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One-parameter isospectral special functions
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Using a combination of the ladder operators ofi@{1] and the parametric operators of Mielnik [2] we introduce second order linear
differential equations whose eigenfunctions are isospectral to the special functions of the mathematical physics and illustrate the method
with several key examples.
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Usando una combinamn de los operadores de escalera d@lPl] y de los operadores parametricos de Mielnik [2] introducimos operadores
lineales de segundo orden con eigenfunciones que son formas isoespectrales de las funciones espetsidasaigttatitica y presentamos
algunos ejemplosésicos.

Descriptores: Supersimeta; ecuadn de Riccati; operadores de Liouville.
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1. Introduction one can introduce a new Hamiltoni&h which is defined by

o the inverse factorization of (4):
The use of the factorization method [3] proved to be a pow-

erful tool for extending the class of exactly solvable Sturm-

Liouville problems especially in quantum mechanics, where -1 1 d o
in the form ofsupersymmetric quantum mechariasto new b*b=H — 3= H + SR ol e — )
potentials, which are isospectral to a given problem [4]. In a v+ [evdy
paper by Mielnik [2], the usual factorization operators 0
1 [d 1 d with new potential functions
= — _ R — _— 1
‘ ﬁ(dm”)’ ‘ \/5( dm”)’ M
of the one dimensional harmonic oscillator Hamiltonian 5 g2
2 1 Vi) =" d : (8)
1 1d 5 =% T | T
B = ™" s @ v+ [eray

have been replaced by new operators

1 d 1 d and whose eigenfunctions
b=—= ( + ﬁ(x)> , b=— (— + ﬁ(a:)) )
d d B
Ve v : Up =b"Yy1  (n=1,2,..) (9)

In order that these new ladder operators factorize the same
Hamiltonian (2 . . . . .
2) are isospectral to the harmonic oscillator eigenfunctions
1
bb*:aa*:H+§, 4
the function3(z) should satisfy a Riccati equation of the 5  E5xtorization of special functions
form '

B +32=1+2%. (5) The great majority of differential equations appearing in
physics can be factorized by means of ladder operators.
Using the solutions of this equation, Therefore, we should be able to apply the procedure de-
a2 scribed in the previous section to the raising and lowering

¢ (6)  operators of the important class of Sturm-Liouville problems

v+ fe,yzdy and get in this way isospectral second order differential equa-
0 tions. To attain this objective we proceed as follows.

Bla) =+
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One of the possible forms of factorizing a subclass of sec- P% bt e —at) =0 20
ond order differential operators associated to the special func- vP dx n b (@ —ay) ' (20)
tions of mathematical physics was introduced bfiePjl].  Equation (20) is a Riccati type equation, which can be easily
Consider the Sturm-Liouville problem solved to get

d? d N e9(@)
Lutbn() = | P(2) 75 + Q) g + Rul®) | da(a) (@) = — @)
V= —==dy
=0, (10) 0V P(y)

whereP, Q and R,, are functions of the variable, andR,, Here,d(z) is defined /l})y the indefinite integral

depend on the index. Then, it is possible to construct rais- 7 (0 (y) — a1 (v))
5(z) = / n n

i i dy, 22
ing and lowering operators [1] ) Yy (22)
At = \/fai +af, A= — \/ﬁi +a; (11) and~y is an integration constantz, may be chosen as the
" dx " " dx " point where the integrand vanishes. B
that can factorize Eq.(10) in two ways: Similarly to Mielnik's new Hamiltonian//, we now in-
B troduce the second order differential operafior(x) given
A, Al =L+ Ky, (12) by
A:;A:H_l = En—H + Kn ) (13) ~ — db;r

£n+1 = BIBn_;.l - Kn = £71,+1 - 2\/F (23)

. . i dzr
where the constarit’,, is the same in both factorizations. Fur- ) ~ o .
thermore, the functions;!, a;,. ,, turn out to be That is, the new operatat,, differs from £,, by the deriva-
’ m ' Yn 1

tive of the solution of the Riccati equation (20), in the same

3 1l Q d way as Mielnik’'s HamiltonianH differs from the harmonic
Unt1 = 5 ﬁ - @\/ﬁ +cn oscillator HamiltonianH, as can be seen in Eq.(7).
If we now define the functions
1 0 — np+ _
+ 7P(R’n+1 —Rn)dx , (14) ¢n+1 :Bn ’(/)n7 n = 0,1,2,... 5 (24)
wherey,, are the eigenfunctions af,,, we can see that
at = 1 i _ i\/ﬁ_ c Zn-i-lqzn-&-l = (BrTB;+1 - K") B:wn
o2 d "
VP de — B Lo, = 0. (25)

(15) Therefore, thes&n are the eigenfunctions for the new oper-
) ~ . . .
ator £,,, and we can write the eigenvalue equation

1
7/ﬁ(Rn+1 — Rn)d(L'

wherec, is an integration constant. From Eq.(12), one may B:B;H{/L,,H = (En+1 + Kn> YVpt1 = Kn{,/;nH . (26)
consider the constartif,, as the eigenvalue corresponding to
the eigenfunction),, for the operatord, | A},

