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One-parameter isospectral special functions
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Using a combination of the ladder operators of Piña [1] and the parametric operators of Mielnik [2] we introduce second order linear
differential equations whose eigenfunctions are isospectral to the special functions of the mathematical physics and illustrate the method
with several key examples.
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Usando una combinación de los operadores de escalera de Piña [1] y de los operadores parametricos de Mielnik [2] introducimos operadores
lineales de segundo orden con eigenfunciones que son formas isoespectrales de las funciones especiales de la fı́sica mateḿatica y presentamos
algunos ejemplos b́asicos.
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1. Introduction

The use of the factorization method [3] proved to be a pow-
erful tool for extending the class of exactly solvable Sturm-
Liouville problems especially in quantum mechanics, where
in the form ofsupersymmetric quantum mechanicsled to new
potentials, which are isospectral to a given problem [4]. In a
paper by Mielnik [2], the usual factorization operators

a =
1√
2

(
d

dx
+ x

)
, a∗ =

1√
2

(
− d

dx
+ x

)
, (1)

of the one dimensional harmonic oscillator Hamiltonian

H +
1
2

= −1
2

d2

dx2
+

1
2
x2 +

1
2

(2)

have been replaced by new operators

b=
1√
2

(
d

dx
+ β(x)

)
, b∗=

1√
2

(
− d

dx
+ β(x)

)
. (3)

In order that these new ladder operators factorize the same
Hamiltonian (2)

bb∗ = aa∗ = H +
1
2
, (4)

the functionβ(x) should satisfy a Riccati equation of the
form

β′ + β2 = 1 + x2 . (5)

Using the solutions of this equation,

β(x) = x +
e−x2

γ +
x∫
0

e−y2dy

, (6)

one can introduce a new HamiltoniañH, which is defined by
the inverse factorization of (4):

b∗b = H̃ − 1
2

= H +
1
2
− 1− d

dx




e−x2

γ +
x∫
0

e−y2dy


 (7)

with new potential functions

Ṽ (x) =
x2

2
− d

dx




e−x2

γ +
x∫
0

e−y2dy


 (8)

and whose eigenfunctions

ψ̃n = b∗ψn−1 (n = 1, 2, ...) (9)

are isospectral to the harmonic oscillator eigenfunctionsψn.

2. Factorization of special functions

The great majority of differential equations appearing in
physics can be factorized by means of ladder operators.
Therefore, we should be able to apply the procedure de-
scribed in the previous section to the raising and lowering
operators of the important class of Sturm-Liouville problems
and get in this way isospectral second order differential equa-
tions. To attain this objective we proceed as follows.
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One of the possible forms of factorizing a subclass of sec-
ond order differential operators associated to the special func-
tions of mathematical physics was introduced by Piña [1].
Consider the Sturm-Liouville problem

Lnψn(x) ≡
[
P (x)

d2

dx2
+ Q(x)

d

dx
+ Rn(x)

]
ψn(x)

= 0, (10)

whereP , Q andRn are functions of the variablex, andRn

depend on the indexn. Then, it is possible to construct rais-
ing and lowering operators [1]

A+
n =

√
P

d

dx
+ a+

n , A−n =
√

P
d

dx
+ a−n (11)

that can factorize Eq.(10) in two ways:

A−n+1A
+
n = Ln + Kn, (12)

A+
n A−n+1 = Ln+1 + Kn , (13)

where the constantKn is the same in both factorizations. Fur-
thermore, the functionsa+

n , a−n+1, turn out to be

a−n+1 =
1
2

[
Q√
P
− d

dx

√
P + cn

+
∫

1√
P

(Rn+1 −Rn)dx

]
, (14)

a+
n =

1
2

[
Q√
P
− d

dx

√
P − cn

−
∫

1√
P

(Rn+1 −Rn)dx

]
, (15)

wherecn is an integration constant. From Eq.(12), one may
consider the constantKn as the eigenvalue corresponding to
the eigenfunctionψn for the operatorA−n+1A

+
n .

