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Generally speaking, the process of student evaluation is based on a procedure where we assume that the student belongs just to one set in a
completely specified way, for example the set of excellent students, or the set of regular students. In this paper we use fuzzy sets concepts just
to propose a different procedure which can be useful to manage the student’s performance in a variation of a computerized adaptive testing
administration process. This can be made by assuming that, for a given student, a membership functionµA is assigned. This membership
function gives the membership degree of the student to the fuzzy setA, which can be the set of excellent students, or the set of regular
students, or the set of poor performance students. Furthermore, we assume that the item bank contains items belonging, with certain degree,
to fuzzy sets describing the complexity of the given items. For example, we can talk about the fuzzy set of difficult questions or the fuzzy
set of easy questions. By considering the evaluation process as a problem in the field of control theory, we establish a proper metaphor with
a very simple, and very well studied, physical system with behavior described by variables such as the position, velocity and acceleration.
Based in this model, we propose fuzzy rules just to control the item administration process as a function of the ability of the student and the
item complexity.

Keywords: Fuzzy set; computer adaptive testing; testing administration; student performance.

Generalmente hablando, el proceso de evaluación estudiantil se basa en un procedimiento donde se supone que el estudiante pertenece a
un conjunto de una manera completamente especificada; por ejemplo al conjunto de estudiantes excelentes o al conjunto de estudiantes
regulares. En este trabajo utilizamos conceptos de lógica difusa con el objeto de proponer un procedimiento diferente que seaútil para admi-
nistrar el desempeño estudiantil en la evaluación de un t́opico perteneciente a algún área de conocimiento, es decir, como una variante de los
métodos tradicionalmente usados para realizar evaluación adaptativa computarizada. Esto se puede lograr suponiendo que a un estudiante
se le asigna un grado de pertenencia a un conjuntoA a trav́es de la correspodiente función de membresı́a µA. Esta funcíon de membresı́a
proporciona el grado de pertenencia del estudiante al conjuntoA, el cual puede representar al conjunto de los estudiantes excelentes o al
conjunto de estudiantes regulares o al conjunto de estudiantes deficientes. Además, suponemos que el banco de preguntas contieneı́tems que
pertenecen, con cierto grado, a conjuntos difusos que describen la complejidad de los mismos. Por ejemplo, podemos hablar del conjunto
difuso de preguntas difı́ciles, o del conjunto difuso de preguntas fáciles. Considerando el proceso de evaluación como un problema de teorı́a
de control, establecemos una metáfora apropiada con un sistema fı́sico simple y bastante estudiado, cuyo comportamiento es descrito por
variables tales como la posición, la velocidad y la aceleración. Basados en este modelo fı́sico, proponemos reglas difusas sencillas para
controlar el proceso de administración de preguntas como una función de la habilidad del estudiante y de la complejidad delı́tem.

Descriptores: Conjunto difuso; evaluación adaptativa computarizada; administración de evaluación; desempẽno del estudiante.

PACS: 01.40.Fk; 01.40.Gm; 01.50.Kw

1. Introduction

The item administration in computerized adaptive testing is
traditionally based on random selection or on item response
theory (IRT) which, at the same time, is based on statisti-
cal and probabilistic aspects [1](see Appendix B). The major
questions in item administration process are how to start, how
to continue, and how to finish the evaluation process [2]. The
usual way of starting the evaluation process is through an es-
timate of the student’s ability, which can be useful to select
the proper complexity of the starting question. However, by
doing so, it requires a previous knowledge of the estimate
based on earlier performance of the student itself. In some
cases, these previous data cannot be available.

One alternative way of solving this problem consists in
giving to the student itself the chance of selecting the start-
ing question and, therefore, of deciding what her/his level of
knowledge is, leaving the problem of deciding what the ac-

tual level is to the item administration procedure, which is
going to be described later on.

First of all, to solve a question with certain complexity
(membership degree to some fuzzy set?) requires to define
what we understand bycomplexity. There does exist a very
common criterion to establish the difficulty degree of one
item and it is based on timing aspects; in other words, if the
solution requires a time long enough, then we can expect to
assign to such a question a bigger complexity (there are other
ways of assigning degrees of complexity to an item such as,
for example, the number of previous topics that are required
to find its corresponding solution). In the next sections this
is what we will understand by item complexity. Therefore,
in what follows, we will assume that there is an item bank
where timing complexities have been assigned previously by
some item administrator.

