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The Hamilton-Jacobi formalism for fermionic systems is studied. We derive the HJ equations from the canonical transformation procedure,
taking into account the second class constraints typical of these systems. It is shown that these constraints ensure the consistency of the
solution, according to the characteristics of fermionic systems. The explicit solutions for simple examples are computed. Some aspects
related to canonical transformations and to quantization are discussed.
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Se estudia el formalismo de Hamilton-Jacobi para sistemas fermiónicos. Se derivan las ecuaciones de HJ basados en el procedimiento
de las transformaciones canónicas, tomando en cuenta las constricciones de segunda clase tı́picas de estos sistemas. Se muestra que estas
constricciones aseguran la consistencia de la solución, de acuerdo a las caracterı́sticas de los sistemas fermiónicos y se calculan las soluciones
expĺıcitas para dos ejemplos simples. Se discuten algunos aspectos relacionados con las transformaciones canónicas y la cuantización.
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1. Introduction

The basic property of fermions, half-integer spin, is a prop-
erty of microscopic particles and is described by Quantum
Mechanics. However the classical mechanics of fermions
has been a very useful tool in their study, in particular re-
garding their path integral formulation [1]. Their Lagrangian
and Hamiltonian formulations are well known, in particular
the Hamiltonian requires of the Dirac formalism of singular
systems [2, 3], as far as they have second class constraints.
The understanding of the Hamilton Jacobi (HJ) formalism
can be helpful to understand better quantum systems. It has
been applied to singular systems, as is the case of general
relativity in the case of the Wheeler-DeWitt equations. In
this case the HJ formulation amounts to set the constraints
of the Hamiltonian formalism as differential equations on the
wave function [4]. For the WKB approximation of singular
systems, in particular fermionic ones [5], it would be also
useful to have a systematic way to obtain the HJ formula-
tion. Here an effort is made with the aim to understand this
issue better. Although fermionic systems have been widely
studied, their HJ formulation has been less studied. It has
been worked out for bosonic constrained systems [6], where
the constraints, obtained from the Hamiltonian formulation,
are written as separated equations. For fermionic systems, a
technique to handle a particular problem in the HJ formalism
was proposed in Ref. 1. However, the most general situa-
tion is not discussed. In Ref. 7 the Güler formalism [6] is
generalized to include fermionic variables, by the application

of the usual concepts of classical analysis, whose properties,
nevertheless, are not of general validity when dealing with
nilpotent quantities. In this formulation all the constraints of
the Hamiltonian formulation are kept as additional equations
to the actual HJ equation. In Ref. 8 a formulation is given,
which strongly relies on the Hamiltonian formulation.

Here we give a formulation of the HJ equation for
fermionic systems, which is obtained as usual for bosonic
theories, from the variation of the action in canonical coordi-
nates, considering the transformation to constant new coordi-
nates [9]. As in the G̈uler formalism, we apply the “second
class” constraints characteristic of fermionic theories, as ad-
ditional equations. We show that these equations have two
important consistency consequences. First, from the way we
obtain the HJ equation, there are two integration constants for
each fermionic degree of freedom, and we get a set of equa-
tions among these constants, which reduce their number to
half, as it must be for a first order theory. Further, related to
this last fact, as noted in Ref. 10, boundary conditions have
to be added to fermionic actions. This means that also the
generator functions of canonical transformations must satisfy
boundary conditions. It is shown that the mentioned equa-
tions ensure that these boundary conditions are automatically
satisfied.

In order to verify the validity of the resulting equations,
we consider two examples of simple fermionic systems. The
solutions to these equations are found to be the same as the
solutions of the Euler-Lagrange equations.
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In the first section the Lagrangian and Hamiltonian for-
malisms for bosonic and fermionic systems are reviewed. In
the second section the HJ equation for fermionic systems is
given. In the next two sections illustrative fermionic systems
of one and two variables are considered. In the framework
of the second example, in the next section, the relation to
the canonical transformations is established in a more pre-
cise way and, in the last section, the relation to the quantum
theory is discussed.

