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The Hamilton-Jacobi formalism for fermionic systems is studied. We derive the HJ equations from the canonical transformation proced
taking into account the second class constraints typical of these systems. It is shown that these constraints ensure the consistency
solution, according to the characteristics of fermionic systems. The explicit solutions for simple examples are computed. Some asf
related to canonical transformations and to quantization are discussed.
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Se estudia el formalismo de Hamilton-Jacobi para sistemas@aioois. Se derivan las ecuaciones de HJ basados en el procedimientc
de las transformaciones damcas, tomando en cuenta las constricciones de segundaipiass tle estos sistemas. Se muestra que estas
constricciones aseguran la consistencia de la smiyde acuerdo a las caradsicas de los sistemas fermnicos y se calculan las soluciones
explicitas para dos ejemplos simples. Se discuten algunos aspectos relacionados con las transformamarassycncuantizaon.

Descriptores: Hamilton-Jacobi; sistemas feramicos.

PACS: 31.15.Gy, 45.20.-d, 45.90.+t

1. Introduction of the usual concepts of classical analysis, whose properties,
nevertheless, are not of general validity when dealing with

The basic property of fermions, half-integer spin, is a prop.nilpotent quantities. In this formulation all the constraints of

erty of microscopic particles and is described by Quantunthe Hamiltonian formulation are kept as additional equations

Mechanics. However the classical mechanics of fermiondo the actual HJ equation. In Ref. 8 a formulation is given,

has been a very useful tool in their study, in particular re-which strongly relies on the Hamiltonian formulation.

garding their path integral formulation [1]. Their Lagrangian

. _ . . Here we give a formulation of the HJ equation for
and Hamiltonian formulations are well known, in particular

the Hamiltoni . f the Dirac f i ¢ sinaul fermionic systems, which is obtained as usual for bosonic
€ namittonian requires ot the Lirac formalism of SINgular v, jes from the variation of the action in canonical coordi-

systems [2, 3], as far as they hgve second. class constr.alnF.?ates’ considering the transformation to constant new coordi-
The understanding of the Hamilton Jacobi (HJ) formahsmnates [9]. As in the Gler formalism, we apply the “second
can be helpful to understand better quantum systems. It h% :

) : ; Tass” constraints characteristic of fermionic theories, as ad-
heen applied to singular systems, as is the case of gener&iﬁonal equations. We show that these equations have two
relativity in the case of the Wheeler-DeWitt equations. In

._important consistency consequences. First, from the way we
Sbtain the HJ equation, there are two integration constants for
: L . each fermionic degree of freedom, and we get a set of equa-
wave function [4]. For the WKB approximation of singular tions among these constants, which reduce their number to

systfe:nts, ;]n part|culatr ferrplonlc otnesb[f]_, Ittr\]NOLIi:SII ]E)e alslohalf, as it must be for a first order theory. Further, related to
usetut fo have a systemaltic way to obtain the OrMUldipis Jast fact, as noted in Ref. 10, boundary conditions have
tion. Here an effort is made with the aim to understand thi

. better. Althouah fermioni ¢ h b id Isto be added to fermionic actions. This means that also the
ISSu€ better. ougn termionic Systems have been WIdely, o ,q rator functions of canonical transformations must satisfy

studied, their HJ formulation has been less studied. It ha oundary conditions. It is shown that the mentioned equa-

been worke_d out for b osonic Constrame_d systems [61. W_herﬁons ensure that these boundary conditions are automatically
the constraints, obtained from the Hamiltonian formulatlon,Satisfied

are written as separated equations. For fermionic systems, a

technique to handle a particular problem in the HJ formalism  In order to verify the validity of the resulting equations,
was proposed in Ref. 1. However, the most general situawe consider two examples of simple fermionic systems. The
tion is not discussed. In Ref. 7 thelt@r formalism [6] is  solutions to these equations are found to be the same as the
generalized to include fermionic variables, by the applicatiorsolutions of the Euler-Lagrange equations.