On the other hand, by considering the time of solution as
a criterion to establish the complexity of one item, we are in-
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directly introducing some restrictions in the time to find one
solution to every item in the evaluation. In this sense, there
exists a strong contrast with traditional CAT evaluation pro-
cess, where the time of evaluation does not play a main rôle
at all. In the next sections we will see that this assumption is
an important one in the definition of the fuzzy procedure for
item administration.

2. Item and its membership functions

Assume that we have an item bankR with scheme
(R1(X1), R2(X2), . . . , Rn(Xn)), whereRi(Xi) is a re-
lation scheme with attributesXi, which represents a topic
or subjecti. Every relation inR contains different items,
each related to different fields of knowledge. To simplify the
analysis, we will assume thatR contains questions withhigh
degree of complexityand questions withlow degree of com-
plexity. In this way, we can define two fuzzy sets (see ap-
pendix A)H andE corresponding, respectively, to the set of
questions with high degree of complexity and low degree of
complexity.

As we said before in Sec. 1, this complexity degree is
given by the time required to solve the problem. Perhaps,
the number giving this complexity degree can be obtained
through an statistical analysis of time solutions given by dif-
ferent experts, following what is calledhorizontal method,
although several different procedures do exist, namely: verti-
cal, comparison, inference, parametric estimation, and fuzzy
clustering [3].

For example, in the horizontal technique, which is purely
experimental, some elements of the universe of discourse of
one conceptA are selected, sayx1, x2, . . . , xn, and a group
of experts is questioned about the compatibility ofxi with
the conceptA. In our case,xi can represent the time for find-
ing an item’s solution andA the fuzzy set of difficult items.
The expert’s answer takes only the values yes or no. The es-
timated value of the membership function inxi is taken as
the quotient of positives answers (yes)P (xi) and the total of
experts questioned,

µA(xi) =
P (xi)

N
,

wherei = 1, . . . , N .
Going back to our main concern, ifµH denotes the mem-

bership function of difficult questions, then we should expect
that time solutions equal to zero correspond to easy questions
and, therefore, that

lim
t→0

µH(t = 0) = 0,

wheret is the time required to solve the problem or item. On
the other hand, very long time solutions imply very difficult
questions and we should expect that

lim
t→∞

µH(t) = 1.

The simplest way of defining the membership function
µE of the set of easy questions is through the formula

µE(t) = 1− µH(t),

where we see that

lim
t→0

µE(t) = 1,

and
lim

t→∞
µE(t) = 0,

which mean that items with very short time solutions com-
pletely belong to the set of easy questions, while items with
very long time solutions does not belong at all to the set of
easy questions, as we should expect. The following is an ex-
ample of functionµH(t):

µH(t) = max {0, tanh(α(t− t0))} ,

whereα and t0 are positive constants, although more com-
mon membership functions, such as triangular and trapezoid,
will be used in the next sections. In any case, the common
sense and the experience dictate the shape of the membership
functions [4].

3. Student and its membership functions

With the intention of simplifying the analysis, and based on
the experience and common sense, we assume that an student
may have poor, regular or excellent performance. Further-
more, these adjectives let us to identify the respective fuzzy
set with the lettersP , R, andB. It could be a finer partition,
but this one is enough for our purposes. In the same way
as we have assigned a membership function to every set of
types of complexity, we can assign membership functions to
the setsP , R, andB, which will be denoted asµP , µR and
µB , respectively.

We have seen that time is the independent variable to
compute the degree of membership in item complexity, how-
ever we require to define a different independent variable to
compute the degree of membership in the sets of student per-
formance. In this case, we will assume that the student per-
formance is given by a grading scale, where the lower and
upper ends of the scale correspond to poor performance and
excellent performance, respectively. For example, the scale
can be graded from 0 to 10 points or from 0 to 100 points.

At this stage of the discussion, we need to make clear
that, at the start of the evaluation process, the examined stu-
dent is who initially decides the membership degree to every
fuzzy setP , R andB, and that the subsequent decisions are
determined by the adaptive testing itself. The membership
functions of the fuzzy sets related to the complexity of the
item and to the class of students are very important in taking
these subsequent decisions. The idea of all of it consists in
going through proper modifications of the starting member-
ship degree of complexity and performance fuzzy sets, until
some given criteria are satisfied. At the end, we expect to
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obtain the actual student’s ability, along with the complexity
level of the items that the student can solve.

