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“One-dimensional” coherent states and oscillation effects in metals
in a magnetic field
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Using the “one-dimensional” coherent electron states in a quantizing magnetic field the oscillating part of the electron density of states for
a metal, which determines the physical nature for the oscillations of the thermodynamic and kinetic metal characteristic in magnetic field, is
calculated. The physical reason of the significant simplification of the mathematical procedure is that the coherent states are most adequate
to describe the quantum macroscopic phenomena such as the Shubnikov - de Haas and the de Haas - van Alphen effects in metals.
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Usando los estados electrónicos coherentes “unidimensionales” en un campo magnético cuantizador, se calcula la parte oscilatoria de la
densidad de estados electrónicos en un metal, la cual determina la naturaleza fı́sica de las oscilaciones de las caracterı́sticas termodińamicas
y cinéticas de un metal en un campo magnético. F́ısicamente la raźon de la gran simplificación que se obtiene mediante este procedimiento
mateḿatico, es que los estados coherentes usados en el proceso de cálculo son los ḿas adecuados para describir los fenómenos cúanticos
macrosćopicos, tales como los efectos Shubnikov - de Haas y de Haas-van Alphen en metales.

Descriptores: Efecto de Shubnikov - de Haas; fenómenos cúanticos macrosćopicos.

PACS: 71.18; 75.45.+j

1. Introduction
In 1963, R.J. Glauber [1,2] introduced the concept of a co-
herent state|α〉 as an eigenstate of a non-hermitian annihila-
tion operator̂a of excitations of the boson type (â|α〉=α|α〉).
The Schr̈odinger equation for a charge in a constant uniform
magnetic field is reduced to the Schrödinger equation for a
one-dimensional displaced harmonic oscillator. The use of
coherent states significantly simplifies mathematical calcula-
tions of the oscillating part of the thermodynamic characteris-
tics. Coherent states are eigenstates of a non-hermitian oper-
ator and are not orthogonal, i.e. transitions between different
coherent states can occur spontaneously. The Shubnikov-de
Haas and de Haas-van Alphen effects are not only quantum
effects, they are also macroscopic effects, and in these re-
spects (the quantum character and macroscopic scale, simul-
taneously) they are related to such phenomena as supercon-
ductivity, weak-link superconductivity (Josephson effects),
laser radiation, and von Klitzing’s effect (the quantum Hall
effect). Our aim is not only to demonstrate the mathematical
advantage of using the method of coherent states, combined
with a universal approach to the thermodynamic and kinetic
effects in metals in a constant uniform magnetic field, but
also to establish the physical reasons why the mathematical
description is adequate for the physics of the quantum oscil-
lation effects. The physical nature of the oscillations of the
kinetic coefficients of a metal in a magnetic field (Shubnikov-
de Haas effect) as well of the oscillations of the thermody-
namic potentials and their derivatives has been established
on the basis of Landau’s theory of diamagnetism. The os-

cillations are governed by two factors: the presence of the
Fermi surface and the radical change in the density of states
ρ(ε) in a quantizing magnetic field [3]. Turning on a con-
stant uniform magnetic fieldH parallel to the z-axis makes
the motion of a current-carrying particle quasi-one dimen-
sional and the density of states changes fromρ3D(ε)∝√ε to
ρ1D(ε)∝1/

√
ε (for the three- and one-dimensional systems,

respectively). Due to the Landau quantization of the electron
energy spectrum, this inverse square-root singularity ofρ(ε)
is repeated many times in the energy interval0≤+ ε≤µ (µ is
the chemical potential), when the conditionµ À ~ωH is sat-
isfied (whereωH=eH/mc is the cyclotron frequency;m, e
is the effective mass and the charge of the current carrier, re-
spectively, andc is the light velocity in the vacuum. For en-
ergiesε≈µ near the Fermi surface the density of statesρ(ε)
is an almost-periodic function of the magnetic field. This is
the reason of the oscillatory character of the magnetic field
dependence of both the thermodynamic quantities (“linear”
with respect toρ(ε)) and the kinetic coefficients (“quadratic”
with respect toρ(ε)). The oscillation period is the same for
both types of quantities and is equal to the oscillation period
of ρ(ε).

2. Some thermodynamic relations

The thermodynamic potentialΩH=FH−µN is defined by
the expression [4]

ΩH = −T
∑

ν

ln
[
1 + e(µ−εν)/T

]
. (1)
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In the integral form it may be written as

ΩH = −T

∫ ∞

0

dερ(ε) ln
[
1 + e(µ−ε)/T

]
. (2)

The density of statesρ(ε) is given by

ρ(ε) =
∑

ν

δ(ε− εν) = Trδ(ε− Ĥ), (3)

whereFH is the free energy,N is the total number of par-
ticles,T is the temperature (in energy units),ν is the set of
all the quantum numbers characterizing a single-particle state
andĤ is the single particle Hamiltonian. For the thermody-
namic potential derivatives we have

N = −
(

∂ΩH

∂µ

)

T,V,H

, M = −
(

∂ΩH

∂H

)

T,V,µ

,

C = −T

(
∂2Ω
∂T 2

)