Let us now define new operatol;, B, ; by

As can be seen from Eq.(21), we have constructed a one
paramenter family of operators, (z; ) which are “isospec-
tral” to the original Sturm-Liouville operatoL,, (z), for

Bf = Al + b, the allowed values of the parameterthat produce a non-
B o divergent functiorb,’ (z).
By =4, +b, (16) As we can seeB;, B, ., are not ladder operators as

_ o Toa- . ; .
and demand that they can also factorize the Sturm-Liouvillé®A4n » 4,1 However, one can easily verify that the third

operator’,, (z) as order operators,

+ — p+t gt -
. . . . Coy1 = BI—1A;B7:+D (28)
Then, the following relationship should be fulfilled:
N play the role of raising and lowering operators, respectively,
NG (bjd + bEHd) + \/p% +btay,, for the functiong),, (x). The use of ladder operators of order
dz dz dz higher than two is not easy to find in the literature, but some
+p- brh=. . —0. (18 work in this direction has already been reported [5].
00 P F On Pt (18) SinceB, , ,, and therefore”, , ,, is not defined fon =0,
Therefore, the functions’, b, , must satisfy the space defined by the eigenfunctianslack the element
B N with n = 0, similarly to what happens in SUSY factoriza-
n+1 — —by, 19) tion [4].
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3. Examples

Here, we proceed to find the new operaﬁmx; ) and their
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3.2. Laguerre polynomials

For the Laguerre differential equation

eigenfunctions, from the factorizations of the special func-

tions of mathematical physics.

3.1. Hermite polynomials
The Hermite differential equation

2
CHu(z) 2x7dHn(x) +2nH,(x) =0

29
dx? dx (29)

has raising and lowering differential operators given by

d
(dw - 2x) Ho(2) = —Hys1, (30)
d
%Hn+1(.’1:) =2(n+1)H,(z) . (31)
In this case, thé-integral in Eq.(22) is
§= /(—Qy)dy = —2?,
and therefore
b= — . (32)
v [evidy
0

The integrand in the denominator being positive definite, one

should impose the conditidry| > /7 /2 [2] in order to have
a well-defined operator.
Now, with the use of Eq.(20) one gets

2
2 2

v — [evdy
0

i _[ e
dx v— [evdy
0

and therefore, the second order differential operator

- 2 4 z?
Lopi(@y) = —— — 20— 420 ——
dx? d _
v— [evidy
0
2672w2
— - 5 (34)
(=)
0
has parametric eigenfunctions given by
71;2
Hyy1(w37) = —Hnya (@) + Hy(z) . (35)

dLS ()

2La
.f2 d n (CC)

T2 + [(a 4 1)z — 27

+ nz L (x)
=0, (36)

the raising and lowering operators are

(xjx +a+n+1- ;v) Ly(z)=(m+1)Ly (x),
(37)

(Ic(lix —n— 1) Ly i (x) =—(a+n+1)L5(x). (38)

Theé-integral is

xT

2 1) —
5 / a+2(n+1) Yy = Inzlor2+0l 5 (39)
Yy

and hence

xa+2n+267$

by = (40)

z
v — fy(a+2n+l)efydy
0

Forx > 0, the integral in the denominator is positive definite,

with maximum value
/ yler2 e vdy =T (o + 2n + 2),
0

and, since there is no upper limit for increasimgwe must
havey < 0.
The second order differential operator

- 2

Lny1(w;7) = 552% + [(a+ )z —2?] c%s +nz

+2[1: — (a4 2n + 2)|gotintle—®

x
v = [yetntlevdy
0

2x20¢+4n+2e—23¢

- - 5 (41)
(,7 _ fya+2n+1e—ydy)
0
has as parametric eigenfunctions
Ly (zy) = (n+ 1)Ly (z)+
a+2n+2 , —x
v ¢ Lo, (42)

z
o fya+2n+lefydy
0
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3.3. Legendre polynomials

The Legendre differential equation

d*P,(z)
e

dP,(z)
dz
—n(n+1)(z% = 1)P,(z) =0

has the raising and lowering operators

+2x(2® — 1)

(43)

[(xQ — 1)% + (n + 1)x] Po(x) =(n + 1)Puy1(z), (44)
|:(I’2 — 1)% —(n+ 1)x] Poi1(z)
=—(n+1)P,(x). (45)
Thed-integral is in this case
§=—-2(n+ 1)/ . _yyz dy =In(1 —2?)" T (46)
hence
b+ _ (1 - $2)n+1 (47)

y— [ (1 —y?)ndy

—1
The integral in the denominator is positive definite, which,
for a givenn, has maximum value
+1 /2
/(1 —2%)"dx =2 / sin?" 1 g df =
-1 0
and, thereforely| > 2.
Hence, the second order differential operator

d

2(2n)!
2n+ )N

Lpy1(z;7) = (
4(n+1)(1 —2z?)n+t

x

v - :/;(1 — y?)ndy

2(1 _ z2)2n+2

+n(n+1)(1 — 2?) +

- - 5 (48)
(v - J (= yz)"dy>
-1
has as parametric eigenfunctions
P (37) = —(n + 1) Py (2)
_ e2\n+1
U ). @)
v [ (L —yH)ndy
—1

3.4. Chebyshev polynomials

For the Chebyshev differential equation

d*T, () dT,(x)

o228 e\ _ 22t
(1—z%) U2 z(1—27) .