The previous description of the evaluation process con-
tains an implicit dynamical system, which we are interested,
therefore, in defining next. To do so, we will use a metaphor-
ical analogy of this system with one very simple physical
system based on the idea of uniformly accelerated motion
(it could be non–uniformly accelerated, but we consider here
the simplest case).

4. Simple fuzzy rules

As we said before, the model of test administration in an
adaptive testing system is motivated by physical phenomena
where the concept of uniformly accelerated motion is present.
Every fuzzy setP , R andB can be interpreted as the actually
existent ’distance’ between the examinee and the tutor level
(supposedly to be that of the teacher in charge of the student’s
learning). This distance will be given by the actual student’s
experience about the topic of the exam, this experience being
represented by the present student’s grading.

The very fact that the examinee tries to solve an item with
time complexityt corresponds to the physical variable called
speedor velocity. For a bigger time complexity of the item,
then bigger will be the time required to find the solution. By
making such a requirement, the student is really asking for
decreasing the distance between her/him and her/his tutor.

Going back to the metaphor of the uniformly accelerated
motion, the tutor represents the driver of a car to some speed,
while the examinee is associated with the driver of a car go-
ing immediately behind the car of the first driver. Therefore,
asking for an increase in the time complexity of an item is
equivalent to increase the velocity in the second car of the
metaphor.

Increasing or decreasing the speed implies the existence
of an accelerated motion and, therefore, of a variableaccel-
eration, which is useful to control changes in velocity. Anal-
ogously, in the adaptive testing model it should be possible to
handle a variableaccelerationwhich can be used to increase
or decrease (or to hold) the time complexity of a given item
(i.e. the degree of difficulty or simplicity of the item).

Clearly, to increase and decrease the velocity has an ef-
fect on the distance between the cars of the metaphor, which
means that we should expect that the same should happen in
the adaptive testing case when the performance of the exami-
nee is considered as a function of the complexity of the items
(remember that the examinee performance is the equivalent
of the distance in the metaphor). In other words, it should be
there also a modification step of the examinee’s performance.

From the previous comments, we deduce that there are
then three related variables; namely, the examinee perfor-
mance, the time complexity of the items and their corre-
sponding corrections or modifications. How to relate them?
The answer to this question is given by the specification
of inference rules based on fuzzy sets aspects. Although

these rules are commonly obtained by experience and com-
mon sense, in what follows we propose the following ones
which, for simplicity, assume only dichotomous items; in
other words, items with answers yes or no:

1. If examinee’s level isP and

(a) The item complexity isH and

i. The answer is incorrect, then decrease item
complexity and hold examinee’s level

ii. The answer is correct, then hold item com-
plexity and increase examinee’s level

(b) The item complexity isE and

i. The answer is incorrect, then decrease item
complexity and hold examinee’s level

ii. The answer is correct, then increase item
complexity and examinee’s level

2. If examinee’s level isR and

(a) The item complexity isH and

i. The answer is incorrect, then decrease item
complexity and hold examinee’s level

ii. The answer is correct, then hold item com-
plexity and increase examinee’s level

(b) The item complexity isE and

i. The answer is incorrect, then decrease item
complexity and examinee’s level

ii. The answer is correct, then increase item
complexity and examinee’s level

3. If examinee’s level isB and

(a) The item complexity isH and

i. The answer is incorrect, then decrease item
complexity and examinee’s level

ii. The answer is correct, then increase item
complexity and hold examinee’s level

(b) The item complexity isE and

i. The answer is incorrect, then decrease item
complexity and examinee’s level

ii. The answer is correct, then increase item
complexity and hold examinee’s level

The linguistic terms ’increase’, ’decrease’ and ’hold’ re-
quire the definition of their corresponding fuzzy sets, which
will be denoted byI, D andS, respectively. By taking one
element of these sets is equivalent to increasing or decreasing
the speed or distance in our already familiar accelerated mo-
tion [4,5]. In our simple example, it represents an increment
(negative, zero or positive) in the time complexity of the item
or in the examinee’s level (which is equivalent to modify the
speed and the distance in our metaphor). In control theory,
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the common shape of their corresponding membership func-
tions is as Fig. 1 shows [4,5].