V,µ,H

, (4)

whereM is the magnetic moment andC is the heat capacity.
We calculate the density of states from Eq.(2) atT = 0 for
simplicity. Then theρ(ε) is being transformed intoρ(µ) and
is connected withΩH by the expression

ρ(µ) = −
(

∂2ΩH

∂µ2

)

V,H,T=0

. (5)

We can easily see from Eq.(5), that the density of
statesρ(µ) at the Fermi surface is not exclusively related
to the observable quantities presented in Eq.(4). Its oscil-
latory partρ̃(µ) contains the period of the oscillations, which
in turn, through the Lifshitz-Onsager relation, determines the
area of the extremal sections of the Fermi surface by a plane
perpendicular toH. The oscillatory part̃ρ(ε) of the density
of states also answers the question about the physical nature
of the oscillations of the kinetic coefficients in a magnetic
field. As is well known from the theory of the Shubnikov-de
Haas effect, the nonzero current in the direction of the elec-
tric field E||x is attributable to the electron scattering, which
under the conditions of the Shubnikov-de Haas effect can be
assumed to be elastic [3, 5]. The fact thatρ(ε) in Eq.(3)
is represented in the form ofTr makes it possible to em-
ploy any complete set of wave functions in the computational
procedure. Oscillatory wave functions (which are eigenfunc-
tions of the operator of the number of the boson excitations
â+â|n〉 = n|n〉) do not carry any information about the pres-
ence of the Fermi surface, while for the coherent states|α〉
(which are eigenfunctions of the operatorâ(â|α〉 = α|α〉))
the average number of the particles is equal to

〈α|â+â|α〉 = n̄α ' µ

~ωH
. (6)

In addition, the coherent states are characterized by a
well-defined phase [2,6]. This is connected with the exis-
tence of a phase characteristic (cyclotron period) of the oscil-
lation phenomena under study. It suggests that we use coher-
ent states for our problem.

3. Coherent states of a charged particle in a
constant uniform magnetic field

Coherent states appear when one solves a problem for a lin-
ear oscillator. Some physical phenomena (superconductivity,
Shubnikov - de Haas, de Haas-van Alphen effects) are quan-
tum in their physical nature and macroscopic in their scale.
The macroscopic scale indicates a possibility of an almost
classical description of such phenomena. The coherent states
are much more convenient to describe a field phase and am-
plitude simultaneously, and to show a connection between the
classical and quantum field description. Historically, L.D.
Landau was the first to show that the Schrödinger equation
for the eigenfunctions and eigenvalues of a charge in a con-
stant magnetic field has the form of the Schrödinger equa-
tion for the one-dimensional linear oscillator. Coherent states
have been used to redefine in new terms the theory of Landau
dimagnetism and the theory of the de Haas-van Alphen ef-
fects for free electron gas.

The achievements of the physics of coherent states have
not been sufficiently extended to oscillation effects in metals
with an arbitrary dispersion relation for electrons, or to nu-
merous other quantum physical phenomena observed in met-
als in a magnetic field.

We will introduce the coherent states for a charge in a
constant magnetic fieldH||z and the Hamiltonian [7]

Ĥ =
1

2m

(
p̂− e

c
A

)2 + Ĥσ = Ĥ⊥ + Ĥz + Ĥσ, (7)

Ĥz =
p̂2

z

2m
, Ĥσ = −g

2
µBσzH, σz = ±1, (8)

wherep̂ is the momentum operator,m is the bare electron
mass,g∗ is the effective spectroscopic splitting factor, and
µB is the Bohr magneton.

We choose the vector potentialA of the magnetic field in
the Landau-gauge [7] as follows:

A = A(−yH, 0, 0), H = ∇×A. (9)

In this caseĤ⊥ corresponds to a one-dimensional oscil-
lator along the y axis

Ĥ⊥ =
p̂2

y

2m
+

1
2
mω2

H(y − y0)2, (10)

(wherey0 = −cpx/eH). Instead of two coupled oscillators
in the gaugeA = (1/2)[H × r]. It gives us a possibility to
avoid using “two-dimensional” coherent states (see Ref. 8).
In dimensionless coordinates

η =
y − y0

lH
, lH =

(
~

mωH

)1/2

, (11)

the HamiltonianĤ⊥ takes the form

Ĥ⊥ =
1
2
~ωH(p̂2

η + η2), (12)
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p̂η = −i∇η. We introduce the operatorŝa andâ+

â =
1√
2

(
η +

∂

∂η

)
, â+ =

1√
2

(
η − ∂

∂η

)
(13)

[â, â+] = 1. ThenĤ⊥ results in

Ĥ⊥ = ~ωH

(
â+â +

1
2

)
, (14)

and

Ĥ = ~ωH

(
â+â +

1
2

)
+

p̂2
z

2m
− g∗

2
µBσBH, (15)

whereµB is the Bohr’s magneton andσB is the Pauli matrix.
Thus, the partial motion of an electron in a magnetic field

in thexy plane is described by the Eq. (14), which contains
the operatorŝa, â+ [defined in Eq.(13)], satisfying the Bose
commutation relations. With the help of the operatorsâ, â+,
we determine the states:

a) the vacuum state|0〉 such that̂a|0〉 = 0;

b) the Fock (after V.A. Fock) state|n〉, which is an eigen-
state of the operator̂n = â+â:

n̂|n〉 = n|n〉, |n〉 =
(â+)n

√
n!
|0〉; (16)

c) the “one-dimensional” coherent state|α〉, which is an
eigenstate of the operatorâ