Let us now define new operatorsB+
n , B−

n+1 by

B+
n = A+

n + b+
n ,

B−
n = A−n + b−n , (16)

and demand that they can also factorize the Sturm-Liouville
operatorLn(x) as

B−
n+1B

+
n = A−n+1A

+
n = Ln(x) + Kn . (17)

Then, the following relationship should be fulfilled:

√
P

(
b+
n

d

dx
+ b−n+1

d

dx

)
+
√

P
db+

n

dx
+ b+

n a−n+1

+ a+
n b−n+1 + b+

n b−n+1 = 0 . (18)

Therefore, the functionsb+
n , b−n+1 must satisfy

b−n+1 = −b+
n , (19)

√
P

db+
n

dx
− b+

n
2 + b+

n (a−n+1 − a+
n ) = 0 . (20)

Equation (20) is a Riccati type equation, which can be easily
solved to get

b+
n (x) =

eδ(x)

γ −
x∫

x0

eδ(y)

√
P (y)

dy

. (21)

Here,δ(x) is defined by the indefinite integral

δ(x) ≡
x∫

(a+
n (y)− a−n+1(y))√

P (y)
dy, (22)

andγ is an integration constant.x0 may be chosen as the
point where the integrand vanishes.

Similarly to Mielnik’s new HamiltonianH̃, we now in-
troduce the second order differential operatorL̃n(x) given
by

L̃n+1 = B+
n B−

n+1 −Kn = Ln+1 − 2
√

P
db+

n

dx
. (23)

That is, the new operator̃Ln differs fromLn by the deriva-
tive of the solution of the Riccati equation (20), in the same
way as Mielnik’s HamiltonianH̃ differs from the harmonic
oscillator HamiltonianH, as can be seen in Eq.(7).

If we now define the functions

ψ̃n+1 ≡ B+
n ψn, n = 0, 1, 2, . . . , (24)

whereψn are the eigenfunctions ofLn, we can see that

L̃n+1ψ̃n+1 =
(
B+

n B−
n+1 −Kn

)
B+

n ψn

= B+
n Lnψn = 0. (25)

Therefore, thesẽψn are the eigenfunctions for the new oper-
atorL̃n, and we can write the eigenvalue equation

B+
n B−

n+1ψ̃n+1 =
(
L̃n+1 + Kn

)
ψn+1 = Knψ̃n+1 . (26)

As can be seen from Eq.(21), we have constructed a one
paramenter family of operators̃Ln(x; γ) which are “isospec-
tral” to the original Sturm-Liouville operatorLn(x), for
the allowed values of the parameterγ that produce a non-
divergent functionb+

n (x).
As we can see,B+

n , B−
n+1 are not ladder operators as

areA+
n , A−n+1. However, one can easily verify that the third

order operators,

C+
n ≡ B+

n A+
n−1B

−
n , (27)

C−n+1 ≡ B+
n−1A

−
n B−

n+1, (28)

play the role of raising and lowering operators, respectively,
for the functionsψ̃n(x). The use of ladder operators of order
higher than two is not easy to find in the literature, but some
work in this direction has already been reported [5].

SinceB−
n+1, and thereforeC−n+1, is not defined forn=0,

the space defined by the eigenfunctionsψ̃n lack the element
with n = 0, similarly to what happens in SUSY factoriza-
tion [4].
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3. Examples

Here, we proceed to find the new operatorsL̃n(x; γ) and their
eigenfunctions, from the factorizations of the special func-
tions of mathematical physics.

3.1. Hermite polynomials

The Hermite differential equation

d2Hn(x)
dx2

− 2x
dHn(x)

dx
+ 2nHn(x) = 0 (29)

has raising and lowering differential operators given by
(

d

dx
− 2x

)
Hn(x) = −Hn+1, (30)

d

dx
Hn+1(x) = 2(n + 1)Hn(x) . (31)

In this case, theδ-integral in Eq.(22) is

δ =

x∫
(−2y)dy = −x2,

and therefore

b+
n =

e−x2

γ −
x∫
0

e−y2dy

. (32)

The integrand in the denominator being positive definite, one
should impose the condition|γ| > √

π/2 [2] in order to have
a well-defined operator.

Now, with the use of Eq.(20) one gets

db+
n

dx
=




e−x2

γ −
x∫
0

e−y2dy




2

− 2xe−x2

γ −
x∫
0

e−y2dy

, (33)

and therefore, the second order differential operator

L̃n+1(x; γ) =
d2

dx2
− 2x

d

dx
+ 2n +

4xe−x2

γ −
x∫
0

e−y2dy

− 2e−2x2

(
γ −

x∫
0

e−y2dy

)2 (34)

has parametric eigenfunctions given by

H̃n+1(x; γ) = −Hn+1(x) +
e−x2

γ −
x∫
0

e−y2dy

Hn(x) . (35)

3.2. Laguerre polynomials

For the Laguerre differential equation

x2 d2Lα
n(x)

dx2
+ [(α + 1)x− x2]

dLα
n(x)
dx

+ nxLα
n(x)

= 0 , (36)

the raising and lowering operators are

(
x

d

dx
+ α + n + 1− x

)
Lα

n(x) = (n + 1)Lα
n+1(x),

(37)

(
x

d

dx
− n− 1

)
Lα

n+1(x) = −(α + n + 1)Lα
n(x) . (38)

Theδ-integral is

δ =

x∫
α + 2(n + 1)− y

y
dy = ln x[α+2(n+1)] − x, (39)

and hence

b+
n =

xα+2n+2e−x

γ −
x∫
0

y(α+2n+1)e−ydy

. (40)

Forx > 0, the integral in the denominator is positive definite,
with maximum value

∞∫

0

y(α+2n+1)e−ydy = Γ(α + 2n + 2),

and, since there is no upper limit for increasingn, we must
haveγ < 0.