Table I resumes in a simple way the fuzzy rules previ-
ously given, and the first argument of the binary operator∧
refers to the item time complexity correction, while the sec-
ond one to the examinee’s performance. These rules define
the behavior of a dynamical system with black box given in
Fig. 2. The behavior of the dynamical system is completely
defined by the set of eight membership functions of our ex-
ample (three for examinee’s performance, two for item time
complexity and three for modifications), and the twelve infer-
ence rules relating the fuzzy sets represented by these mem-
bership functions.

TABLE I. Fuzzy rules.

Fuzzy rules Item time complexity

Examinee’s level E H

P D ∧ S I ∧ I D ∧ S S ∧ I

R D ∧D I ∧ I D ∧ S S ∧ I

B D ∧D I ∧ S D ∧D I ∧ S

Answer type: Wrong Right Wrong Right

FIGURE 1. Membership functions to modify item time complexity
or examinee’s performance.

FIGURE 2. Black box.

As a concrete example, we consider the case where the
fuzzy sets have trapezoid and triangular membership func-
tions, as Fig. 3 shows. We should make clear that, in the
example, the working of the system requires to use one of
the 54 possible combinations of membership functions just
to produce one single correction to complexity and exami-
nee’s performance. With these definitions at hands, a com-
puter simulation of the system’s behavior was realized under
different conditions.

5. Simulation results

Simulation results were obtained by mean of a program
whose structure is shown by Fig. 4, and the implementa-
tion was made with MatLab instructions [6]. The main mod-

ule defines the different parameters of trapezoid membership
functions, which are then send as parameters to Simpson
function (which calculates the center of mass of complexity
and performance correction). Furthermore, the main mod-
ule specifies the function CMass to be used, the integration
interval and the partitionn.

On the other hand, a finer partition of the fussy sets in-
creases the number of membership functions and the com-
plexity of the internal structure of CMass modules. As we
can see, these modules are in charge of the modifications to
complexity and performance. The phase space that describes
the dynamical behavior of the evaluation process is defined
in terms of the examinee’s performance (x) and item time
complexity variables (y).
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FIGURE 3. Fuzzy rules of the example.

FIGURE 4. Block diagram.

Clearly, an excellent student is one who has answered the
items in such a way that the mean value of(x, y) is located
in highest regions, such as for example[8, 10] × [800, 900].
Since there are three possible fuzzy sets in performance and
two possible fuzzy sets in item time complexity, the phase
space partition consists in six different regions such as Fig. 5
shows. The dynamical behavior of excellent students are then
located in the intersection of columnB and rowH.

Table II shows the conditions used to run the simulation.
There, it is shown that poor performance is obtained when the
grading is a member of the closed interval [0,6], while a bril-
liant performance has a grading in the closed interval [8,10].
So that the regular performance is located in the interval [6,8].
On the other hand, Table II shows also the parameters of the
correction functions. FIGURE 5. Phase space partition diagram.

Rev. Mex. F́ıs. 49 (4) (2003) 371–378
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TABLE II. Experimental conditions.

Function definitions Parameters —

Membership function Interval Units x0 x1 Comments

µP [0, 10] grading 0 6 —

µR
√ √

— — Defined in terms ofµP andµB

µB
√ √

8 10 —

µDC [−1, 1] grading -0.25 0.0 —

(µDP ) (seconds) (-0.75) (0.0)

µSC
√ √

— — Defined in terms ofµDC(µDP )

(µSP ) andµIC(µIP ) (Watch the scales!)

µIC
√ √

0.0 0.25 —

(µIP ) (0.0) (0.75)

µE [0, 900] seconds 300 600 —

µH
√ √ √ √

—

TABLE III. Experimental results.