of the Hamiltonian formalism as differential equations on the
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In the first section the Lagrangian and Hamiltonian for-  The Lagrangian (2) is first order in the fermionic vari-
malisms for bosonic and fermionic systems are reviewed. lables,i.e. the kinetic term is linear in fermionic velocities
the second section the HJ equation for fermionic systems iand the potential does not depend on them. Therefore there
given. In the next two sections illustrative fermionic systemsare primary constraints,
of one and two variables are considered. In the framework
of the second example, in the next section, the relation to ¢ =7 — fYq, ), @)
the canonical transformations is established in a more pre-
cise way and, in the last section, the relation to the quanturwhere f(q, ¢)) are odd Grassmann functions. In the Dirac
theory is discussed. formalism for constrained systems, these constraints turn out
to be second class. Further we suppose that there are no more
constraints. Thus, due to the fact that in the Hamiltonian (6)
the termi, 7 compensates the corresponding kinetic term
Let us consider a classical System describedlu}osonic’ in the Lagrangian, the canonical Hamiltonian does not de-
even Grassmann, degrees of freedpm= (¢1,qz,...,q,)  Pend on the fermionic momenta,
and p fermionic, odd Grassmann, degrees of freedom

2. Fermionic mechanics

¥ = (Y1,12,...,1,). These variables obey the relations H=H(Q,p,t). 8)
%9 4% =0 5ji=12....m Therefore, if the Lagrangian is purely fermionic, the Hamil-
Githa — haq; =0, tonian will be given by the potential.
Va¥p + Ve =0 B =120 ph (1) 2.1. Hamilton-Jacobi formalism for Grassmann vari-

In this case, the Lagrangian function depends ongtseon ables

the’s, and on their respective time derivatives . . .
¥ P In order to find the HJ equation for the preceding system, we

L= L(q, 1,4, P, t) = L(Q, Q, t), (2)  consider the variation of the action
whereQ = (¢, ). 2 .
If we variate the corresponding action S = /L(Q, Q,t)dt + BT
to 1
oL oL oL . 0L
55:/ (5(11'8"'5%6."‘51/)&84‘51/)&-) ) iy
R - [ or-H@pt)]de+ b1, ©)
then, in order to get the Euler-Lagrange equations, h
d / 0L oL where the second class constraints (7) and, as men-
T <8Q) T 90, 0 k=12...,n+u, (4 tioned in the preceding section, suitable fermionic bound-
k

ary conditions BT) added to the action, insure us
suitable boundary conditions must be imposed. For thehat the variation of the right hand side gives the cor-
bosonic variables it can be done as usual by fixing each ofect equations of motion.  For instance, if we con-
them at both extrema. However, for each of the fermionicsider the actionL=(i/2)g*?1o5—V (), then we have
degrees of freedom, as far as they are first order in the ver®=—(i/2)g*%15 and if we impose the boundary conditions
locities, only one boundary condition can be fixed. In this§[v,, (t1)+1a(t2)]=0, then

case, for consistency, suitable boundary terms must be added

to the action [10]. For example, if the fermionic kinetic term t2 .

iS Lin = (i/2)gaﬁwa¢ﬁ, then the corrected action is given 0S=68 / [%w“—HW, t)} dt+%z/)a(t1)7r°‘(t2)

by [10],

t1

i to
S — —g®Be(t ts), 5 .
59" Wa(t1)ip(t2) (%) =/(—6wa#"+wa6w‘*—5wa§5>
with the boundary condition&[t/, (t1) + ¥4 (t2)] = 0, that o “
iS ¥ (t2) = —1ha(t1) + &4, Where,, are constant anticom- t
muting quantities. B  af ov\
The Hamiltonian is given by - /5% (Zg Vs~ I ) 0- (10)
t1
H(Q,P,t)=gp+im—L=QP—L (6)

. Thus, the physical phase spaceds ¢+ u)-dimensional hy-
werep; = OL/9¢', 7 = 0L/, andP = (p, ). perplaneP, solution of (7).
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Let us glo a canonical transformation of coordinatesas well as
(Q,P) — (@, P). In this case the constraints (7) will trans- OF(O . )
; F(Q,P,t
form to some constraints = £2(Q). (20)

