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Hamiltonian structures for the acoustic field
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It is shown that the Hamiltonian structures for the acoustic field obtained by means of the canonical formalism using as field variables the
components of the molecular displacements or the variation of the gas density are different and lead to different Poisson brackets. It is shown
that by requiring that the values of the Hamiltonians coincide, the Poisson brackets also coincide.
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Se muestra que las estructuras hamiltonianas para el campo acústico que se obtienen a través del formalismo cańonico usando como variables
de campo las componentes de los desplazamientos moleculares o la variación de la densidad del gas son diferentes y llevan a paréntesis de
Poisson diferentes. Se muestra que si se propone que los valores de las hamiltonianas coincidan, entonces los paréntesis de Poisson también
coinciden.
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1. Introduction

As is well known, the Lagrangian and Hamiltonian for-
malisms employed in the study of mechanical systems with
a finite number of degrees of freedom can be applied in the
case of continuous media and fields. The Hamiltonian for-
mulation is usually obtained from the Lagrangian formula-
tion by means of the Legendre transformation, but in the case
of fields this canonical procedure presents difficulties since
not always the momentum densities are independent of the
field variables, which is usually mended by the introduction
of constraints.

However, it is possible to avoid these complications and
give a Hamiltonian formulation for a given continuous sys-
tem, without making reference to the Lagrangian formula-
tion, if its evolution equations can be written in the form

φ̇α = Dαβ
δH

δφβ
, (1)

where the field variablesφα represent the state of the sys-
tem, H is some functional of theφα, δH/δφα is the func-
tional derivative ofH with respect toφα, and theDαβ are
operators that must satisfy certain conditions that allow the
definition of a Poisson bracket between functionals of theφα

(see,e.g., Refs. 1–3). Here and in what follows a dot de-
notes partial differentiation with respect to the time and there
is summation over repeated indices.

In this paper we consider Hamiltonian structures for the
acoustic field in a perfect gas. An interesting feature of this
simple example is the fact that one can use as field variables
either the components of the vector field representing the dis-
placement of the particles of the gas (three variables per space

point) or the variations of the density of the gas (one variable
per space point) [4,5]. In Sec. 2 we compare the Hamiltonian
structures for the acoustic field obtained from the correspond-
ing Lagrangians using the displacement vector field or the
variation of the gas density as field variables and we find that
the Poisson brackets and the Hamiltonians obtained in these
two cases do not coincide. In Sec. 3 we show that if the value
of the Hamiltonian is the same, regardless of which variables
are employed, then the Poisson brackets also coincide.

2. Canonical formalism

In the study of the acoustic field in a perfect gas one can make
use of the Cartesian components of the vector field,η, that
represents the small displacements of the gas particles with
respect to their positions in the absence of sound waves. A
suitable Lagrangian density is [4]

Lv =
1
2
µ0η̇

2 + P0∇ · η − 1
2
γP0(∇ · η)2, (2)

whereµ0 is the mass density of the gas in equilibrium,P0 is
the pressure in equilibrium andγ = Cp/Cv, with Cp andCv

being the heat capacities at constant pressure and at constant
volume, respectively (the subscriptv is introduced to remark
the vector character of the field variables). The Lagrangian
density (2) has the usual structure found in the case of me-
chanical systems with a finite number of degrees of freedom,
being the difference between a term corresponding to the ki-
netic energy density and another term identifiable as the po-
tential energy density.

The Euler–Lagrange equations applied to (2) yield

µ0η̈ − γP0∇(∇ · η) = 0. (3)
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Following the standard procedure one finds that the conjugate
momenta to the field variablesηi areπi = ∂Lv/∂η̇i = µ0η̇i

(i, j, . . . = 1, 2, 3) and the Hamiltonian density is given by

Hv = πiη̇i − Lv =
π2

2µ0
− P0∇ · η +

γP0

2
(∇ · η)2. (4)

Then, the Hamilton equations [4,2]

η̇i =
δHv

δπi
, π̇i = −δHv

δηi
, (5)

whereHv =
∫ Hvdv, reproduce Eq. (3).