The second order differential operator

L̃n+1(x; γ) = x2 d2

dx2
+

[
(α + 1)x− x2

] d

dx
+ nx

+
2[x− (α + 2n + 2)]xα+2n+1e−x

γ −
x∫
0

yα+2n+1e−ydy

− 2x2α+4n+2e−2x

(
γ −

x∫
0

yα+2n+1e−ydy

)2 (41)

has as parametric eigenfunctions

L̃α
n+1(x; γ) = (n + 1)Lα

n+1(x)+

xα+2n+2e−x

γ −
x∫
0

yα+2n+1e−ydy

Lα
n . (42)
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3.3. Legendre polynomials

The Legendre differential equation

(x2 − 1)2
d2Pn(x)

dx2
+ 2x(x2 − 1)

dPn(x)
dx

−n(n + 1)(x2 − 1)Pn(x) = 0 (43)

has the raising and lowering operators[
(x2 − 1)

d

dx
+ (n + 1)x

]
Pn(x) =(n + 1)Pn+1(x), (44)

[
(x2 − 1)

d

dx
− (n + 1)x

]
Pn+1(x)

=−(n + 1)Pn(x). (45)

Theδ-integral is in this case

δ = −2(n + 1)

x∫
y

1− y2
dy = ln(1− x2)n+1, (46)

hence

b+
n =

(1− x2)n+1

γ −
x∫
−1

(1− y2)ndy

. (47)

The integral in the denominator is positive definite, which,
for a givenn, has maximum value

+1∫

−1

(1− x2)ndx = 2

π/2∫

0

sin2n+1 θ dθ =
2(2n)!!

(2n + 1)!!

and, therefore,|γ| > 2.
Hence, the second order differential operator

L̃n+1(x; γ) = (1− x2)
d2

dx2
− 2x

(
1− x2

) d

dx

+n(n + 1)(1− x2) +
4(n + 1)(1− x2)n+1

γ −
x∫
−1

(1− y2)ndy

− 2(1− x2)2n+2

(
γ −

x∫
−1

(1− y2)ndy

)2 (48)

has as parametric eigenfunctions

P̃n+1(x; γ) = −(n + 1)Pn+1(x)

+
(1− x2)n+1

γ −
x∫
−1

(1− y2)ndy

Pn(x) . (49)

3.4. Chebyshev polynomials

For the Chebyshev differential equation

(1− x2)2
d2Tn(x)

dx2
− x(1− x2)

dTn(x)
dx

+n2(1− x2)Tn(x) = 0 , (50)

the corresponding raising and lowering operators are

[
(1− x2)

d

dx
− nx

]
Tn(x) = −nTn+1(x), (51)

[
(1− x2)

d

dx
+ (n + 1)x

]
Tn+1(x)

= (n + 1)Tn(x). (52)

In this case, theδ-integral is

δ = −(2n + 1)

x∫
y

1− y2
dy =

(
n +

1
2

)
ln(1− x2) (53)

and, hence

b+
n =

(1− x2)n+ 1
2

γ −
x∫
1

(1− y2)n− 1
2 dy

. (54)

The integral in the denominator has maximum value

1∫

−1

(1− x2)n− 1
2 dx = 2

π/2∫

0

sin2n θdθ =
π(2n− 1)!!

