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Hamiltonian structures for the acoustic field
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It is shown that the Hamiltonian structures for the acoustic field obtained by means of the canonical formalism using as field variables the
components of the molecular displacements or the variation of the gas density are different and lead to different Poisson brackets. It is shown
that by requiring that the values of the Hamiltonians coincide, the Poisson brackets also coincide.
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Se muestra que las estructuras hamiltonianas para el cafipticagjue se obtienen a tisrdel formalismo camico usando como variables
de campo las componentes de los desplazamientos moleculares o lsvadiata densidad del gas son diferentes y llevan anpesis de
Poisson diferentes. Se muestra que si se propone que los valores de las hamiltonianas coincidan, entogcesdissqealPoisson tangioi
coinciden.

Descriptores: Campo adstico; estructuras hamiltonianas.

PACS: 11.10.Ef; 03.50.-z; 43.20.+g

1. Introduction point) or the variations of the density of the gas (one variable
per space point) [4,5]. In Sec. 2 we compare the Hamiltonian
As is well known, the Lagrangian and Hamiltonian for- stryctures for the acoustic field obtained from the correspond-
malisms employed in the study of mechanical systems withng | agrangians using the displacement vector field or the
a finite number of degrees of freedom can be applied in thggriation of the gas density as field variables and we find that
case of continuous media and fields. The Hamiltonian forthe poisson brackets and the Hamiltonians obtained in these
mulation is usually obtained from the Lagrangian formula-yyq cases do not coincide. In Sec. 3 we show that if the value
tion by means of the Legendre transformation, but in the casgf the Hamiltonian is the same, regardless of which variables

of fields this canonical procedure presents difficulties sincgye employed, then the Poisson brackets also coincide.
not always the momentum densities are independent of the

field variables, which is usually mended by the introduction
of constraints.

. Howevef' It IS possible tg avoid the_se compl_|cat|ons andm the study of the acoustic field in a perfect gas one can make
give a Hamﬂtomap formulation for a given CONtNUOUS SYS-,q6 of the Cartesian components of the vector figldthat
tgm, .W.'thOUt mgkmg refgrence to the I._agra'mg|an formUIa'represents the small displacements of the gas particles with
tion, if its evolution equations can be written in the form respect to their positions in the absence of sound waves. A
SH suitable Lagrangian density is [4]

ey (1) ) )
003 L, = Suoi® + BV -n = 5P (V) (2)

where the field variables, represent the state of the sys- yhere,y, is the mass density of the gas in equilibriufy, is

tem,  is some functional of the., d1/3¢a is the func-  he pressure in equilibrium and= C,/C,, with C,, andC,

tional derivative offf with respect tap,, and theD.s are peing the heat capacities at constant pressure and at constant
ope.rgt.ors that m.ust satisfy certain condmon; that allow th‘?/olume, respectively (the subscripts introduced to remark
definition of a Poisson bracket between functionals ofthe  the vector character of the field variables). The Lagrangian
(see,e.g, Refs. 1-3). Here and in what follows a dot de- gensity (2) has the usual structure found in the case of me-
_notes partl_al differentiation Wlth _respect to the time and thergpanical systems with a finite number of degrees of freedom,
is summation over repeated indices. being the difference between a term corresponding to the ki-

In this paper we consider Hamiltonian structures for thepetic energy density and another term identifiable as the po-
acoustic field in a perfect gas. An interesting feature of thisentig) energy density.

simple example is the fact that one can use as field variables e Eyler-Lagrange equations applied to (2) yield
either the components of the vector field representing the dis- .
placement of the particles of the gas (three variables per space poi) = yRoV(V - m) = 0. ®)

2. Canonical formalism

(Z.Sa:D
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Following the standard procedure one finds that the conjugateence

momenta to the field variableg arer; = 9L, /070; = pon;

@4,4,...=1,2,3) and the Hamiltonian density is given by
2
P
Ho = mitli — Lo = 27— — BV -+ L2V -m)%. (4)
2/,(,0 2
Then, the Hamilton equations [4,2]
0H, 0H,
.i = ) .i = - ) S
"= S T o (5)

whereH, = [ H,dv, reproduce Eq. (3).
If F"andG are two functionals ofy; andr;, their Poisson
bracket is defined as

6= [ (G5 i) ©
Letting (¢1, - .., ¢s) = (1, 12,703, 71, T2, T3) WE have
$a(r';t) = [ 0apd(r’ —r)p(r,t)dv (7)
(o, 8,...=1,2,...,6),and
m = 8ap0(r' — ).
Hence,