Simulation results for honest students Initial points

Examinee’s performance Length of exam % right answers Performance Complexity

Poor 20 30 3 300

Regular 20 35 6 600

Brilliant 20 90 9 850

Figure 6 and Table III show the simulation results
when we assumed that the students are ’honest’ (in the
sense that the given initial performance and complexity are
very close to the actual ones), in every case the answer’s
configurations for poor, regular and brilliant performance
are, respectively, the following 00100100100100100010,
00101001001001001001, and 00111111111111111111 (re-
member that the exam consists of items accepting just one

FIGURE 6. Simulation results for ’honest’ students.

type of answer; namely, yes or no). To consider successful
previous performance in the same examination, the correc-
tions were weighted by the number of previous right answers;
in other words, the correction term is taken as proportional to
the number of previous right answers.

We must make clear that the percentage of right answers
does not necessarily represent the actual level of examinee’s
knowledge. This is so, because the questions do not neces-
sarily have the same item time complexity. In any case, the
regions in phase space can be useful to decide where the level
of knowledge is located, or at least what’s its behavior.

6. Conclusions

Although the simulation results seem very promising, there
are still several questions that need to be addressed. First of
all, we need to search for a procedure to properly weight the
contributions of earlier right answers to the modifications in
performance and complexity. Second, we need to consider
also the effect that the shape of membership functions has on
stability conditions. This includes to consider not only trape-
zoid and triangular functions, but differentiable ones such as,
for example, sigmoidal and gaussian.

Third, we should notice that the very fact of working
with dichotomous questions can be generalized to category
of answers, where we assume that some fuzzy sets are also
defined. In other words, the method can be also useful to
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deal with open questions, where the answer belongs, with
some degree, to the defined fuzzy sets. Fourth, our main con-
cern focuses on the fact of designing a fuzzy neural network,
where the fuzzy rules shown in this paper can be embedded.

Fifth, interestingly results the fact of trying to definein
situ the fuzzy rules. In other words, by realizing a sequence
of examinations, it could be interesting to deduce the in-
volved fuzzy rules, in the same way as some fuzzy control
techniques do [7]. Finally, the development of a CAT system
involving the concepts here presented must include a compar-
ison of the advantages and disadvantages with those based on
item response theory and its selection algorithms.

Appendix A. Basic concepts of fuzzy sets

In this work, the termfuzzy setrefers to vagueness in a piece
of information as in, for example, the set of tall people. This
vagueness is measured through what is calledmembership
function, µ. So that, ifA is the fuzzy set andx ∈ A, µA(x)
gives the degree of vagueness ofx ∈ A. This should not
be surprising, since in classical set theory the characteristic
functionµA of the setA is defined as follows:

µA(x) =
{

0 if x 6∈ A
1 otherwise

,

which means thatx is an element ofA or x is not an element
of A. Fuzzy set theory extends this idea by taking the mem-
bership functionµA : B → [0, 1], where[0, 1] is the real unit
interval andA ⊂ B. In fuzzy set theory, like classical set
theory, definitions of operations on fuzzy sets is still possi-
ble. Basics operations are therefore union and intersection,
which are respectively defined as follows:

µA∪B(x) = max{µA(x), µB(x)}
and

µA∩B(x) = min{µA(x), µB(x)}.

On the other hand, there exist also what is called fuzzy
reasoning, which is an extension of classical logic. Assum-
ing thatA andB are fuzzy propositions, we can respectively
talk about fuzzy disjunction and conjunction as follows:

µA∧B(x) = max{µA(x), µB(x)},

and

µA∨B(x) = min{µA(x), µB(x)}.

The definitions of disjunction and conjunction takes us
to consider the possibility of defining the implication, where
the antecedent of the rule is given by conjunctions of fuzzy
propositions, and the consequent is just a single fuzzy propo-
sition. There are more than one method to define or compute
the membership function of the implication, and a popular
one is called Mamdani’s direct method [5] (it was proposed
in 1975 by the researcher Ebrahim Mamdani) which can be
described as follows.

To compute the membership functionµA1∧...∧An −→ B,
whereAi andB are fuzzy sets, we start from the fact that

µA1∧...∧An(x1, . . . , xn) = min{µA1(x1), . . . , µAn(xn)},

wherexi is an element of the universe of discourse ofAi.
Next, by considering what is called the generalizedmodus
ponens, define the desired membership function

µA1∧...∧An−→B(z) = min{µA1∧...∧An(x1, . . . , xn), µB(z)},

for all z in the universe of discourse ofB. If there are more
than one implication, then apply the fuzzy disjunction opera-
tor as follows

µA−→B(z) = max{µA1,1∧...∧A1,n−→B1(z), . . . , µAm,1∧...∧Am,n−→Bm(z)} (1)

whereA −→ B represents the set of implications shown as
sub–indices in the right hand side of Eq. 1.

