values which evidently have no physical meaning.
ambient temperaturé, = 20°C. As can be observed from In fact, for these negative values @Bi1 )., N0 minimum
Fig. 1, for this case the global entropy generation rate is alvalues of(S) are found. For instance, whéh= 0 minimum
ways a monotonous increasing function®f and reaches, Vvalues of(S) are observed to occur for a givéh,
for given©, andG, a limiting value asBi — oo.

Let us now consider conditions of asymmetric convective
cooling, namely, the case when the Biot numbers for each g7 _
surface are different. In this case, it is possible to find an
optimum Biot number for one of the surfaces which leads to 9241
a minimum global entropy generation rate provided the di- ;54 |
mensionless ambient temperature, the dimensionless ratio o
velocities and the Biot number of the other surface remain 9-18+
fixed. For instance, if we fiX©,, G and the lower surface 0.15
Biot number,Bi,, it is found that the value of the upper sur-

face Biot numberpi,, that minimizesS) is given by 0.12 -
1 0.09
(Bi)opt = — (foz +y/a?— 4r5) RENCED
26 0.06
where
) ) 0.034 | |
a =4{576(6 + 2G + 3Bis) + 4G~(12 4+ 48G + G*) ot . , . — , . ,
0 1 2 3 4
x (18 4+ 5Biy) + G*(8 + G (2 + Biy)) + 120, Bi
x{(144 + G2)(4 + 10Biy + 3Bi§ + 3Bi§) FIGURE 1. Global entropy generation rate as a function of the sin-
' ” ) gle Biot number for different ambient temperatures &®\d= 0
+8G[G(12 + 30Bip + 7Bi3) + (12 + G*) and2 (symmetric convective cooling).
x (2 4 3Biy)]} + 2880, Bi2{(12 + G?) .
(BI1)0pt
X(2+33i2) +4GB7:2}}, 0.8+
B = (1728 + G?) (2 + Bis) + 4G{(144 + G*)(4 + Bi») 06
+G(12 + G?)(26 + 5Biy) + 8G? (12 + Bis)} + 240,
x{(144 + G*)(4 + 7Biy + 2Bi2) + 8G[G(12 + 19Biy 04 _ ,
+2Bi3) + (12 + G*)(2 + 3Biy)]} + 57602{(12 + G?) 0ol e T =i
X (2 + 7Biy 4 6Bi2 + Bi3) 4+ 4G(Biy — Bi})}, 4 e B2
and 0.0 1+ . . . .
0 5 10 15 20
I' = 4(2 + Bisy) (1728 + 432G* 4 36G* + G°) — 16Bi5 7
024 :
xG(12 + G2)? + 240,{8Biz(12 + G?)? + Bid(—144 Bl
496G — 40G? + 8G3 — G4)} + 576@232'3 FIGURE 2. Optimum upper wall Biot number as a function of the
¢ lower wall Biot number for different dimensionless ratios of veloc-
x{12 4 G*(2 — Biy) + 4BiyG}. ities. ©, = 7.
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provided Bi, > 2 and whenG = 2 minimum values of Figure 4 shows the local Nusselt number evaluated at the

(S) are observed provideBi, > 4. In Fig. 3 we have dis- optimum upper wall Biot number(Bi, ),,:, as a function

pIayed<S> as a function ofBi, for ©, = 7, different values  of ©, for different lower wall Biot numbers an@ = 0. This

of Bis (20,25 and30) andG = 0 and2. For each curve, local Nusselt number for minimum entropy generation condi-

the function(S) is normalized by its value aBi; = 0. As tions displays a maximum value, namely, there is an optimum

Biy increases the optimum value #fi; also increases but value of the dimensionless ambient temperattﬂ@a)opt,

it reaches the limit given by Eq. (12) d3i; — oo. The  where the heat transfer is maximum, once wefiand Bis.

foregoing results indicate, therefore, that the minimum dissi-Although we have not been able to derive the value of the

pation can be reached by extracting heat in the system in amaximum analytically, in Fig. 5 we present the numerically

asymmetric way. determined maximum Nusselt numbéNu),.., evaluated
Let us now calculate the local Nusselt number at the upat the optimum upper wall Biot number, as a functionzaf,

per wall, based on the internal convective heat transfer coefor simple Couette flow(G = 0). The maximum Nusselt

ficient, h;, namely [6], number shows a monotonic increase wiify.
From Fig. 4, it is also observed thatu reaches a lim-
k oT " o
hi=——o [ =— ) (13) itingvalue as®, — oo. In fact, this limiting value can
Tw - Tb 8y/ y’:a/2