- M
$a(Q, P) = 0. (11) N o _
Additionally we have the second equation in (18), which can
To obtain the HJ equation a variation of these actions is dongye \written as

ta ~
) OF(Q, P,t W
05=6 {/ [QP—H(Q,p7 t)] dt+BT} =0, (12) (gﬁ) = ¢* = even Grassmann constant, (21)
t1 ~
F(Q,P,t ~
ta % = —1),, = odd Grassmann constant, (22)
L~ ~ o~ s
55'=5 / (GP—1'(@.P.0)] arv(BT) t =0, (13)
i plus thex (unknown) constraints (11), which eliminate half
) ) ) of the fermionic constantg), 7). Usually, the configuration
The relation between integrands is space variables can be obtained from Egs. (21) and (22), as
dF functions of two integration constants, and this will be the

QP - H(Q,p,t) = QP — H'(Q, P,t) + 5 T (14 case of (21), from which the bosonic variablgsan be ob-

_ _ tained in terms op, ¢, v and7. However, before solving
whereK = ((BT)" — BT)/(t, — t1) and F'is a function,  the Egs. (22), we can solve the Egs. (20). Indeed, the fact
whose dependence on the phase space coordinates andgg; (11) are second class means tffagre invertible, and a
time must be such that its variation at the boundary satisfiego|ytion fory in terms ofj and# can be obtained, after sub-

O[F(t2) — F(t1)] = 0. _ .- stituting ¢ by its solution. If this solution is then substituted
lfnow " = F(Q, P,t) — QP, then in (22), 1 relations among the constartands) arise, which
dF .OF :0F OF d «~- will eliminate half of them.
ar Q@ + PaTg + ot %(Q ), (15) Consistently with these results, we have that, for an ac-
tion with standard kinetic fermionic term, as a consequence
hence of (20) the boundary condition fdr will be fulfilled:
. J ~ . OF
oQ SF(ty) = &ba(tl)w(tl) = Stho (t1) f(t1)
:QF  OF d  ~ - “
HPopt T @ WP K () — S0a(t2) f(t2) = GF (). (23)
A factorization of this gives Thus, all these equations (19-22), must be solved to
. OF 3 . OF get the complete solution for the Hamilton principal func-
P——)+P((-1)%%Q - — -
Q ( 6Q> + (( ) Q 8P> tion (Hpf),
_(H+%Z‘_H/+K>:O’ (17) F(Q7P7t):S(Q7Pat)+aa

and additionally the constraints (7) and (11). The sign in theé*s well as the SOI'_“'t'On for the configuration space varl-

iddle t ds to the interch SaindP. E ables(q, v), depending on the correct number of integration
m.| eterm correspon sto e|r_1 _e.rc angé) nai”. Even constants, two for each bosonic degree of freedom, and one
with these constraints, the quantiti@sand P can be taken as  ¢or each fermionic degree of freedom.

independent, and we get
oF - oF oF

P=35 Q=(=1)""—5, H'=H+5-+K. (18) 3. AsystemL = ¢
If, as usual, the new coordinate3 = (p, 7) andQ = (4, 1;), In this section, a simple instance is solved to show the prob-
are assumed to be constant, which is guaranteéti i= 0 lems which appear when fermionic variables are present.
or, what is the sameil’ = K, then the HJ equation will be Consider a system characterized by the Lagrangian
in fact given by a system of equations. If the first equationL = ¥, the Euler-Lagrange equation 8 = 0. The
in (18) is applied to the last one and to (7), we get the HXanonical momentum to the fermionic variable, is
equation, given by n=0L/0y=—1. The Hamiltonian is given by
Ho=ym— L=y —ypyp=1(m+1), where the velocity) can
oF ~ OF ~ :
H|Q,=—(Q,P,1),t| + —(Q,P,t) =0, (19) be handled as a new parameter. It vanishes, weakly, accord-
dq ot ing to the second class constraint.
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Now the HJ formalism is applied, by substituting where, p; = #; and 3; = 1, are constant odd Grass-
m = 05/0¢. In this case the Hamiltonian vanishes and themann quantities, which satisfy; = —p2, 87 = [, and
HJ equation is given by Y171 +1hyms is real. Seemingly, there are too many constants
o9 for a first order system. However, as will be shown further,
i 0, (24)  therole of the Egs. (34) and (35) is precisely to establish rela-

_ ) ) ) tions, corresponding to the second class constraints, between
where the action depends on the configuration variglded  inem.

on one constant fermionic parameger.e., S = S(¢, p). We In order to solve this system, we write the most general
have as well the equations, even Grassmann function of the odd Grassmann quantities
oS oS P11y P2, Y1, P!
» Ci 25
o0 Y, o B, (25)

. S(vaat) :SO(p7t)+Sl(p7t)wl +52(P,t)¢2
Whereﬁ is a constant Grassman parameter.

