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A new solution to the three-body problem interacting through gravitational forces with equal masses and zero angular momentum, has been
recently discovered. This is a periodic symmetric orbit where the particles follow a figure eight trajectory in the plane. They alternate
between six isosceles-aligned positions and six isosceles triangle positions in a periodic orbit composed by twelve equivalent segments. The
condition of zero angular momentum is considered assuming that the three masses can be equal or different, yielding in both cases the same
final expression for the kinetic energy. We found that the property of this orbit of having isosceles configurations, is a general feature to be
found in any orbit of the equal-mass case, associated with an increase ofπ/6 in one angle of our set of coordinates. The figure-eight solution
is determined by expanding two of our coordinates in a Fourier series of that angle, by using the Jacobi-Maupertuis principle as opposed to
the standard Lagrangian action. The time and the angle conjugated to the angular momentum are also expressed in terms of that same angle.

Keywords: Three-body problem; zero angular momentum; equal-mass case; figure-eight orbit; Jacobi’s action.

Recientemente se descubrió una solucíon nueva del problema de tres cuerpos que interaccionan mediante fuerzas gravitacionales entre masas
iguales y con momento angular cero. Se trata de unaórbita siḿetrica períodica, en la cual las partı́culas siguen la misma trayectoria con
forma de ocho en el plano. Hay una alternancia entre seis posiciones isósceles alineadas y seis posiciones triangulares isósceles en la
órbita, compuesta por doce segmentos equivalentes. La condición de momento angular cero se considera con el supuesto de que las tres
masas pueden ser iguales o diferentes, dando lugar en ambos casos a la misma expresión final para la energı́a cińetica. Encontramos que
la propiedad de estáorbita de tener configuraciones isósceles, es una caracterı́stica general que se encuentra en cualquierórbita del caso de
masas iguales, asociada con un incremento deπ/6 en unángulo de nuestro conjunto de coordenadas. La trayectoria con forma de ocho se
obtiene mediante la expresión de dos de nuestras coordenadas como una serie de Fourier de dichoángulo, haciendo uso del principio de
Jacobi-Maupertuis en lugar de la acción est́andar de Lagrange. El tiempo y elángulo conjugado al momento angular se encuentran también
en t́erminos del mismóangulo.

Descriptores: Problema de tres cuerpos; momento angular nulo; caso de masas iguales;órbita con forma de ocho; forma de Jacobi del
principio de Maupertuis.

PACS: 45.10.-b; 45.10.Db; 45.50.Jf

1. Introduction

A new solution to the three-body problem, interacting by
gravitational forces for three equal masses, was found re-
cently by Moore [1] and analized by Chenciner and Mont-
gomery [2], that increases the number of the classical par-
ticular solutions discovered by Euler in 1765 and Lagrange
in 1772, and focuses the interest of many researchers to look
for new particular cases of this motion.

The study in this paper was made in the coordinate system
of Piña and Jiḿenez [3-5], which was introduced recently for
considering the general three-body problem with three dif-
ferent massesm1, m2, m3 interacting through gravitational
forces. A brief summary of the most important features and
results follows. This coordinate system, with origin at the
center of mass, uses as dynamic coordinates the three Euler
anglesφ, θ, ψ that determine the position of the plane of the
particles and the orientation of the principal inertia directions
in this plane. The three other coordinates are two distances
R1, R2 related to the two independent moments of inertia and
one auxiliary angleσ. These last three coordinates are func-
tions only of the three masses and the three distances between
the particles.

The Lagrangian function to derive the equations of mo-
tion in the new coordinates is the difference of the kineticK
and potentialV energies

L = K − V ; (1)

the kinetic energy is given by

K = µ
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whereµ is the reduced mass

µ =
√

m1 m2 m3

m1 + m2 + m3
, (3)

the upper dot means time derivative;ω1, ω2, ω3, are the com-
ponents of the angular velocity vector in Euler angles [6]
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and the potential energy is

V = −Gm2m3

r23
− Gm3m1

r31
− Gm1m2

r12
, (5)

whereG is the gravitational constant. The distance between
particlesr23, r31, r12, in terms of the new coordinates can be
written from


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
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1 cos2 σ + R2
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(R2
2 −R2

1)2 sin σ cosσ


 , (6)

whereB is a square, constant matrix whose elements depend
only on the masses (see the previous papers, Refs. [3-5] for
more details).