â|α〉 = α|α〉. (17)

The coherent state|α〉 can also be obtained with the help
of the displacement operator̂D(α)

|α〉 = D̂(α)|0〉, (18)

where

D̂(α) = eαâ+−α∗â = e−|α|
2/2eαâ+

e−α∗â. (19)

Thus, we have a complete normalized set of wave func-
tions which are the eigenfunctions of non-Hermitian opera-
tor, and for this reason are not orthogonal.

It should be specially noted, however, that the partial mo-
tion of a fermion (electron) in thexy plane in the magnetic
field H is described with the help of boson operators.

4. Oscillations of the electron density of states

We can employ the following complete normalized set of
wave functions to calculateρ(µ) of a metal in a quantizing
magnetic field:

|σz, pz; α〉 = L−1/2
z e(ipzz/~)χ|α〉, (20)

where

σ̂zχ = σzχ, σz = ±1, (21)

Lz is the normalization length, and̂σz is the Pauli matrix.
Taking the trace in Eq. (3) and using Eq. (20), we obtain

ρ(µ) =
∑

pz,σz

∫
d2α

π
〈α; Pz, σz|δ(µ−H)|σz, pz; α〉

=
Lz

π(2π~)2
∑
σz

∫ ∞

−∞
dpz

∫
d2α

∫ ∞

−∞
dt

×〈α; pz, σz|ei(µ−Ĥ)t/~|σz, pz; α〉, (22)

whered2α = d(Re α)d(Imα). In the operatorĤ all three
terms commute with each other. We obtain the following re-
lations:

∑
σz=±1

ei(t/~)(g∗/2)µBH = 2 cos
(

g∗µBH

2~
t

)
; (23)

∫ ∞

−∞
dpze

(−itp2
z/2m~) =

(
2π~m
|t|

)1/2

e−i π
4 sign t; (24)

〈α | e−itωH â+â|α〉 =
∞∑

n=0

〈α | e−itωH â+â|n〉〈n|α〉

=
∞∑

n=0

e−itωHn|〈n|α〉|2 = e−|α|
2(1−e−itωH ). (25)

In the last equation we have used the condition

∞∑
n=0

|n〉〈n| = 1 (26)

of the completeness of the set of the Fock states. The result
for the scalar product of the Fock and coherent states is as
follows:

〈n|α〉 =
〈
n

∣∣∣e−|α|2/2eαâ+
∣∣∣ 0

〉

=
αn

√
n!

e−|α|
2/2. (27)

The density of statesρ(µ) at the Fermi surface results in
the form of a single integral

ρ(µ) =
LZΦm1/2

(2π~)3/2Φ0

×
∫ ∞

−∞
dt

e

i




µt

~
−

π

4
sign t




cos

(
g∗µBH

2~
t

)

i|t|1/2 sin (tωl)
,

Φ = LxLyH, Φ0 =
ch

e
. (28)

It is calculated with the help of the residue theorem by inte-
grating along the contour shown in Fig. 1.
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FIGURE 1. The integration contour in the complex planet for the
calculation of the integral Eq. (28).

The oscillating part of the density of statesρ̃(µ) is deter-
mined by the contribution the integral of the poles located on
the real axis at the points

tk =
2π

ωH
K, K = ±1,±2,±3, . . . (29)

and has the form

ρ̃(µ) =
mV

π2~2

(
eH

c~

)1/2 ∞∑

K=1

K−1/2

× cos
(

πg∗m
2m0

K

)
cos

(
2πK

µ

~ωH
− π

4

)
, (30)

which contains a period of the oscillations

∆
( 1

H

)
=

e~
mcµ

. (31)

5. Conclusion

Our approach to the analysis of oscillation effects in metals
in a magnetic field makes it possible not only to substantially
simplify the mathematical procedure as compared with the
traditional method of analyzing these phenomena, but also to
study in a universal manner both the thermodynamic and ki-
netic effects. This permit us to easily extend the analysis to
the case of current carriers with an arbitrary energy spectrum
and nonzero temperature, and to include the effect of scatter-
ing on the form of the oscillation dependence.

We introduced a vector potentialA of the magnetic field
in the Landau-gauge that allows to use a simplified method
for the one-dimensional coherent state representation. The
end result is that boson operators can describe the partial mo-
tion of fermions (electrons) in the xy plane in the magnetic
field.

The physical reason for the simplification achieved in the
mathematical procedure is that the coherent state employed
in the calculations describes quantum macroscopic phenom-
ena, and therefore also quasi-classical phenomena, which are
the Shubnikov-de Haas and de Haas-van Alphen effects in
metals, semimetals and degenerate semiconductors.
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