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Using the “one-dimensional” coherent electron states in a quantizing magnetic field the oscillating part of the electron density of states
a metal, which determines the physical nature for the oscillations of the thermodynamic and kinetic metal characteristic in magnetic fielc
calculated. The physical reason of the significant simplification of the mathematical procedure is that the coherent states are most ade
to describe the quantum macroscopic phenomena such as the Shubnikov - de Haas and the de Haas - van Alphen effects in metals.

Keywords: Shubnikov - de Haas effect; macroscopic quantum phenomena in magnetic field.

Usando los estados eleicos coherentes “unidimensionales” en un campo @gm cuantizador, se calcula la parte oscilatoria de la
densidad de estados eldéeticos en un metal, la cual determina la naturalésiad de las oscilaciones de las cardstaras termodiamicas

y cinéticas de un metal en un campo matjco. Asicamente la rdm de la gran simplificabn que se obtiene mediante este procedimiento
matenatico, es que los estados coherentes usados en el procealzale son los ras adecuados para describir los@arenos canticos
macrosopicos, tales como los efectos Shubnikov - de Haas y de Haas-van Alphen en metales.

Descriptores: Efecto de Shubnikov - de Haas; famenos canticos macrosipicos.

PACS: 71.18; 75.45.4]

1. Introduction cillations are governed by two factors: the presence of the
In 1963, R.J. Glauber [1,2] introduced the concept of a cofermi surface and the radical change in the density of states

herent statén) as an eigenstate of a non-hermitian annihila-°(¢) in @ quantizing magnetic field [3]. Turning on a con-
tion operatof of excitations of the boson typé|q)=ala)). stant uniform magnetic fiel# parallel to the z-axis makes

The Schadinger equation for a charge in a constant uniformt1€ motion of a current-carrying particle quasi-one dimen-
magnetic field is reduced to the Sobinger equation for a Sional and the density of states changes fiam(c)ocy/z to

one-dimensional displaced harmonic oscillator. The use of1p()ox1/ /e (for the three- and one-dimensional systems,

coherent states significantly simplifies mathematical calculat®SPectively). Due to the Landau quantization of the electron

tions of the oscillating part of the thermodynamic characteris EN€rdy Spectrum, this inverse square-root singulariy(of
repeated many times in the energy intefaH e<p (1 is

tics. Coherent states are eigenstates of a non-hermitian opé?— . . o X
ator and are not orthogonal, i.e. transitions between differerf{!® chémical potential), when the conditipn> fwp; is sat-
coherent states can occur spontaneously. The Shubnikov-&&ied (Wherewy=el/mc is the cyclotron frequency, e
Haas and de Haas-van Alphen effects are not only quantuff} the.effectlve mass and the chgrgg of the current carrier, re-
effects, they are also macroscopic effects, and in these réPectively, and is the light velocity in the vacuum. For en-
spects (the quantum character and macroscopic scale, sim@9i€Ss~x near the Fermi surface the density of staigs
taneously) they are related to such phenomena as supercdﬁ-a” almost-periodic functlon of the magnetic field. T_hls_ is
ductivity, weak-link superconductivity (Josephson eﬁects),the reason of the oscillatory character_of the mggneyp f|eI(3
laser radiation, and von Klitzing's effect (the quantum Hall d(_ependence of both the the.rmo.dynam!c.quantultles ( I|r?ef;1r
effect). Our aim is not only to demonstrate the mathematicalVith respect t(<)) and the kinetic coefficients (*quadratic

advantage of using the method of coherent states, combiné’&lth respect tq;(e))._ _The osqllatlon period is the same fqr
with a universal approach to the thermodynamic and kineti®®th tyPes of quantities and is equal to the oscillation period

effects in metals in a constant uniform magnetic field, butOfp )

also to establish the physical reasons why the mathematicg Some thermodynamic relations

description is adequate for the physics of the quantum oscil-

lation effects. The physical nature of the oscillations of theThe thermodynamic potenti&y=Fy—uN is defined by
kinetic coefficients of a metal in a magnetic field (Shubnikov-the expression [4]

de Haas effect) as well of the oscillations of the thermody-

namic potentials and their derivatives has been established Qp=-T) In [1 + elh=e)/T (1)
on the basis of Landau’s theory of diamagnetism. The os- v
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In the integral form it may be written as 3. Coherent states of a charged particle in a
oo constant uniform magnetic field
Oy =-T / dep(e) In [1 + ew—s)/ﬂ )
0 Coherent states appear when one solves a problem for a lin-
The density of states(¢) is given by ear oscillator. Some physical phenomena (superconductivity,
A Shubnikov - de Haas, de Haas-van Alphen effects) are quan-
ple) = 25(6 —&,) =Tré(e —H), (3)  tum in their physical nature and macroscopic in their scale.