If F andG are two functionals ofηi andπi, their Poisson
bracket is defined as

{F, G}v =
∫ (

δF

δηi

δG

δπi
− δG

δηi

δF

δπi

)
dv. (6)

Letting (φ1, . . . , φ6) ≡ (η1, η2, η3, π1, π2, π3) we have

φα(r′, t) =
∫

δαβδ(r′ − r)φβ(r, t)dv (7)

(α, β, . . . = 1, 2, . . . , 6), and

δφα(r′, t)
δφβ(r, t)

= δαβδ(r′ − r).

Hence,

{φα(r′, t), φβ(r′′, t)}v = Dαβδ(r′ − r′′), (8)

where

(Dαβ) =
[

0 I
−I 0

]
(9)

andI is the3× 3 identity matrix. Explicitly,

{πi(r′, t), πj(r′′, t)}v = 0 = {ηi(r′, t), ηj(r′′, t)}v (10)

and

{ηi(r′, t), πj(r′′, t)}v = δijδ(r′ − r′′). (11)

Making use of the matrix(Dαβ), Eqs. (5) and (6) can be
rewritten as

φ̇α = Dαβ
δHv

δφβ
(12)

and

{F, G}v =
∫

δF

δφα
Dαβ

δG

δφβ
dv, (13)

respectively. It may be pointed out that, owing to the linearity
of the evolution equations considered here, there exists a set
of functionsGαβ(r′, t′; r, t) such that

φα(r′, t′) =
∫

Gαβ(r′, t′; r, t)φβ(r, t)dv,

hence

{φα(r′, t′), φβ(r′′, t′′)}v = DαγGβγ(r′′, t′′, r′, t′).

The relative variation of the gas density, denoted byσ, is
related withη according to [4,5]

σ = −∇ · η (14)

and the divergence of Eq. (3) yields the wave equation

µ0σ̈ − γP0∇2σ = 0. (15)

As can be readily seen, Eq. (15) follows from the Euler–
Lagrange equations with

Ls =
1
2

[
µ0σ̇

2 − γP0(∇σ)2
]
, (16)

consideringσ as the field variable.
The conjugate momentum toσ is therefore

ρ = ∂Ls/∂σ̇ = µ0σ̇

and the corresponding Hamiltonian density is given by

Hs = ρσ̇ − Ls =
ρ2

2µ0
+

γP0

2
(∇σ)2. (17)

With the variablesσ, ρ there is associated a Poisson bracket
given by

{F, G}s =
∫ (

δF

δσ

δG

δρ
− δG

δσ

δF

δρ

)
dv, (18)

for any pair of functionals ofσ andρ. Thus, by analogy with
Eqs. (10) and (11),

{σ(r′, t), σ(r′′, t)}s = 0 = {ρ(r′, t), ρ(r′′, t)}s

and

{σ(r′, t), ρ(r′′, t)}s = δ(r′ − r′′). (19)

On the other hand, sinceσ = −∇· η and

ρ = µ0σ̇ = −µ0∇ · η̇ηη = −∇ · πππ,

the variablesσ and ρ can be regarded as functionals ofηi

andπi. Then, making use of the expression (6) we obtain

{σ(r′, t), ρ(r′′, t)}v = −∇′2δ(r′ − r′′), (20)

which differs from (19); hence, the Poisson brackets (6)
and (18) are different and define different Hamiltonian struc-
tures for the acoustic field.

The linear momentum of the acoustic field (defined as
the generator of translations) is given by the general expres-
sion [4,2]

Gi = −
∫

πk
∂ηk

∂xi
dv. (21)
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But, whenσ is the field variable, the components of the linear
momentum are

Gi = −
∫

ρ
∂σ

∂xi
dv (22)

and, apart from the difference in the dimensions of the func-
tionals (21) and (22), it seems clear that their values are
not related (though both are conserved,e.g., if there are no
boundaries), which adds another difference between the two
Hamiltonian structures.