+n?(1 — 2®)T,(x) =0, (50)

361

the corresponding raising and lowering operators are

[(1 — xQ)% - nx} Tn(z) = —nTpy1(z),  (51)
[(1 — xz)% +(n+ 1)4 Tpi1(2)

= (n+1)Tp(z). (52)

In this case, thé-integral is

5=—(2n+1)] Y

1—192

dy — <n + ;) In(1 —22) (53)

and, hence

1

(1 —2?)ntz

v— [l -y zdy
1

b (54)

The integral in the denominator has maximum value

1 /2

2n — 1)
/(17m2)”7%d:c:2/sin2"9d0:7ﬂ( n— i
(2n)!!
0

-1

which imposes the condition > .

We can thus construct the second order differential oper-
ator
d2

dx? -7

2(2n + 1)x(1 — 22)"tz

Lpii(z;y) = (1 —2?) +n?(1 — 2?)

(-2

dx

2(1 _ x2)2n+1

=

with the parametric eigenfunctions

(55)

v— [ -y zdy
21

PR
(1 —y2)"5dy>

Tht1 ($§ v) = -—nTh1 (.1‘)

1—22)nts
L -

To(z).  (56)

T
v— [(1—y2)"2dy

-1

3.5. Jacobi polynomials

The differential equation defining the Jacobi polynomials

PP (@)
(1-a?)? =2 4 (1=a?)[f—a— (a+5+2)]
. dpiigi(x) ++(1 = a)n(n+a+ B+ 1) P (@)
_o, (57)
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has raising and lowering operators given by

{(1x2)jm+(n+l+a+ﬂ) (x+ﬂ_aﬂ P2f(z) = 72(n+1)(n+1+a+5)P§fl(x), (58)

2n+24+a+ 0 2n+24+a+ 0
d f—a 2(n+14+a)(n+1+p)
1-— PAN 1 - Paﬁ = Paﬁ . 59
(=)Lt Dt B Py (o) = X DO D proy - (s)
In this case, we have I
P—qy 1 1 1 (a+p) (] — 2)3(a—p)
6:/1_y2dy:§<q+p>1n<1+x>+§<q—p>1n<1—x>, S O ) kil G . (60)
v— [+ y)é(qup)fl(l _ y)%(qu)fldy
where -1
7 9 For the parametey, sinceq > p, we demand that
—
P=o—T %5 3 g=2n+2+a+4. .
2n+2+a+p
v > /(1 + )z @)= — gyl gy
Hence I 7 _ 2q—1r(%)r(%).
I'(q)
From here, we construct the second order differential operator
~ 2\2 d2 2 d 2
Loni(win) = (1=a®)? 5 + (1 =2”) [ —a— (a+B+2)a] = + (1 —a)n(n+a+ 5+ 1)+
2(gz = p)(1 +2)b D1 —a)}lar) 21+ @) (1 — )7~
- - ;. (61)

2
N = [(1+y)2@tn) =11 — y)zla-r)—1gy (7 _ f (14 y)3latn)=1(1 = y);(q—p)—ldy>

—1
-1

whose parametric eigenfunctions are
2n+1)(n+1+a+p)

P (57) = — Py
n+1($a’Y) Mm+2+a+p n+1($) .
(14a)2@tP) (1—g)2(a-P) b = v = 2n (66)
— n x n
+ _ pgﬁ(x). (62) N f y—@nt+1) gy yx2ntl g
v— [ (I4y) @1 (1—y)z(aP)~1gy o

-1
with v = 2ny’ > 0.

From here, we can construct a second order differential
For the Bessel differential equation operator defined by

d*J,(z)  1dJ,(z) n?

3.6. Bessel functions

1——)Ju(x)=0, (63) ~ 2 1d 1)2
dx? x dx ( x }n(2) £n+1(x;7)zcl2+d+(1_m+2)>
the raising and lowering operators are * rax x
dn + dny(2n + 1)x?n 1
d n 67
(d:p - x) In(x) = =Jns1(2) (64) + (yz2n+1 4 ) (67
d n+1 whose parametric eigenfunctions are given by
(dx + ) Iny1(x) = Jn(2) (65)
~ 2n
The-integral is found to be In1(z;7) = = Jnga(2) + mjn(f) . (68)
n n—+ 1 _(2 +1) . . . .
o= - = dy =Inz= " Hence, in the case of Bessel functions the new eigenfunctions
Yy Yy Jn+1(;) are not regular at =0, except in the case=0,
and therefore for which £,,41(z;v) = Lp—1 andJ, 11 (x;y) = Jo—1 ().
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4. Conclusion Mielnik type that allowed us to construct isospectral Sturm-

Liouville second-order linear differential operators with para-
We elaborated here on a combination of a class of Sturmmetric eigenfunctions. Calculations are worked out for a few
Liouville ladder operators and one-parameter operators dmportant cases.
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