2. Zero angular momentum

It is well known that the equations of motion are deduced
from the Hamilton variational principle by minimizing the
action

δ

t2∫

t1

dt(K − V ) = 0, (7)

over different trajectories with the same end points.
The equations have several constants of motion. Besides

the conservation of linear momentum that has been accounted
for by choosing the origin of position vectors at the center of
mass and assuming that the center of mass is at rest, we also
have the energy constant

E = K + V, (8)

and the conservation of the angular momentum vector [5],
which can be written as

L = G (
R2

1ω1, R
2
2ω2, (R2

1 + R2
2)ω3 − 2 R1 R2σ̇

)T
, (9)

whereG is the rotation matrix in Euler angles. This matrix
transforms from the frame determined by the three principal
inertia directions to the inertial frame. Its form in terms of
the Euler angles is selected with the same definition as used
in many texts of dynamics [6]. A more explicit definition,
including a figure, was enclosed in our Ref. [3].

The focus of interest in this paper is on the three-body
problem when the angular momentum vector is the null vec-
tor. In this case, the first two components of the angular ve-
locity vector must be zero,

ω1 = ω2 = 0, (10)

which implies that the motion occurs in a constant plane. The
Euler rotations by anglesθ and φ are then supressed. As
a consequence, it is sufficient to take into account just the
rotation angleψ, instead of three Euler angles, in order to
transform from the inertial reference frame to the frame of
principal axes of inertia.

As a function of the new coordinates, the kinetic energy
becomes

K = µ
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Conservation of angular momentum in the plane is ex-
pressed by the fact that theψ coordinate is a cyclic variable,
and its conjugate momentum is therefore a constant which
from now on is actually equal to zero

pψ =
∂K

∂ψ̇
= −2 R1 R2σ̇ + (R2

1 + R2
2)ψ̇ = 0. (12)

In similar cases in which cyclic variables occur, it is con-
venient to follow the Routhian formalism, in which a new
Lagrangian functionR is defined as

R(R1, R2, σ, Ṙ1, Ṙ2, σ̇, pψ) = K − V − ψ̇pψ (13)

and usespψ as a constant parameter in the Euler-Lagrange
variational equations. But in this case of angular momentum
equal to zero,R simplifies to

R =
µ
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)
− V, (14)

which is of the form of an usual Lagrangian in the three co-
ordinates(R1, R2, σ), quadratic in the velocities, and with a
kinetic energy metric in orthogonal coordinates.

3. The equal mass case

For three equal masses, the Euler angles connecting the iner-
tial reference frame and the principal moments of inertia axes
are again used. Contrasting with the previous section, all of
the relations in this section are valid for arbitrary angular mo-
mentum.

However, in the three equal mass case

m = m1 = m2 = m3, (15)

the vectorsa andb previously given in papers [3-5] are not
well defined and new definitions are necessary.

Since the vector formed with the masses

m = (m1,m2,m3)

is now proportional to the(1, 1, 1) vector, the center of mass
equations are just

s1x + s2x + s3x = 0, s1y + s2y + s3y = 0, (16)

wheresjx, sjy, sjz are the position components of the three
particles in the frame of the principal directions of inertia.
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Two unit vectorsa andb exist, which are orthogonal to the
mass vector and orthogonal to each other

a ·m = b ·m = a · b = 0, (17)

that may be taken for convenience as

a =
(

1√
2
,− 1√

2
, 0

)
, (18)

b =
(

1√
6
,

1√
6
,− 2√

6

)
. (19)

The particle coordinates in the frame of the principal axes
of inertia are then written as linear combinations of these two
vectors

(s1x, s2x, s3x) = αa + βb (20)

and

(s1y, s2y, s3y) = γa + δb . (21)

The frame of the principal axes of inertia gives the additional
restriction

s1xs1y + s2xs2y + s3xs3y = 0, (22)

which imposes the condition that

αγ + βδ = 0 . (23)