We note, in passing, that if the Lagrangian densityLs is
expressed in terms ofη, then the Euler–Lagrange equations
give

µ0∇(∇ · η̈)− γP0∇[∇2(∇ · η)] = 0,

which is the gradient of the divergence of Eq. (3).

3. Alternative definition of the Hamiltonian
structure

We shall consider again the componentsηi as the field vari-
ables without making use of a Lagrangian, but demanding
that the value of the Hamiltonian density coincides with that
obtained in the case of the scalar variables,Hs.

The idea is to write the equations of motion in
the form (12), looking for the appropriateDαβ , which
may be constants, functions or operators, with the con-
dition that Dαβ=−D†

βα, where D†
αβ is the adjoint of

Dαβ and the bar denotes complex conjugation, in or-
der for the Poisson bracket (13) to be antisymmetric (i.e.,
{F, G}=−{G,F}) [2,3]. When theDαβ are constants, the
Poisson bracket automatically satisfies the Jacobi identity,
but in other cases one has to verify that this identity is sat-
isfied [1].

Thus, assuming that theηi are the field variables, we take
as the Hamiltonian density

H′v =
(∇ · πππ)2

2µ0
+

γP0

2
[∇(∇ · ηηη]2, (23)

which is obtained fromHs given in (17), substitutingσ
andρ by the corresponding expressions in terms ofηi andπi

(it may be noticed thatH′v cannot be obtained from a La-
grangian density in the standard way). The functional deriva-
tives ofH ′

v =
∫ H′vdv are then

δH ′
v

δηi
= γP0

∂

∂xi
∇2(∇ · η) = µ0

∂

∂xi
∇ · η̈,

where we have made use of Eq. (3), and

δH ′
v

δπi
= − 1

µ0

∂

∂xi
∇ · π.

Substituting these derivatives into Eq. (12) with(Dαβ) writ-
ten as the block matrix

(Dαβ) =
(

(Cij) (Eij)
(Fij) (Gij)

)
, (24)

and making use of the fact thatπi = µ0η̇i we have

η̇i = Cij
δH ′

v

δηj
+ Eij

δH ′
v

δπj

= Cij

(
µ0

∂

∂xj
∇ · η̈

)
+ Eij

(
− 1

µ0

∂

∂xj
∇ · π

)

=
πi

µ0
(25)

and, similarly,

π̇i = Fij
δH ′

v

δηj
+ Gij

δH ′
v

δπj

= Fij

(
µ0

∂

∂xj
∇ · η̈

)
+ Gij

(
− 1

µ0

∂

∂xj
∇ · π

)

= µ0η̈i. (26)

These equations are satisfied if we takeCij = 0 = Gij ,

Eij

(
∂

∂xj
∇ · π

)
= −πi (27)

andFij = −Eij .
Taking the curl on both sides of Eq. (3) we obtain

∇×η̈=0, and therefore we can assume that∇× π also van-
ishes (otherwise∇×η would not be bounded). Thus Eq. (27)
can be rewritten as

−πi = Eij

(
∂

∂xj

∂

∂xk
πk

)
= Eij

(
∂

∂xk

∂

∂xj
πk

)

= Eij

(
∂

∂xk

∂

∂xk
πj

)
= Eij(∇2πj),

hence, if there are no boundaries present, theEij are the in-
tegral operators

Eij (Aj) =
1
4π

∫
Ai(r′)
|r− r′|dv′. (28)