2. Fermionic mechanics

Let us consider a classical system described byn bosonic,
even Grassmann, degrees of freedomq = (q1, q2, ..., qn)
and µ fermionic, odd Grassmann, degrees of freedom
ψ = (ψ1, ψ2, ..., ψµ). These variables obey the relations

qiqj − qjqi = 0 i, j = 1, 2, . . . , n,

qiψα − ψαqi = 0,

ψαψβ + ψβψα = 0 α, β = 1, 2, . . . , µ. (1)

In this case, the Lagrangian function depends on theq’s, on
theψ’s, and on their respective time derivatives

L = L(q, ψ, q̇, ψ̇, t) = L(Q, Q̇, t), (2)

whereQ = (q, ψ).
If we variate the corresponding action

δS=

t2∫

t1

(
δqi

∂L

∂qi
+δq̇i

∂L

∂q̇i
+δψα

∂L

∂ψα
+δψ̇α

∂L

∂ψ̇α

)
, (3)

then, in order to get the Euler-Lagrange equations,

d

dt

(
∂L

∂Q̇k

)
− ∂L

∂Qk
= 0 k = 1, 2, . . . , n + µ, (4)

suitable boundary conditions must be imposed. For the
bosonic variables it can be done as usual by fixing each of
them at both extrema. However, for each of the fermionic
degrees of freedom, as far as they are first order in the ve-
locities, only one boundary condition can be fixed. In this
case, for consistency, suitable boundary terms must be added
to the action [10]. For example, if the fermionic kinetic term
is Lkin = (i/2)gαβψαψ̇β , then the corrected action is given
by [10],

S − i

2
gαβψα(t1)ψβ(t2), (5)

with the boundary conditionsδ[ψα(t1) + ψα(t2)] = 0, that
is ψα(t2) = −ψα(t1) + ξα, whereξα are constant anticom-
muting quantities.

The Hamiltonian is given by

H(Q,P, t) = q̇p + ψ̇π − L ≡ Q̇P − L (6)

werepi ≡ ∂L/∂q̇i, πα ≡ ∂L/∂ψ̇α andP ≡ (p, π).

The Lagrangian (2) is first order in the fermionic vari-
ables,i.e. the kinetic term is linear in fermionic velocities
and the potential does not depend on them. Therefore there
are primary constraints,

φα = πα − fα(q, ψ), (7)

wherefα(q, ψ) are odd Grassmann functions. In the Dirac
formalism for constrained systems, these constraints turn out
to be second class. Further we suppose that there are no more
constraints. Thus, due to the fact that in the Hamiltonian (6)
the termψ̇απα compensates the corresponding kinetic term
in the Lagrangian, the canonical Hamiltonian does not de-
pend on the fermionic momenta,

H = H(Q, p, t). (8)

Therefore, if the Lagrangian is purely fermionic, the Hamil-
tonian will be given by the potential.

2.1. Hamilton-Jacobi formalism for Grassmann vari-
ables

In order to find the HJ equation for the preceding system, we
consider the variation of the action

S =

t2∫

t1

L(Q, Q̇, t)dt + BT

=

t2∫

t1

[
Q̇P −H(Q, p, t)

]
dt + BT, (9)

where the second class constraints (7) and, as men-
tioned in the preceding section, suitable fermionic bound-
ary conditions (BT ) added to the action, insure us
that the variation of the right hand side gives the cor-
rect equations of motion. For instance, if we con-
sider the actionL=(i/2)gαβψαψ̇β−V (ψ), then we have
πα=−(i/2)gαβψβ and if we impose the boundary conditions
δ[ψα(t1)+ψα(t2)]=0, then

δS=δ





t2∫

t1

[
ψ̇απα−H(ψ, t)

]
dt+

i

2
ψα(t1)πα(t2)





=

t2∫

t1

(
−δψαπ̇α + ψ̇αδπα − δψα

∂H

∂ψα

)

=

t2∫

t1

δψα

(
igαβψ̇β − ∂V

∂ψα

)
= 0. (10)

Thus, the physical phase space is (2n + µ)-dimensional hy-
perplaneP, solution of (7).
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Let us do a canonical transformation of coordinates,
(Q, P ) → (Q̃, P̃ ). In this case the constraints (7) will trans-
form to some constraints