Due to the fact that the action is bosonic, it must have the +S3(p, t)ih1tba,  (36)
form
where the fermionic functions are given By(p, t)=s1(t)p1
S = a(t)py. (26)  andSz(p,t)=s2(t)p2, and the bosonic ones by
Applying to it the first equation in (25), we gét= ap, then So(p. t)=s0(t)+s01 (¢
we apply the second equation afid= ai) = a?p. Thusa is o(p, t)=s0(t)+s01(t)p1p2
a constant, as would result also from (24). Thus, the constant Sz(p,t)=s30(t)+s3(t)p1p2.

fermion solution of the Euler-Lagrange equations turns out. . o
From the reality ofS, we get that the coefficients, so1, s30

andsz must be real and} = s,.

4. Interacting system Further we have the conditions (32-35)

In this section, an interacting system with two fermionic vari- oS )
ablesy andys, such that each one are the complex conju- g, = ~51A1 + (530 + s3p1p2) Y2 = —ithy, (37)
gated from the othep;™ = ), will be discussed: o9
L= i(1/11¢.2 + ¢2¢1) + kp11hs. 27) 57#2 = —sap2 = (a0 + sapip2)n = —ivn, (38)
. i i oS
The Euler-Lagrange equations are given by 871 — so1p2 + S191 + S3path1ths = B, (39)
Wity =0, i — 542 =0, (28) 08
9,, = St $212 — s3p1P12 = [a. (40)
with solutions P2
bi(t) = 6le(m/z)t ba(t) = 526(71-1@/2):5_ (29) The first two equations, can be solved fgrandz),, thus
’ obtaining
The Hamiltonian of this system is given by
P = — i P2, oy = & P1s (41)
H = —ki1¢, (30) S30 — 1 530 + 1
which must be accompanied by the second class constrainthich substituted in the second two [Egs. (39) and (40)] give
as definitions of the momenta; = —ivy» andmy = —it)y. us,
As a consequence, the Hpf will be the solution of the follow-
ing system of equations: B = <801 — S:Olsf z) P2, (42)
IS¢, p,t)
H()+ ———"= =0, (31) 518
() ot B2 = (—501 + . 1—iz) p1- (43)
w2 oy 7 These equations could be identified with the second class
a5, p, t) constraints, letting only two free constants, as corresponds
iy + # =0, (33) to fermionic theories.
2 Taking into account the fact that,, 5>, p1 andp, are
8 — 95 —0 (34) constant, we see that the coefficients in (42) and (43) are
! op1 ’ themselves constant, that is
oS 5152 5152
- — =0, 35 — - =A, — - = A", 44
65 9 (39) 501 S50 — i 501 530+ 1 (44)
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if we setA = u — v, we get now

419

Canonical transformation point of view

S01 = VS30 + U, (45) Letus consider the solution to the Egs. (39) and (40)/for
9 46 andiy,. We can get first); from (39), then we substitute it
s182 = (530 +1). 46) i (40), from which we get
Now, in order to write the HJ equation, we note that it has 1 50153

53
to be written before substituting (45) and (46) into the Hpf, ¢1=82(9161—80151,02—8pzﬁ1ﬁ2—
. . . . . 2
because the time derivative in the HJ equation does not act on

the fermionic variableg. Thus we have,

oS . ) . .
2t H = 50+ 501p1p2 + 519191 + 52212
+(830 + $3p1p2) 102 — kprapa = 0. 47)
Taking into account (41) we get
$ +#[t§ (530 + 1) — 5152(s30 + 1)
0 5%0 +71 01\230 192(230
— 51é2(530 — Z) +5152(<§30 + k)] p1p2 = O7 (48)
or, equivalentlys, = 0, and
(520 + 1)d01 — 830(S182 + 5281) + i(5180 — 8251)
+8182<é30 + ki) =0. (49)

From the fact thas; is the complex conjugated ef and
s3p is real, and writing in (46) = aa™, we get

T

s1=a"(s30 +1)e', sy =a(sso—i)e ", (50)

These equations, together with (45),
into (49), give27 + k£ =0, i.e.