whereT, andT,, are the dimensional expressions of the bulk
temperatureife. the cross-section averaged temperature of Ny
the stream) and the temperature at the wall, respectively.25
Hence, the local Nusselt number at the upper wall is given

by 201

(%)
ha dy y—1/2 15

Nuy= —— = —
YT oK T 20y =1/2)+0, -0y

Bi1O(y = 1/2) 1687

= 14
20w-1/7+0,-06) Y
where the dimensionless bulk temperature is defined as 57
1/2
u(© +0,)d 0 | , . ; . ; ) : ,
4/1/2 ( a)dy 0 1 2 3 48
Oy =
lj/-Q ud FIGURE 4. Local Nusselt number for minimum entropy generation
iy 4 conditions as a function of the dimensionless ambient temperature
for different lower wall Biot numberG = 0.
<S> NUyax
<S%i1=0 451
1.002 ~ 204
35
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FIGURE 3. Normalized global entropy generation rate as a func- FIGURE 5. Maximum Nusselt number for minimum entropy
tion of the upper wall Biot number for different lower wall Biot generation conditions as a function of the lower wall Biot
numbers and different dimensionless ratios of velocits= 7. number.GG = 0.
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be determined analytically, namely,

lim (Nu)opt

Q,—00

Jlim (Bit)opt (6+G) Fy

= ;o (19)
6 F3 — lim (Bil)opt (F4 + F5)

a—00

where

. . —BisFg
lim (Biy)op = 200
olm (Bit)ont = T By s

F3 = 0.0642Bis (3.5475+G) (8.7658—5.1031G+G?)
Fy = 0.0190Bis (5.8959+G) (17.8087—0.6459G+G?)
Fs = 0.1024 (4.7391 + G) (12.3662 + 2.7493G + G?),
Fs = (124 G?) (2 + Biy — Bi3) — 4Bi3G (1 + Bis),
Fr = (124 G?) (2+ 5Biy + Bi3) + 4BixG (1 — Bi) .

This limiting value of N« depends on the lower wall Biot
number and the dimensionless ratio of velocities.

of Bis a discontinuity of the curv&u = f(Bis) (Nu—00)

is possible and in such circumstances the Nusselt number be-
comes negative. The negative valuesvaf correspond to the
temperature profiles with inflections, when the cross-section
averaged temperature of the flow is greater than the wall tem-
perature and hence the heat flux reverses.

3. Concluding remarks

In this paper, the steady viscous flow between two infinite
parallel planes, has been used to illustrate the possibility of
minimizing the global entropy generation rate by cooling the
external surfaces convectively in an asymmetric way. The
flow is generated by both an axial pressure gradient and the
uniform motion of the upper surface (generalized Couette
flow).

The analytic expressions for the velocity and temperature
fields were used to calculate the global entropy generation
rate explicitly. In dimensionless terms, this function depends
on the dimensionless ambient temperature, the dimensionless
ratio of the two possible velocity scales (characterized by the
magnitudes of the pressure gradient and the upper surface
velocity) and the convective heat transfer coefficients (Biot
numbers) of each wall.

The heat transfer problem was solved using thermal

Figure 6 shows the local Nusselt number evaluated aboundary conditions of the third kind, assuming different

the optimum upper wall Biot numbe(Bi;),,:, as a func-

heat transfer coefficients for each wall. Under these condi-

tion of Bi, for different dimensionless ambient temperaturestions, the global entropy generation rate displayed a mini-
andG = 0. It is of interest to note that at large values mum for a given value of the upper wall Biot number when

U
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[¢] I 50 I 1(I)0 I 180 I 2(I)0_

Bi,
FIGURE 6. Local Nusselt number for minimum entropy generation
conditions as a function of the lower wall Biot number for different
dimensionless ambient temperatu¢e= 0.

the lower wall Biot number, the dimensionless ambient tem-
perature and the dimensionless ratio of velocities were kept
fixed. Therefore, this determines the conditions that mini-
mize the irreversibilities due to viscous friction and heat flow
and, consequently, can be used to obtain optimal operation
conditions that minimize the energy loss in the system.

On the other hand, the behavior of the local Nusselt num-
ber and its value for minimum entropy generation conditions
was also explored. A maximum local Nusselt number was
found for a given value of the dimensionless ambient tem-
perature, namely, there is an optimum value of the dimen-
sionless ambient temperatur@®.),,;, for which both the
heat transfer is maximum and the global entropy generation
is minimum, when we fix the lower Biot number and the di-
mensionless ratio of velocities.
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