φ̃α(Q̃, P̃ ) = 0. (11)

To obtain the HJ equation a variation of these actions is done,

δS=δ





t2∫

t1

[
Q̇P−H(Q, p, t)

]
dt+BT



 =0, (12)

δS′=δ





t2∫

t1

[
˙̃QP̃−H ′(Q̃, P̃ , t)

]
dt+(BT )′



=0. (13)

The relation between integrands is

Q̇P −H(Q, p, t) = ˙̃QP̃ −H ′(Q̃, P̃ , t) +
dF

dt
+ K, (14)

whereK = ((BT )′ − BT )/(t2 − t1) andF is a function,
whose dependence on the phase space coordinates and on
time must be such that its variation at the boundary satisfies
δ[F (t2)− F (t1)] = 0.

If now F = F (Q, P̃ , t)− Q̃P̃ , then

dF

dt
= Q̇

∂F

∂Q
+ ˙̃P

∂F

∂P̃
+

∂F

∂t
− d

dt
(Q̃P̃ ), (15)

hence

Q̇P −H(Q, p, t) = ˙̃QP̃ −H ′(Q̃, p̃, t) + Q̇
∂F

∂Q

+ ˙̃P
∂F

∂P̃
+

∂F

∂t
− d

dt
(Q̃P̃ ) + K. (16)

A factorization of this gives

Q̇

(
P − ∂F

∂Q

)
+ ˙̃P

(
(−1)apaqQ̃− ∂F

∂P̃

)

−
(

H +
∂F

∂t
−H ′ + K

)
= 0, (17)

and additionally the constraints (7) and (11). The sign in the
middle term corresponds to the interchange ofQ̃ and ˙̃P . Even
with these constraints, the quantitiesQ̇ and ˙̃P can be taken as
independent, and we get

P=
∂F

∂Q
, Q̃=(−1)apaq

∂F

∂P̃
, H ′=H+

∂F

∂t
+K. (18)

If, as usual, the new coordinates,P̃ = (p̃, π̃) andQ̃ = (q̃, ψ̃),
are assumed to be constant, which is guaranteed ifH ′ = 0
or, what is the same,H ′ = K, then the HJ equation will be
in fact given by a system of equations. If the first equation
in (18) is applied to the last one and to (7), we get the HJ
equation,

H

[
Q,

∂F

∂q
(Q, P̃ , t), t

]
+

∂F

∂t
(Q, P̃ , t) = 0, (19)

as well as

∂F (Q, P̃ , t)
∂ψα

= fα(Q). (20)

Additionally we have the second equation in (18), which can
be written as

∂F (Q, P̃ , t)
∂p̃i

= q̃i = even Grassmann constant, (21)

∂F (Q, P̃ , t)
∂π̃α

= −ψ̃α = odd Grassmann constant, (22)

plus theµ (unknown) constraints (11), which eliminate half
of the fermionic constants(ψ̃, π̃). Usually, the configuration
space variables can be obtained from Eqs. (21) and (22), as
functions of two integration constants, and this will be the
case of (21), from which the bosonic variablesq can be ob-
tained in terms of̃p, q̃, ψ and π̃. However, before solving
the Eqs. (22), we can solve the Eqs. (20). Indeed, the fact
that (11) are second class means thatfα are invertible, and a
solution forψ in terms ofp̃ andπ̃ can be obtained, after sub-
stitutingq by its solution. If this solution is then substituted
in (22),µ relations among the constantsπ̃ andψ̃ arise, which
will eliminate half of them.

Consistently with these results, we have that, for an ac-
tion with standard kinetic fermionic term, as a consequence
of (20) the boundary condition forF will be fulfilled:

δF (t1) = δψα(t1)
∂F

∂ψα
(t1) = δψα(t1)fα(t1)

= δψα(t2)fα(t2) = δF (t2). (23)

Thus, all these equations (19-22), must be solved to
get the complete solution for the Hamilton principal func-
tion (Hpf),

F (Q, P̃ , t) = S(Q, P̃ , t) + α,

as well as the solution for the configuration space vari-
ables(q, ψ), depending on the correct number of integration
constants, two for each bosonic degree of freedom, and one
for each fermionic degree of freedom.