{¢a(r/7 t)y ¢B(r//7 t)}v - Dag(S(I'/ - I'N)7 (8)
where
0 I
us)=| o] ©
and/ is the3 x 3 identity matrix. Explicitly,

{ﬂ'i(r/v t)v 5 (I‘”, t)}v =0= {771‘ (rlv t)’ nj (I‘H, t)}v

and

(10)

{ni(x', 1), m;(x", 1) }o = 63;0(x" — ). (11)

Making use of the matriXD,.s), Egs. (5) and (6) can be

rewritten as
0H,

'a = Doc 12
¢ e (12)
and
oF 0G
FG}y= | —D,3—dv, 13
{F.G} 532 D 55, (13)

respectively. It may be pointed out that, owing to the linearity

{¢a (I‘/,tl), (ZSQ(I‘H,t//)}U _ Da"/Gﬁ'\/(r//at”y I‘/7t/).

The relative variation of the gas density, denotedrbis
related withn according to [4,5]

c=-V-7q (14)

and the divergence of Eq. (3) yields the wave equation

o6 — yPyV3a = 0. (15)

As can be readily seen, Eq. (15) follows from the Euler—
Lagrange equations with

1
Ly =2 [po6® —vPy(Vo)?], (16)

2
considerings as the field variable.
The conjugate momentum tois therefore
p=0Ls/05 = poo

and the corresponding Hamiltonian density is given by

2
P,
P10 g2,

Hs:pd_‘cs_

= 17
e T2 (17)

With the variablesr, p there is associated a Poisson bracket

given by
0F 0G  0GOF
{F.G}s = / (505/) - 505/}) dv,

for any pair of functionals of andp. Thus, by analogy with
Egs. (10) and (11),

{o(,1),0(r" )} = 0= {p(r',1), p(x”", 1) }5

(18)

and
{o(',t),p(x",t)}s = 6(r" — 1").

On the other hand, sinee= —V-n and

(19)

p= oo =—pV-n=-V-m,

the variabless and p can be regarded as functionals mpf
andm;. Then, making use of the expression (6) we obtain
{U(rlv t)7 p(r”7 t)}U = 7v/25(r/ - I'N), (20)
which differs from (19); hence, the Poisson brackets (6)
and (18) are different and define different Hamiltonian struc-
tures for the acoustic field.
The linear momentum of the acoustic field (defined as

of the evolution equations considered here, there exists a sgie generator of translations) is given by the general expres-

of functionsG.5(r’, ¢'; r, t) such that

ba(r' ) = /G’ag(r’,t’;I",t)¢g(r,lf)dv7

sion [4,2]

O
Tk 0x;

G;=— . (21)
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But, wheno is the field variable, the components of the linearand making use of the fact that = 147; we have
momentum are

0H! SH!
Oo B Oty 0
g 7]1 - k¥, + El
Gi= p@xi dv (22) 76, o
and, apart from the difference in the dimensions of the func- — Oy (Noav ) 77> LBy (_13V ) ﬂ_)
tionals (21) and (22), it seems clear that their values are ! Ox; T\ o O
not related (though both are conserved, if there are no T
boundaries), which adds another difference between the two - o (25)
Hamiltonian structures.
We note, in passing, that if the Lagrangian dengityis  and, similarly,
expressed in terms of, then the Euler-Lagrange equations
ive . 0H! SH'
g = Fiij + erv
.. nj s
poV(V i) = yPoVIVA(V - )] = 0, ’ !
0 . 1 0
which is the gradient of the divergence of Eq. (3). = Fij NoaTij )+ Gij *%aijv "
3. Alternative definition of the Hamiltonian
structure These equations are satisfied if we take = 0 = G,
We shall consider again the componentss the field vari- 9
ables without making use of a Lagrangian, but demanding E;; <8V . ﬂ-) =—m (27)
L

that the value of the Hamiltonian density coincides with that
obtained in the case of the scalar variablgs,

The id is to ite the equati of motion i
ea 1S ot guations ! n Taking the curl on both sides of Eg. (3) we obtain

the form (12), looking for the appropriat®,s, which .
may be constants, functions or operators, with the con.—v x#)=0, and therefore we can assume tRak wr also van-

dition that Daﬁ:—DT where D' is the adjoint of ishes (otherwlswxnwould not be bounded). Thus Eq. (27)
Sa aB : . . can be rewritten as

D,z and the bar denotes complex conjugation, in or-

der for the Poisson bracket (13) to be antisymmetiie, ( o 0 o 0

{F,G}=—{G, F}) [2,3]. When theD,z are constants, the mi = Eij <8xaka> = iy (M%W)

Poisson bracket automatically satisfies the Jacobi identity, ! !