Appendix B. Basic concepts in computer adap-
tive testing

First of all, the study of adaptive testing requires the defi-
nition of the general case, which can be stated as follows:
Given a setE of examinees, a collectionC of sets of exami-
nationsTi, wherei = 0, . . . ,∞, the setAi,j of thej–th ex-
aminee’s answers for a given set of examinationsTi, where
the mark to itemqi,j,k ∈ Ti can take a value on the setM, the
set of possible marks for a given question, the main concern
of adaptive testing is to find the best approximation to the real
j-th examinee’sm–dimensional proficiency

θj = (θ0, θ1, . . . , θm−1), which intends to measure some
previously defined constructs, through the answers to the set
of questionsTi.

To do this, adaptive testing makes use of initial profi-
ciency estimates, item information and examinee’s perfor-
mance along the test. These considerations lead to a decision
criterion which is useful to manage the item selection pro-
cedure, which is one of the main characteristics of adaptive
testing. We consider here thatM has elements in the real unit
interval[0, 1], where the case of binary answer (yes–no, true–
false) is just a particular one whenyesandtrueare identified
with 1, andnoandfalsewith 0.

Rev. Mex. F́ıs. 49 (4) (2003) 371–378
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Example B.1

As an example, consider the case of two examinees and an
examination with three questions, and that the set of valid
marks for the answers is

M =
{

0,
1
4
,
1
2
,
3
4
, 1

}
;

in other words, the mark for an answer of some particular
question in the exam can take one of a total of four values.
Table IV shows one of the43×43 = 4096 possible results of
the testing process.

Example B.2

As another example, consider now that the set of valid marks
for the answers isM = {0, 1}. Table V shows one of the
23 × 23 = 64 possible results of the testing process.

In any case, there does exist a transformation
T : Ai,j →M, which maps an answer to a single value in
M. Additionally, for a given element in the setM, in some
cases ana priori probability for every question is known,
and this probability is a function of them–dimensional profi-
ciency variableΘi,j = (Θi,j,0,Θi,j,1, . . . , Θi,j,m−1), where
j refers to the itemj in exami. The probability is denoted
asPx(Θi,j), and this expression represents the probability
of answering the itemj with a mark equal tox, by knowing
that the examinee has a proficiencyΘi,j .

Example B.3

In case of one–dimensional proficiency and binary answers,
the proficiency becomes a single variableΘ, and the usual
simplest way of defining the probability of giving a right an-
swer to an item is through the idea ofone parameter logistic
functionor, briefly,1PL model, which is defined as follows

P (Θ) =
1

1 + e−(Θ−β)
,

where the parameterβ is known as the complexity of the
question. In this case, a parameterβ is assigned to every
item in the exam. Since there are only two possible marks
(0 or 1), the index inP1(Θ) is removed for simplicity. The
probability of giving a wrong answer is therefore1− P (Θ).

TABLE IV. Sample of examination process.

Questions

Examinee 1 2 3

1
1

2
1 0

2
3

4

1

4

1

2

Mark

TABLE V. Sample of examination process.

Questions

Examinee 1 2 3

1 1 0 1

2 0 1 1

Mark

The main point in Example B.3 is that the information
that an item’s answer provides about examinee’s proficiency
at any given point along the proficiency scale depends only on
item parameters, which are explicitly included in a more gen-
eral logistic function, and this function is calleditem charac-
teristic curveor ICC for short. Therefore, by knowing an ini-
tial estimate of the examinee’s proficiency, a procedure for
selecting items with complexity similar to this proficiency
can be implemented. The mathematical basis of the whole
thing is given by what is calleditem response theoryor IRT
for short, which is supported by statistical tools.

Therefore, in and adaptive testing, the usual general algo-
rithm to select the proper item for an examinee with a given
proficiency proceeds as follows: At each step of the exami-
nation, and considering the statistics of the examinee’s per-
formance along the same test, select the more informative
item [8]. The term CAT arises from the fact that the previ-
ous algorithm can be implemented in a computer. So, CAT
meansComputer Adaptive Testing.
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