(2n)!!
,

which imposes the conditionγ > π.
We can thus construct the second order differential oper-

ator

L̃n+1(x; γ) = (1− x2)
d2

dx2
− x

(
1− x2

) d

dx
+ n2(1− x2)

+
2(2n + 1)x(1− x2)n+ 1

2

γ −
x∫
−1

(1− y2)n− 1
2 dy

− 2(1− x2)2n+1

(
γ −

x∫
−1

(1− y2)n− 1
2 dy

)2 , (55)

with the parametric eigenfunctions

T̃n+1(x; γ) = −nTn+1(x)

+
(1− x2)n+ 1

2

γ −
x∫
−1

(1− y2)n− 1
2 dy

Tn(x) . (56)

3.5. Jacobi polynomials

The differential equation defining the Jacobi polynomials

(1− x2)2
d2Pαβ

n (x)
dx2

+ (1− x2)[β − α− (α + β + 2)x]

× dPαβ
n (x)
dx

+ +(1− x2)n(n + α + β + 1)Pαβ
n (x)

= 0, (57)
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has raising and lowering operators given by
[
(1− x2)

d

dx
+ (n + 1 + α + β)

(
−x +

β − α

2n + 2 + α + β

)]
Pαβ

n (x) = −2(n + 1)(n + 1 + α + β)
2n + 2 + α + β

Pαβ
n+1(x), (58)

[
(1− x2)

d

dx
+ (n + 1)(x +

β − α

2n + 2 + α + β
)
]

Pαβ
n+1(x) =

2(n + 1 + α)(n + 1 + β)
2n + 2 + α + β

Pαβ
n (x) . (59)

In this case, we have

δ =

x∫
p− qy

1− y2
dy =

1
2
(q+p) ln(1+x)+

1
2
(q−p) ln(1−x) ,

where

p =
β2 − α2

2n + 2 + α + β
, q = 2n + 2 + α + β .

Hence

b+
n =

(1 + x)
1
2 (q+p)(1− x)

1
2 (q−p)

γ −
x∫
−1

(1 + y)
1
2 (q+p)−1(1− y)

1
2 (q−p)−1dy

. (60)

For the parameterγ, sinceq > p, we demand that

γ >

1∫

−1

(1 + x)
1
2 (q+p)−1(1− x)

1
2 (q−p)−1dx

= 2q−1 Γ( q+p
2 )Γ( q−p

2 )
Γ(q)

.

From here, we construct the second order differential operator

L̃n+1(x; γ) = (1− x2)2
d2

dx2
+ (1− x2) [β − α− (α + β + 2)x]

d

dx
+ (1− x2)n(n + α + β + 1)+

2(qx− p)(1 + x)
1
2 (q+p)(1− x)

1
2 (q−p)

γ −
x∫
−1

(1 + y)
1
2 (q+p)−1(1− y)

1
2 (q−p)−1dy

− 2(1 + x)q+p(1− x)q−p

(
γ −

x∫
−1

(1 + y)
1
2 (q+p)−1(1− y)

1
2 (q−p)−1dy

)2 , (61)

whose parametric eigenfunctions are

P̃αβ
n+1(x; γ) = −2(n + 1)(n + 1 + α + β)

2n + 2 + α + β
Pαβ

n+1(x)

+
(1+x)

1
2 (q+p)(1−x)

1
2 (q−p)

γ−
x∫
−1

(1+y)
1
2 (q+p)−1(1−y)

1
2 (q−p)−1dy

Pαβ
n (x). (62)

3.6. Bessel functions

For the Bessel differential equation

d2Jn(x)
dx2

+
1
x

dJn(x)
dx

+ (1− n2

x2
)Jn(x) = 0 , (63)

the raising and lowering operators are
(

d

dx
− n

x

)
Jn(x) = −Jn+1(x) (64)

(
d

dx
+

n + 1
x

)
Jn+1(x) = Jn(x) . (65)

Theδ-integral is found to be

δ =

x∫ (
−n

y
− n + 1

y

)
dy = ln x−(2n+1) ,

and therefore

b+
n =

x−(2n+1)

γ′ −
x∫
∞

y−(2n+1)dy

=
2n

γx2n+1 + x
(66)

with γ = 2nγ′ ≥ 0.

From here, we can construct a second order differential
operator defined by

L̃n+1(x; γ) =
d2

dx2
+

1
x

d

dx
+

(
1− (n + 1)2

x2

)

+
4n + 4nγ(2n + 1)x2n−1

(γx2n+1 + x)2
, (67)

whose parametric eigenfunctions are given by

J̃n+1(x; γ) = −Jn+1(x) +
2n

γx2n+1 + x
Jn(x) . (68)

Hence, in the case of Bessel functions the new eigenfunctions
J̃n+1(x; γ) are not regular atx=0, except in the caseγ =0,
for which L̃n+1(x; γ) = Ln−1 andJ̃n+1(x; γ) = Jn−1(x).
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4. Conclusion

We elaborated here on a combination of a class of Sturm-
Liouville ladder operators and one-parameter operators of

Mielnik type that allowed us to construct isospectral Sturm-
Liouville second-order linear differential operators with para-
metric eigenfunctions. Calculations are worked out for a few
important cases.
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