3. A systemL = ψψ̇L = ψψ̇L = ψψ̇

In this section, a simple instance is solved to show the prob-
lems which appear when fermionic variables are present.

Consider a system characterized by the Lagrangian
L = ψψ̇, the Euler-Lagrange equation iṡψ = 0. The
canonical momentum to the fermionic variableψ, is
given by π=∂L/∂ψ̇=−ψ. The Hamiltonian is given by
H0=ψ̇π−L=ψ̇π−ψψ̇=ψ̇(π+ψ), where the velocityψ̇ can
be handled as a new parameter. It vanishes, weakly, accord-
ing to the second class constraint.

Rev. Mex. F́ıs. 49 (5) (2003) 415–420
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Now the HJ formalism is applied, by substituting
π = ∂S/∂ψ. In this case the Hamiltonian vanishes and the
HJ equation is given by

∂S

∂t
= 0, (24)

where the action depends on the configuration variableψ and
on one constant fermionic parameterρ, i.e., S = S(ψ, ρ). We
have as well the equations,

∂S

∂ψ
= −ψ,

∂S

∂ρ
= β, (25)

whereβ is a constant Grassman parameter.
Due to the fact that the action is bosonic, it must have the

form

S = a(t)ρψ. (26)

Applying to it the first equation in (25), we getψ = aρ, then
we apply the second equation andβ = aψ = a2ρ. Thusa is
a constant, as would result also from (24). Thus, the constant
fermion solution of the Euler-Lagrange equations turns out.

4. Interacting system

In this section, an interacting system with two fermionic vari-
ablesψ1 andψ2, such that each one are the complex conju-
gated from the otherψ1

∗ = ψ2, will be discussed:

L = i(ψ1ψ̇2 + ψ2ψ̇1) + kψ1ψ2. (27)

The Euler-Lagrange equations are given by

iψ̇1 +
k

2
ψ1 = 0, iψ̇2 − k

2
ψ2 = 0, (28)

with solutions

ψ1(t) = ξ1e
(ik/2)t, ψ2(t) = ξ2e

(−ik/2)t. (29)

The Hamiltonian of this system is given by

H = −kψ1ψ2, (30)

which must be accompanied by the second class constraints,
as definitions of the momenta,π1 = −iψ2 andπ2 = −iψ1.
As a consequence, the Hpf will be the solution of the follow-
ing system of equations:

H(ψ) +
∂S(ψ, ρ, t)

∂t
= 0, (31)

iψ2 +
∂S(ψ, ρ, t)

∂ψ1
= 0, (32)

iψ1 +
∂S(ψ, ρ, t)

∂ψ2
= 0, (33)

β1 − ∂S

∂ρ1
= 0, (34)

β2 − ∂S

∂ρ2
= 0, (35)

where, ρi = π̃i and βi = ψ̃i are constant odd Grass-
mann quantities, which satisfyρ∗1 = −ρ2, β∗1 = β2, and
ψ̇1π1+ψ̇2π2 is real. Seemingly, there are too many constants
for a first order system. However, as will be shown further,
the role of the Eqs. (34) and (35) is precisely to establish rela-
tions, corresponding to the second class constraints, between
them.

In order to solve this system, we write the most general
even Grassmann function of the odd Grassmann quantities
ρ1, ρ2, ψ1, ψ2:

S(ψ, ρ, t) = S0(ρ, t) + S1(ρ, t)ψ1 + S2(ρ, t)ψ2

+S3(ρ, t)ψ1ψ2, (36)

where the fermionic functions are given byS1(ρ, t)=s1(t)ρ1

andS2(ρ, t)=s2(t)ρ2, and the bosonic ones by

S0(ρ, t)=s0(t)+s01(t)ρ1ρ2

S3(ρ, t)=s30(t)+s3(t)ρ1ρ2.