The macroscopic scale indicates a possibility of an almost
where Fy; is the free energylV is the total number of par- Classical description of such phenomena. The coherent states
ticles, T is the temperature (in energy units)js the set of ~are much more convenient to describe a field phase and am-
all the quantum numbers characterizing a single-particle statelitude simultaneously, and to show a connection between the
and’{ is the single particle Hamiltonian. For the thermody- classical and quantum field description. Historically, L.D.

namic potential derivatives we have Landau was the f?rst to shov_v that the Satinger equation
for the eigenfunctions and eigenvalues of a charge in a con-

N=— (8QH> . M=— <8QH) ’ stant magnetic field has the form of the Sidinger equa-
o TV.H oH T.V,u tion for the one-dimensional linear oscillator. Coherent states

920 have been used to redefine in new terms the theory of Landau
C= _T(8T2> , (4) dimagnetism and the theory of the de Haas-van Alphen ef-
V,u,H fects for free electron gas.
where)M is the magnetic moment arddis the heat capacity. The achievements of the physics of coherent states have
We calculate the density of states from Eq.(2Yat= 0 for ~ hot been sufficiently extended to oscillation effects in metals
simplicity. Then thep(z) is being transformed intp(;) and ~ With an arbitrary dispersion relation for electrons, or to nu-

is connected witlf2; by the expression merous other quantum physical phenomena observed in met-

) als in a magnetic field.
p(p) = — (3 QH) . (5) We will introduce the coherent states for a charge in a
op? V.H . T=0 constant magnetic fielH||z and the Hamiltonian [7]
We can easily see from Eq.(5), that the density of N 1 ,. e 2 .~ ~ . N

statesp(u) at the Fermi surface is not exclusively related = %( - EA) tHe=Hi+Ha+Ho,  (7)

to the observable quantities presented in Eq.(4). Its oscil- 9

latory partp(u) contains the period of the oscillations, which H, = 21;;7 H, = —%MBUZH7 o.==+1, (8)

in turn, through the Lifshitz-Onsager relation, determines the
area of the extremal sections of the Fermi surface by a plangherep is the momentum operator, is the bare electron
perpendicular td. The oscillatory parp(e) of the density mass,¢* is the effective spectroscopic splitting factor, and
of states also answers the question about the physical naturg; is the Bohr magneton.

of the oscillations of the kinetic coefficients in a magnetic ~ We choose the vector potential of the magnetic field in
field. As is well known from the theory of the Shubnikov-de the Landau-gauge [7] as follows:

Haas effect, the nonzero current in the direction of the elec-

tric field E||x is attributable to the electron scattering, which A =A(—yH,0,0), H=V x A. 9)
under the conditions of the Shubnikov-de Haas effect can be .

assumed to be elastic [3, 5]. The fact thgt) in Eq.(3) In this case}{, corresponds to a one-dimensional oscil-
is represented in the form dfr makes it possible to em- lator along the y axis

ploy any complete set of wave functions in the computational 2

procedure. Oscillatory wave functions (which are elggnfgnc— H, = by +omw? (Y — yo)?, (10)
tions of the operator of the number of the boson excitations 2m 2

@*a|n) = n|n)) do not carry any information about the pres- yherey, — —cp, /eH). Instead of two coupled oscillators

ence of the Fermi surface, while for the coherent sthat¢s
(which are eigenfunctions of the operatdia|a) = «|a)))
the average number of the particles is equal to

in the gaugeA = (1/2)[H x r]. It gives us a possibility to
avoid using “two-dimensional” coherent states (see Ref. 8).
In dimensionless coordinates

At _ 14
(alatala) = fg ~ ——. (6) _ Bo\Y2?
"t e n=""2 sz( > , (12)
. : lg mwy
In addition, the coherent states are characterized by a
well-defined phase [2,6]. This is connected with the exis,q Hamiltoniarf{ , takes the form
tence of a phase characteristic (cyclotron period) of the oscil-
lation phenomena under study. It suggests that we use coher- o1 .9 2
ent states for our problem. Hy= 2th(p” ), (12)
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Py = —iV,,. We introduce the operatoésanda ™ where

Az = 02X, z = Ztl, 21
dl(n+§>,d+l<n§) (13) AT &
V2 N V2 n L, is the normalization length, arél is the Pauli matrix.