In terms of the coefficients of Eqs. (20) and (21), the mo-
ments of inertia become

I2 =
∑

j

mjs
2
jx = m(α2 + β2) (24)

and

I1 =
∑

j

mjs
2
jy = m(γ2 + δ2) . (25)

The coefficients(α, β, γ, δ) may also be expressed in the
same form we have used in previous publications [3-5]

(
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γ δ

)
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(
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)(
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)

=
(

R2 cosσ R2 sin σ
−R1 sin σ R1 cos σ

)
, (26)

and the principal moments of inertia are written in terms of
the distancesR1 andR2 simply as

I1 = mR2
1 , I2 = mR2

2 . (27)

Explicitly, one has
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From these expresions, we compute the square of the distances of the particles in terms of the new coordinates as
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We have previously found [3-5] this form [cf. Eq. (6)] but
the constant matrix is much simpler in the equal mass case.
Computing the matrix product in (29), and rearranging in a
way that will show useful in the next pages, the right hand
side can also be expressed in terms of the angle2σ in the
form



r2
23

r2
31

r2
12


=(R2

1+R2
2)




1
1
1


+(R2

2−R2
1)




cos(2σ+ 2π
3 )

cos(2σ− 2π
3 )

cos(2σ)


 . (30)

The purely kinematic Eq. (30) implies an important re-
sult. If the angleσ is a multiple ofπ/6, then two of the dis-
tances are of the same magnitude, forming either an isosce-
les triangle or an isosceles collinear configuration. Assuming
thatσ increases monotonically with the dynamical evolution
of the system, whenever the angleσ has one of these values,
two of the sides are equal. The sequence of the pair of equal
distances having a particle at a common vertex is permuted
cyclically as shown in the following table, where the values
of the squares of the distances of the particles are expressed
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TABLE I. Values of the squares of the inter-particle distances for
the values of the angleσ when two sides are of the same length.

σ r2
23 r2

31 r2
12

0, 6π/6
3

2
R2

1 +
1

2
R2

2
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2
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1 +
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2
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2 2R2
2
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2
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2
R2

1 +
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2
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2

in terms of our coordinates for values ofσ equal to a multiple
of π/6. This is a necessary and sufficient condition for two of
the sides to be equal. The distances repeat their expressions
afterσ increases byπ.

These results are independent of the constant values of
the energy and of the angular momentum vector. They would
still hold even if the potential energy were different, as long
as it is only a function of the inter-particle distances. The
only relevant restriction is the equality of the three masses.

The Routhian formulation for zero angular momentum
can be employed with minor modifications in the three equal
mass case. Massµ is replaced by the common valuem of the
masses except for an irrelevant different factor of

√
3 in the

coordinatesR2
1 andR2

2. Additionally, the potential energy
assumes the simplest possible expression as a consequence
of the increased mass symmetry. Further results for the zero
angular momentum and equal mass case are obtained in the
following section.

4. The figure-eight orbit

In this section we study the figure-eight orbit for three equal
masses, discovered by Moore [1] and described by Chenciner
and Montgomery [2], which is a zero angular momentum so-
lution. It has remarkable symmetry properties that are here
described very simply in terms of our coordinates. Other
forms of representing the symmetries of this orbit have been
used by Chenciner and Montgomery [2] and Marchal [7].

These symmetries result from the following properties.

1. A cyclic permutation of the particles is equivalent to a
shift in theσ value by an angle2π/3, as follows from
the property

(
1√
2

−1√
2

0
1√
6

1√
6

− 2√
6

)


0 0 1
1 0 0
0 1 0



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−√3
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3
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−1
2

) (
1√
2

−1√
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0
1√
6

1√
6

− 2√
6

)
, (31)

where the components of the basis vectorsa andb,
grouped in a matrix as in Eq. (28), are left-transformed
or right-transformed with equivalent result.