From the reality ofS, we get that the coefficientss0, s01, s30

ands3 must be real ands∗1 = s2.
Further we have the conditions (32-35)

∂S

∂ψ1
= −s1ρ1 + (s30 + s3ρ1ρ2)ψ2 = −iψ2, (37)

∂S

∂ψ2
= −s2ρ2 − (s30 + s3ρ1ρ2)ψ1 = −iψ1, (38)

∂S

∂ρ1
= s01ρ2 + s1ψ1 + s3ρ2ψ1ψ2 = β1, (39)

∂S

∂ρ2
= −s01ρ1 + s2ψ2 − s3ρ1ψ1ψ2 = β2. (40)

The first two equations, can be solved forψ1 andψ2, thus
obtaining

ψ1 = − s2

s30 − i
ρ2, ψ2 =

s1

s30 + i
ρ1, (41)

which substituted in the second two [Eqs. (39) and (40)] give
us,

β1 =
(

s01 − s1s2

s30 − i

)
ρ2, (42)

β2 =
(
−s01 +

s1s2

s30 + i

)
ρ1. (43)

These equations could be identified with the second class
constraints, letting only two free constants, as corresponds
to fermionic theories.

Taking into account the fact thatβ1, β2, ρ1 andρ2 are
constant, we see that the coefficients in (42) and (43) are
themselves constant, that is

s01 − s1s2

s30 − i
= A, s01 − s1s2

s30 + i
= A∗, (44)
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if we setA = u− iv, we get now

s01 = vs30 + u, (45)

s1s2 = v(s2
30 + 1). (46)

Now, in order to write the HJ equation, we note that it has
to be written before substituting (45) and (46) into the Hpf,
because the time derivative in the HJ equation does not act on
the fermionic variablesψ. Thus we have,

∂S

∂t
+ H = ṡ0 + ṡ01ρ1ρ2 + ṡ1ρ1ψ1 + ṡ2ρ2ψ2

+(ṡ30 + ṡ3ρ1ρ2)ψ1ψ2 − kψ1ψ2 = 0. (47)

Taking into account (41) we get

ṡ0 +
1

s2
30 + 1

[
ṡ01(s2

30 + 1)− ṡ1s2(s30 + i)

− s1ṡ2(s30 − i) +s1s2(ṡ30 + k)] ρ1ρ2 = 0, (48)

or, equivalentlyṡ0 = 0, and

(s2
30 + 1)ṡ01 − s30(s1ṡ2 + s2ṡ1) + i(s1ṡ2 − s2ṡ1)

+s1s2(ṡ30 + k) = 0. (49)

From the fact thats1 is the complex conjugated ofs2 and
s30 is real, and writing in (46)v = aa∗, we get

s1 = a∗(s30 + i)eiτ , s2 = a(s30 − i)e−iτ . (50)

These equations, together with (45), substituted back
into (49), give2τ̇ + k = 0, i.e.

τ = −k

2
t + c. (51)

Thus, if we setξ = −ae−icρ2, we obtain

ψ1 = ξe
i
2 kt (52)

ψ2 = ξ∗e−
i
2 kt, (53)

which coincide with the solutions (29).
Therefore, the Hpf is given by

S = s0 +
(

s01 − s30s1s2

s2
30 − 1

)
ρ1ρ2 = s0 − u

aa∗
ψ1ψ2, (54)

wheres0 is constant.
Note that the undetermined functionss30 ands3, do not

appear neither in the solutions (52, 53) nor in the Hpf. This
can be understood from the form of the Hpf (36) and the
Eqs. (41), as the terms containing these functions vanish
identically.

Canonical transformation point of view

Let us consider the solution to the Eqs. (39) and (40) forψ1

andψ2. We can get firstψ1 from (39), then we substitute it
in (40), from which we get

ψ1=
1
s2
1

(
s1β1−s01s1ρ2−s3

s2
ρ2β1β2−s01s3

s2
ρ1ρ2β1

)
, (55)

ψ2=
1
s2
2

(
s2β2+s01s2ρ1+

s3

s1
ρ1β1β2−s01s3

s1
ρ1ρ2β2

)
. (56)

These equations can be written in the form of canonical trans-
formations. In order to see it, taking into account the last
observation of the preceding section, let us setS0 = 0, and
s30 = 0, in this case (55,56) are given by