T= —gt +ec. (51)
Thus, if we set = —ae~“p,, we obtain

Yy = et (52)

Yy = e M, (53)

which coincide with the solutions (29).
Therefore, the Hpf is given by

S$30S51S u
S =59+ (S(n — ?;0 ! 2) pP1pP2 = So — *¢1¢27 (54)
s39— 1 aa

wheres is constant.
Note that the undetermined functiorg, andss, do not

P10251), (55)

52

1 S S01S
¢2:2(9252+30132p1+3p1ﬁ1ﬂ2— . 3919252)' (56)
s3 S1 S1

These equations can be written in the form of canonical trans-
formations. In order to see it, taking into account the last
observation of the preceding section, let us&gt= 0, and

s3o = 0, in this case (55,56) are given by

S
P = A_ 23 p2152, (57)
S1 5182
B2 83
Yy = — + —p15152. (58)
S9 5551

Note that these equations are symmetrical under the inter-
changey; < 9, p1 <« p andf; «— fF2. If we define

V9 = 5781, ¥S = 55 B, T = —s1p1, TS = —s2p2,

a = (s152) " ts3, and the functionty = 7¢73y {3, Egs. (57)

and (58) can be written as

o oG

Y1 = Y7 + 0‘875” (59)
oG

o =Yg + as (60)
2

substituted back

Similarly, the momenta (37,38), can be rewritten as

, 0G
™ =7 +a—

61
i (61)

(62)

Ty =79 + ——.

Y3

In vectorial notation, these equations can be expressed by a
single equation

Au:u—uozaJ@,

Ou (63)

whereu = (Y1, 99,71, 72), u® = (Y9, 99,79, 79), and.J
is the corresponding Jacobian matrix.

As it can be observed, the functiéhplays the role of the
generating function of a canonical transformation (63), with a
finite parametetv. The solution needs additional conditions,

appear neither in the solutions (52, 53) nor in the Hpf. Thisfor example “initial conditions{ « 7§ and§ « 7§. This
can be understood from the form of the Hpf (36) and theway to write the solution to the HJ equation, could be useful
Egs. (41), as the terms containing these functions vanisfor computing the Van Vleck determinant for supersymmet-

identically.

ric theories [5].

Rev. Mex. 5. 49 (5) (2003) 415-420



420 C. RAMIREZ AND P.A. RITTO

4.1. Quantum mechanical features In this casex can be written as
Defining, v = (¥1,v2), v° = (¥§,v9), the Egs. (57) k
and (58) can be rewritten as follows 1 i 0 k /1 0 K
Y==— | =i =i—o3. (70)
200\ 0 —1 2c¢

1 = °exp (aS). (64) *\o —i§

Indeed, takingSy; = 0 as in the preceding section,

oo s oo oo If for simplicity sz is assumed to be a constant, Eq. (67) is
S = —(n{y] + m3Y5 + antniYivs), (65 rewritten as

hence o "
1 .
Wi exp (@8) = ¥F + angutys = ¢, aatZ(ba@—fgdh (71)

P35 exp (aS) = ¥§ — am{yis = . _ _ _ _
This equation resembles the Sa@tinger equation. Note

Further, considering that that, due to the nilpotency of fermionic degrees of freedom,
o s, 82, 66 H1 = 0. However, if the Lagrangian (27) would be extended
ot (_gwl’ ‘g%)’ (66) to a supersymmetric one, by the addition of two bosonic de-

grees of freedom, second order bosonic partial derivatives
would appear in Eq. (71) and the Sodnger equation of
a spinning system of two degrees of freedom would turn out.

it can be seen that is a solution of the following first order
partial differential equation

l@i} = (2 4 95 - H> W, (67) Due to Eqg. (64), we can make the identificatior= 1/%.
a ot o Hence, taking into account (50), we have the following rela-
where tion:
51
EEN B _ la?
Y= . (68) h="L. (72)
al g _52 53
S2

A particular case turns out when the permutational symmetry
in Egs. (57) and (58) is broken by the application of Secon%cknowledgments
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