2. In a similar way, permutation of particles 1 and 2 is
equivalent to a change of sign of vectora

(
1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6

) 


0 1 0
1 0 0
0 0 1




=
( −1 0

0 1

) (
1√
2

− 1√
2

0
1√
6

1√
6

− 2√
6

)
. (32)

But this is also equivalent to a change of sign of coor-
dinatesσ andR2 as follows from
( −1 0

0 1

)(
cosσ sin σ

− sin σ cosσ

)( −1 0
0 1

)

=
(

cos σ − sinσ
sin σ cosσ

)
. (33)

Denote byX(t) the coordinates of the three particles in
the inertial system,

X(t)=G
(

s1x s2x s3x

s1y s2y s3y

)
=

(
cosψ − sin ψ
sin ψ cos ψ

)

×
(

s1x s2x s3x

s1y s2y s3y

)
. (34)

Calling T the period of the orbit, one of the symmetries
of the orbit is expressed in matrix notation as

X(t + T/6) =
( −1 0

0 1

)
X(t)




0 0 1
1 0 0
0 1 0


 . (35)

This symmetry means that when time is increased by one-
sixth of the period(t→t + T/6), the particle coordinates are
permuted cyclically(1→3→2→1), with a change of sign in
the horizontal coordinate along the symmetry axis intersect-
ing three points of the orbit. In terms of our coordinates, this
symmetry implies an increase ofσ by π/3 and a change of
sign of theψ andR1 coordinates, while theR2 coordinate re-
peats its value (since it is periodic in time with periodT/6).
The square of the transformations representing this symmetry
implies just a cyclic permutation of the particles when time
is increased byT/3 and simultaneouslyσ increases its value
by 2π/3.

The orbit has another symmetry, expressing time reversal
invariance, namely

X(−t) =
( −1 0

0 −1

)
X(t)




0 1 0
1 0 0
0 0 1


 , (36)
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which expresses the permutation of particles 1 and 2, with
a change of sign of the two coordinates of the three
particles. This is equivalent in our coordinates to a change
of sign ofσ andR1. These quantities are therefore odd func-
tions of time, andR1 should also be an odd function ofσ. On
the other hand, the coordinatesψ andR2 are even functions
of time and even functions ofσ.

Combination of these last two symmetries implies that
the orbit can be considered to be formed by twelve equivalent
segments. If the orbit is parametrized byσ, this requires that
R2

2 andR2
1 are functions ofcos 6σ. Summing up the proper-

ties ofR1 andR2, we put forward that they can be satisfied
by Fourier series of the forms

R1(σ) = sin(3σ)
∞∑

j=0

bj cos(6jσ), R2(σ) =
∞∑

j=0

cj cos(6jσ), (37)

whereb∗ andc∗ are constant Fourier coefficients.
As a consequence, the determination of the trajectory can be simplified eliminating the time by using Jacobi’s form [8] of

Maupertuis’ principle, which gives

0 = δ

π/6∫

0

√
2(E − V )

(
(dR1)2 + (dR2)2 +

(R2
2 −R2

1)2

R2
1 + R2

2

(dσ)2
)

. (38)

The formulation in terms of this variational principle, instead
of Hamilton’s principle (7), has the advantage of reducing the
number of dependent coordinates from four to two.

Substitution of the Fourier series (37) forR1(σ) and
R2(σ) in the integral of this variational problem gives Ja-
cobi’s action as a function of the parametersb∗ andc∗. These
parameters are then varied in an iterative procedure that re-
duces the value of the action until no further decrease can be
obtained. In this form an aproximation to the equation of the
orbit is found.

The angleψ(σ) can be obtained from the angular mo-
mentum conservation [Eq. (12)] as

ψ(σ) =

σ∫

π/6

dσ
2R1R2

R2
1 + R2

2

. (39)

In particular, the slope angle between the isosceles collinear
configuration and the symmetry axis (of the orbit and of the
isosceles triangular configuration) is given by the integral

−ψ(0) =

π/6∫

0

dσ
2R1R2

R2
1 + R2

2

. (40)

The relation between theσ coordinate and time follows
from energy conservation

t(σ)=

σ∫

0

dσ

√√√√√√

(
dR1

dσ

)2

+

(
dR2

dσ

)2

+
(R2

2−R2
1)

2

R2
1+R2

2

2(E−V (σ))
. (41)

The period of the orbit can thus be computed from

T=12

×
π/6∫

0

dσ

√√√√√
(

dR1
dσ

)2
+

(
dR2
dσ

)2
+

(R2
2−R2

1)
2

R2
1+R2

2

2(E−V (σ))
. (42)