andFij = _Eij-

_bu_t in other cases one has to verify that this identity is sat- =By (837”) _ Eij(vzﬂ'j),
isfied [1]. Oxy Oxy,
Thus, assuming that thg are the field variables, we take ) ) )
as the Hamiltonian density hence, if there are no boundaries present,Aheare the in-
- . tegral operators
= ow e ey A
Ho Eij(A)) = — / L. (28)

which is obtained fromH, given in (17), substitutings dr ) |r—r/|

andp by the corresponding expressions in termg,cdnd;
(it may be noticed that{/, cannot be obtained from a La- Indeed, making use 0¥>

= —4xé(r — r’), from

— =
grangian density in the standard way). The functional derivas r— /|
tives of H], = [ M. dv are then Eq. (28) we have
SH! 0 s d _ . ( 0 ) 2 1 / (V2m) (') .
v = .n) = . Ei|+—V 71| =E;Vm;)=— dv
5?72 WPO 6337', \Y (v ’I’]) Ho 8372 \Y n, J axj ( J) An ‘I‘ — I'/|
where we have made use of Eqg. (3), and and integrating by parts twice
0H, 1 0 v
- = ‘T
o™, 1o 0x; E;; (8V . 7r> — i /Wi(r’)VQ 1 a’
- S , Ox; 47 v — /|
Substituting these derivatives into Eq. (12) wifl,z) writ-
ten as the block matrix _ /m(r’)6(r )y = — ()
(Dagp) = ( (Cu) - (Ey) > : (24)
(Fij)  (Gig) as required by Eq. (27).
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From Eg. (28) it follows that for any pair of vector fields, but

A andB,

/ BiE;(A;)dv = ﬁ / Bi(r) [ / lfi_(r2|dv’: dv
= %/Ai(r') [
ol 2

/Az‘Eij(Bj)dv = /AJ’EJ’i(Bi)dU

= Ej; and, sinceE;; =

v| dv’

v — /|

" dv

v — ']

therefore, E

El, = —Fj;, WhICh means that
D! =-Dgo=—Dga

—F;;, we have

o 0 1 _ 0 9 1
ozl Oz} [ — x| Oz}l Ozl [r'" — 1|
=-Vv" o ! i =4m(x" — 1)
and therefore
{o(r,t),p(x", 1)}, = o(r — 1), (30)

which agrees with Eq. (19).

4. Conclusions

as required in order for the Poisson bracket to be antisymmef.N® €xample considered here shows that despite the dif-

ric.
We now compute the Poisson bracket betweeand p

using the definition (13) with D,s) given by (24), with

Cij =0= Gij, Fij = 7Eij andEij given by Eq (28)

poyv [ bo(rt) p(r’,t)
{U(rvt)vp(rvt)}v/6nk(r//7t) kl(Sﬂ‘[(I‘”,f])

50’(1‘, t) 5p(1‘/, t) 1"
(', 1) By s (r, 1) dv” (29)

hence

(o0 )Y, = [ i =

9 5([,/ _ I‘/”)

"
i 8.Tk dv”l dUH
A |I‘” — I.///l

and integrating by parts both integrals we find that

foe,0), 007, 0¥, = 1

o 0 1
//6 '’ — I‘ I‘ - I‘/”) 8x;€’ 81}/// ‘I‘” _ ///|d v dv™

ference in the number of field variables employed to deal
with the acoustic field, we can obtain equivalent Hamilto-
nian structures. This example also illustrates the fact that the
Hamiltonian functional and the Poisson brackets can be cho-
sen in many wayscf. also Ref. 6). The Hamiltonian is in

all these cases a constant of the motion, but to the authors’
knowledge, it is not known if there exist additional condi-
tions for a constant of motion to be a Hamiltonian (with the
corresponding Poisson bracket satisfying the Jacobi identity).
As pointed out at the beginning of Sec. 3, when ihg; are
constants the Jacobi identity is always satisfied [1,2]. Since
the Poisson bracket constructed in Sec. 3 agrees with that de-
fined by Eqg. (18), which satisfies the Jacobi identity, it is to
be expected that it also satisfies this identity.

Finally, it should be remarked that it would be wrong to
talk aboutthe Lagrangian or Hamiltonian density of a given
system. If these densities are defined by the only condition
that they reproduce the equations of motion of the system in
question through the Euler—Lagrange equations or the Hamil-
ton equations, there may be many acceptable choices, which
may not have a direct physical meaning. Of course, with
any appropriate Lagrangian or Hamiltonian density the cor-
responding formalism must yield valid results (such as con-
servation laws).
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