ψ1 =
β1

s1
− s3

s2
1s2

ρ2β1β2, (57)

ψ2 =
β2

s2
+

s3

s2
2s1

ρ1β1β2. (58)

Note that these equations are symmetrical under the inter-
changeψ1 ↔ ψ2, ρ1 ↔ ρ2 and β1 ↔ β2. If we define
ψo

1 = s−1
1 β1, ψo

2 = s−1
2 β2, πo

1 = −s1ρ1, πo
2 = −s2ρ2,

α = (s1s2)−1s3, and the functionG = πo
1π

o
2ψ

o
1ψ

o
2, Eqs. (57)

and (58) can be written as

ψ1 = ψo
1 + α

∂G

∂πo
1

, (59)

ψ2 = ψo
2 + α

∂G

∂πo
2

. (60)

Similarly, the momenta (37,38), can be rewritten as

π1 = πo
1 + α

∂G

∂ψo
1

, (61)

π2 = πo
2 + α

∂G

∂ψo
2

. (62)

In vectorial notation, these equations can be expressed by a
single equation

∆u = u− uo = αJ
∂G
∂u

, (63)

whereu = (ψ1, ψ2, π1, π2), uo = (ψo
1 , ψo

2 , πo
1 , πo

2), andJ
is the corresponding Jacobian matrix.

As it can be observed, the functionG plays the role of the
generating function of a canonical transformation (63), with a
finite parameterα. The solution needs additional conditions,
for example “initial conditions”ψo

1 ∝ πo
2 andψo

2 ∝ πo
1. This

way to write the solution to the HJ equation, could be useful
for computing the Van Vleck determinant for supersymmet-
ric theories [5].

Rev. Mex. F́ıs. 49 (5) (2003) 415–420
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4.1. Quantum mechanical features

Defining, ψ = (ψ1, ψ2), ψo = (ψo
1, ψ

o
2), the Eqs. (57)

and (58) can be rewritten as follows

ψ = ψo exp (αS). (64)

Indeed, takingS0 = 0 as in the preceding section,

S = −(πo
1ψ

o
1 + πo

2ψ
o
2 + απo

1π
o
2ψ

o
1ψ

o
2), (65)

hence

ψo
1 exp (αS) = ψo

1 + απo
2ψ

o
1ψ

o
2 = ψ1,

ψo
2 exp (αS) = ψo

2 − απo
1ψ

o
1ψ

o
2 = ψ2.

Further, considering that

∂ψo

∂t
= (− ṡ1

s1
ψo

1,−
ṡ2

s2
ψo

2), (66)

it can be seen thatψ is a solution of the following first order
partial differential equation

1
α

∂ψ

∂t
=

(
Σ +

α̇

α
S −H

)
ψ, (67)

where

Σ =
1
α



− ṡ1

s1
0

0 − ṡ2

s2


 . (68)

A particular case turns out when the permutational symmetry
in Eqs. (57) and (58) is broken by the application of second
class constraints (41). If moreover Eqs. (50) are applied, we
get

ṡ1

s1
= i

k

2
,

ṡ2

s2
= −i

k

2
. (69)

In this caseΣ can be written as

Σ=
1
α




i
k

2
0

0 −i
k

2


=i

k

2α

(
1 0
0 −1

)
=i

k

2α
σ3. (70)

If for simplicity s3 is assumed to be a constant, Eq. (67) is
rewritten as

1
α

∂ψ

∂t
=

(
i

k

2α
σ3 −H

)
ψ. (71)

This equation resembles the Schrödinger equation. Note
that, due to the nilpotency of fermionic degrees of freedom,
Hψ = 0. However, if the Lagrangian (27) would be extended
to a supersymmetric one, by the addition of two bosonic de-
grees of freedom, second order bosonic partial derivatives
would appear in Eq. (71) and the Schrödinger equation of
a spinning system of two degrees of freedom would turn out.

Due to Eq. (64), we can make the identificationα ≡ 1/~.
Hence, taking into account (50), we have the following rela-
tion:

~ =
|a|2
s3

. (72)
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