5. Numerical results

We have been able to reproduce with some accuracy C.
Simó’s [2,9] and D. Viswanath’s [10] numerical computa-
tions for the figure eight orbit, finding the first Fourier coeffi-
cients which minimize the integral in (38). Our values are re-
ported in the following table. All our computations, made in
double precision, used the same physical units reported in the
first page of Chenciner and Montgomery’s publication [2].
We have used the energy valueE = −1.28714199563186,
consistent with the extremely precise computations of Simó
and Viswanath. The initial valueR2(0) =

√
2, fixes the scale

of our physical units withm1 = m2 = m3 = G = 1. For
dR1(0)/dσ, instead of using Siḿo’s and Viswanath’s results,
we chose a value2.17039427473812, determined by a com-
promise between minimization of the Jacobi integral and ful-
fillement of the condition

I =
∫ π/6

0

dσ

√√√√2(E − V )

[(
dR1

dσ

)2

+
(

dR2

dσ

)2

+
(R2

2 −R2
1)2

R2
1 + R2

2

]
= −E T/6 , (43)

within double precision.
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This equation is a direct consequence of the virial theo-
rem, written in terms of theσ coordinate and should be sat-
isfied by the exact solution. Transforming this integral to the
time integration variable we obtain the value of the action
predicted by the virial theorem∮

dt(K − V ) = −3E T . (44)

This result is compatible with the value published by
Chenciner and Montgomery [2] if one uses Viswanath’s [10]
physical units.

These values predict Siḿo’s orbit and the val-
ues I = 1.357058258032642, T = 6.32591398293920 and
−ψ(0) = 0.245547563748942, which are close to the re-
ported numbers.

TABLE II. Fourier coefficients of theR1(σ) andR2(σ) coordinates
as they appear in Eqs. (37)

j bj cj

0 5.83253354692453×10−1 1.36151499375215×10+0

1 1.12255306874746×10−1 4.34551784798245×10−2

2 2.12208094325769×10−2 7.15968013904149×10−3

3 4.95111334363167×10−3 1.55379542791284×10−3

4 1.28442417181987×10−3 3.85163088496634×10−4

5 3.55233980418980×10−4 1.03300085959211×10−4

6 1.02379675997835×10−4 2.91885621732155×10−5

7 3.02059195873733×10−5 8.56013124696136×10−6

8 8.90024768111640×10−6 2.58177637808029×10−6

9 2.47208813196311×10−6 7.96722966662622×10−7

10 5.37481455254816×10−7 2.48770592821083×10−7

11 1.53809898323867×10−8 7.19630834119502×10−8

12 -6.24885009256139×10−9 2.84804853491605×10−9

13 1.10979730943712×10−8 3.78721637622082×10−10

14 7.43152755167694×10−11 1.84190507506145×10−10

15 1.39383449382033×10−11 5.78053531587408×10−11

16 1.91820131557633×10−11 4.50774814987822×10−12

6. Relation between our coordinates and other
coordinates

There are simple relations between our coordinates and the
coordinates that have been used by other authors in the equal-
mass case.

Define polar-like coordinates (with an extra one-half fac-
tor) for theR1 andR2 variables and forσ, one-half of theθ
angle

R1 = r cos φ/2, R2 = r sin φ/2, σ = θ/2. (45)

Then the metric associated with the kinetic energy for
the zero angular momentum case becomes the Chenciner-
Montgomery spherical-like expression [2]

ds2 = dr2 +
r2

4
(cos2 φdθ2 + dφ2). (46)

However, in this paper, we found that this relation holds even
for three unequal masses.

In addition, our Eq. (30) relating the sides of the triangle
to the coordinates, becomes




r2
23

r2
31

r2
12


=r2




1

1

1


 +r2 cos2 φ




cos(θ+ 2π
3 )

cos(θ− 2π
3 )

cos θ


 , (47)

that coincides with Hsiang’s Eqs. [11], quoted by Chenciner
and Montgomery [2], but which is valid only in the equal-
mass case.
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Mex. F́ıs.48 (2002) 443.
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