%] = 1 Then | results in Taking the trace in Eq. (3) and using Eq. (20), we obtain

o) = 3 [ i Pt - Hlops)

Pz:02

L OO oo
and - —= dp, | &> / dt
w(zwhy;/m Y / ‘)

3 s L g
H=hwyg!|a a+§ +7m—*MBO'BHa (15)

A = o <&+a . 1), (14)

(0 pay 0| IR gy ) (22)

wherey g is the Bohr's magneton angk is the Pauli matrix.  whered?a = d(Re «)d(Ima). In the operatoH all three
Thus, the partial motion of an electron in a magnetic fieldterms commute with each other. We obtain the following re-

in the zy plane is described by the Eq. (14), which contains|ations:

the operatorg, a™ [defined in Eq.(13)], satisfying the Bose

) . *upH
commutation relations. With the help of the operatara™, S WM R 9 cos (g gs t) ; (23)
we determine the states: Oamzt1
2 10) = 0O > 2 orhim\ /2 iTsi
a) the vacuum stat@) such thati|0) = 0; dp,e(—itP/2mh) _ eiEsiont,  (24)
e 2] ’
b) the Fock (after V.A. Fock) state), which is an eigen- -
state of the operator = a™a: (o] emitondta)gy — Z<O‘ | e=itwna ) inla)
R (a*t)m =0
fln) = nln), |n) = vl 10); (16) > ) 2 —itw
b =Y et (nfa) 2 = el () (28)
c) the “one-dimensional” coherent stdte), which is an e 3
eigenstate of the operatar In the last equation we have used the condition
ala) = afa). 17) > fn)n| =1 (26)
n=0
The coherent statier) can also be obtained with the help of the completeness of the set of the Fock states. The result
of the displacement operatdr(«) for the scalar product of the Fock and coherent states is as
(a) = D)) ag
a) = D(«)|0), )
<n|a> _ <n ‘e—|a‘2/2eaa+ 0>
where
a” 2
. R e R . e e 1
D(a) = 0" —a7a — ~lal*/2p0a" ;—a%a  (19) il ' @)

Thus, we have a complete normalized set of wave func- The density of st_ate,s(,u) at the Fermi surface results in
tions which are the eigenfunctions of non-Hermitian operathe form of a single integral
tor, and for this reason are not orthogonal. L, ®ml/2

It should be specially noted, however, that the partial mo- (1) = m
tion of a fermion (electron) in they plane in the magnetic i 0
field H is described with the help of boson operators. (/ﬂf m

. %7Zsign t) g*,u,BH
cos t
2h

1
i[t|1/2 sin (tw;) ’

4. Oscillations of the electron density of states y /'°°

We can employ the following complete normalized set of
i i iz h

wave fu_nct_|0n§ to calculate(y:) of a metal in a quantizing ®=L,L,H, &= o (28)

magnetic field:

It is calculated with the help of the residue theorem by inte-

—1/2 (ip.z/h . . .
L;12el=2My o), (20) grating along the contour shown in Fig. 1.

o2, p2sa) =
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FIGURE 1. The integration contour in the complex planfor the
calculation of the integral Eq. (28).

The oscillating part of the density of statgg.) is deter-
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5. Conclusion

Our approach to the analysis of oscillation effects in metals

in a magnetic field makes it possible not only to substantially

simplify the mathematical procedure as compared with the

traditional method of analyzing these phenomena, but also to
study in a universal manner both the thermodynamic and ki-

netic effects. This permit us to easily extend the analysis to

the case of current carriers with an arbitrary energy spectrum
and nonzero temperature, and to include the effect of scatter-
ing on the form of the oscillation dependence.

We introduced a vector potentidl of the magnetic field
in the Landau-gauge that allows to use a simplified method

mined by the contribution the integral of the poles located orfor the one-dimensional coherent state representation. The

the real axis at the points

P
th=""K K=41,42,+3,...

(29)
WH

and has the form
mV [(eH\"? & 1
~ _ myv e —1/2
0= () XK

Tg*m W T
K 2r K — — —
X CoS ( 20 ) cos ( T Fiom 4), (30)

which contains a period of the oscillations

A(%) B W:Zu'

(31)

end result is that boson operators can describe the partial mo-
tion of fermions (electrons) in the xy plane in the magnetic
field.

The physical reason for the simplification achieved in the
mathematical procedure is that the coherent state employed
in the calculations describes quantum macroscopic phenom-
ena, and therefore also quasi-classical phenomena, which are
the Shubnikov-de Haas and de Haas-van Alphen effects in
metals, semimetals and degenerate semiconductors.
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