Indeed, making use of∇2 1
|r− r′| = −4πδ(r − r′), from

Eq. (28) we have

Eij

(
∂

∂xj
∇ · π

)
= Eij(∇2πj) =

1
4π

∫
(∇′2πi)(r′)
|r− r′| dv′

and integrating by parts twice

Eij

(
∂

∂xj
∇ · π

)
=

1
4π

∫
πi(r′)∇′2 1

|r− r′|dv′

= −
∫

πi(r′)δ(r− r′)dv′ = −πi(r),

as required by Eq. (27).
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From Eq. (28) it follows that for any pair of vector fields,
A andB,

∫
BiEij(Aj)dv =

1
4π

∫
Bi(r)

[∫
Ai(r′)
|r− r′|dv′

]
dv

=
1
4π

∫
Ai(r′)

[∫
Bi(r)
|r− r′|dv

]
dv′

=
1
4π

∫
Ai(r)

[∫
Bi(r′)
|r− r′|dv′

]
dv

=
∫

AiEij(Bj)dv =
∫

AjEji(Bi)dv

therefore,E†
ij = Eji and, sinceEij = −Fij , we have

E†
ij = −Fji, which means that

D†
αβ = −Dβα = −Dβα

as required in order for the Poisson bracket to be antisymmet-
ric.

We now compute the Poisson bracket betweenσ andρ
using the definition (13) with(Dαβ) given by (24), with
Cij = 0 = Gij , Fij = −Eij andEij given by Eq. (28)

{σ(r, t), ρ(r′, t)}′v =
∫

δσ(r, t)
δηk(r′′, t)

Ekl
δρ(r′, t)
δπl(r′′, t)

dv′′

−
∫

δσ(r, t)
δπk(r′, t)

Ekl
δρ(r′, t)
δηl(r, t)

dv′′ (29)

hence

{σ(r, t), ρ(r′, t)}′v =
∫

∂

∂x′′k
δ(r′′ − r)

×




1
4π

∫ ∂

∂x′′′k

δ(r′ − r′′′)

|r′′ − r′′′| dv′′′


 dv′′

and integrating by parts both integrals we find that

{σ(r, t), ρ(r′, t)}′v =
1
4π

×
∫ ∫

δ(r′′ − r)δ(r′ − r′′′)
∂

∂x′′k

∂

∂x′′′k

1
|r′′ − r′′′|dv′′dv′′′

but

∂

∂x′′k

∂

∂x′′′k

1
|r′′ − r′′′| = − ∂

∂x′′k

∂

∂x′′k

1
|r′′ − r′′′|

= −∇′′2 1
|r′′ − r′′′| = 4πδ(r′′ − r′′′)

and therefore

{σ(r, t), ρ(r′, t)}′v = δ(r− r′), (30)

which agrees with Eq. (19).

4. Conclusions

The example considered here shows that despite the dif-
ference in the number of field variables employed to deal
with the acoustic field, we can obtain equivalent Hamilto-
nian structures. This example also illustrates the fact that the
Hamiltonian functional and the Poisson brackets can be cho-
sen in many ways (cf. also Ref. 6). The Hamiltonian is in
all these cases a constant of the motion, but to the authors’
knowledge, it is not known if there exist additional condi-
tions for a constant of motion to be a Hamiltonian (with the
corresponding Poisson bracket satisfying the Jacobi identity).
As pointed out at the beginning of Sec. 3, when theDαβ are
constants the Jacobi identity is always satisfied [1,2]. Since
the Poisson bracket constructed in Sec. 3 agrees with that de-
fined by Eq. (18), which satisfies the Jacobi identity, it is to
be expected that it also satisfies this identity.

Finally, it should be remarked that it would be wrong to
talk abouttheLagrangian or Hamiltonian density of a given
system. If these densities are defined by the only condition
that they reproduce the equations of motion of the system in
question through the Euler–Lagrange equations or the Hamil-
ton equations, there may be many acceptable choices, which
may not have a direct physical meaning. Of course, with
any appropriate Lagrangian or Hamiltonian density the cor-
responding formalism must yield valid results (such as con-
servation laws).
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