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On the figure eight orbit of the three-body problem
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A new solution to the three-body problem interacting through gravitational forces with equal masses and zero angular momentum, has
recently discovered. This is a periodic symmetric orbit where the particles follow a figure eight trajectory in the plane. They alterng
between six isosceles-aligned positions and six isosceles triangle positions in a periodic orbit composed by twelve equivalent segments
condition of zero angular momentum is considered assuming that the three masses can be equal or different, yielding in both cases the
final expression for the kinetic energy. We found that the property of this orbit of having isosceles configurations, is a general feature tc
found in any orbit of the equal-mass case, associated with an increagé iof one angle of our set of coordinates. The figure-eight solution

is determined by expanding two of our coordinates in a Fourier series of that angle, by using the Jacobi-Maupertuis principle as oppose
the standard Lagrangian action. The time and the angle conjugated to the angular momentum are also expressed in terms of that same

Keywords: Three-body problem; zero angular momentum; equal-mass case; figure-eight orbit; Jacobi’s action.

Recientemente se descubtina soludn nueva del problema de tres cuerpos que interaccionan mediante fuerzas gravitacionales entre ma
iguales y con momento angular cero. Se trata detrbéa simétrica perbdica, en la cual las paculas siguen la misma trayectoria con
forma de ocho en el plano. Hay una alternancia entre seis posicidse®liss alineadas y seis posiciones triangulaescédes en la
orbita, compuesta por doce segmentos equivalentes. La comdiei momento angular cero se considera con el supuesto de que las tre:
masas pueden ser iguales o diferentes, dando lugar en ambos casos a la mismandipakpara la enefg cirgtica. Encontramos que

la propiedad de estarbita de tener configuracione®sceles, es una caradstica general que se encuentra en cualguibita del caso de
masas iguales, asociada con un incremente Mieen unangulo de nuestro conjunto de coordenadas. La trayectoria con forma de ocho s
obtiene mediante la exprési de dos de nuestras coordenadas como una serie de Fourier damticho, haciendo uso del principio de
Jacobi-Maupertuis en lugar de la amtiesindar de Lagrange. El tiempo yahgulo conjugado al momento angular se encuentran &ambi

en &rminos del mismangulo.

Descriptores: Problema de tres cuerpos; momento angular nulo; caso de masas iguditescon forma de ocho; forma de Jacobi del
principio de Maupertuis.

PACS: 45.10.-b; 45.10.Db; 45.50.Jf

1. Introduction The Lagrangian function to derive the equations of mo-
tion in the new coordinates is the difference of the kinéfic

A new solution to the three-body problem, interacting byand potential/ energies

gravitational forces for three equal masses, was found re-

cently by Moore [1] and analized by Chenciner and Mont- L=K-V; (1)

gomery [2], that increases the number of the classical par- = | o

ticular solutions discovered by Euler in 1765 and Lagrangdh€ kinetic energy is given by

in 1772, and focuses the interest of many researchers to look e 1.9 1
for new particular cases of this motion. K=upu [231 +ofe o+ i(Rf + R3)o”
The study in this paper was made in the coordinate system , , , )
of Pifla and Jirenez [3-5], which was introduced recently for . Ry , R; , R{+R; ,
S ' . . —2 Ry Robws + — —= =2 2
considering the general three-body problem with three dif- 1 20wWs + 9 “1 + 9“2 * 2 B )

ferent massesi;, mo, mg interacting through gravitational
forces. A brief summary of the most important features an
results follows. This coordinate system, with origin at the ™y Mg M
center of mass, uses as dynamic coordinates the three Euler W= 3

. o mi + mg + ms
anglesg, 6, i that determine the position of the plane of the
particles and the orientation of the principal inertia directionsthe upper dot means time derivativg;, w-, w3, are the com-
in this plane. The three other coordinates are two distancgsonents of the angular velocity vector in Euler angles [6]
Ry, Rs related to the two independent moments of inertia and
one auxiliary angler. These last three coordinates are func- [ “1 _ [ sinfsiny cos 0

tions only of the three masses and the three distances betweeny @2 | =¢ | sinfcosy |+0 | —sing) |+¢ { 0 |, (4)
the particles. w3 cosf 0 1

d/vhereu is the reduced mass
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and the potential energy is As a function of the new coordinates, the kinetic energy
V _ Gm2m3 Gm3m1 Gm1m2 (5) becomes
T ras T ’ 1o2 1.2 1 ,
23 31 2 K =p|5R + Ry +5(RY+ R3)6®

whered is the gravitational constant. The distance between

particlesrys, r31, r12, in terms of the new coordinates can be . R24+R2.
written from — 2Ry Rao) + %W . (1)
2 2 2 2 2
"3 Bisin o+ I cos o Conservation of angular momentum in the plane is ex-
r3, | =B | R?cos’oc+ R} sin’c |, (6) 9 P

pressed by the fact that thiecoordinate is a cyclic variable,
and its conjugate momentum is therefore a constant which
whereB is a square, constant matrix whose elements depen#om now on is actually equal to zero

only on the masses (see the previous papers, Refs. [3-5] for oK

more details). =50 = —2Ry Ry6 + (R2+ ROy =0. (12

2, (R3 — R?)2sinocoso

2. Zero angular momentum In similar cases in which cyclic variables occur, it is con-

. _ _ venient to follow the Routhian formalism, in which a new
It is well known that the equations of motion are deduced|_agrangian functiorR is defined as

from the Hamilton variational principle by minimizing the

action R(R1, R, 0,R1, R, 6,py) = K =V — tjpy (13)
t2
5 [arx —vy=o, %) and_ usegy as a Constant_pargmeter in the Euler-Lagrange
variational equations. But in this case of angular momentum
tl

equal to zeroR simplifies to
over different trajectories with the same end points.

The equations have several constants of motion. Besides g — # <1{>12 + RQQ +
the conservation of linear momentum that has been accounted 2
for by choosing the origin of position vectors at the center Ofwhich is of the form of an usual Lagrangian in the three co-
mass and assuming that the center of mass is at rest, we also,. o s :

ordinates( Ry, R, o), quadratic in the velocities, and with a

have the energy constant

kinetic energy metric in orthogonal coordinates.

(Réfﬁ>2.z>
s 0 | =V, (14)
R? + R3

E=K+V, 8)

and the conservation of the angular momentum vector [5]?" The equal mass case

which can be written as For three equal masses, the Euler angles connecting the iner-

L=g¢ (wal, R2w,, (R? + R2)ws — 2Ry Rgc})T ) tial refer_ence frame and the prir_1cipa| mom_ents of ingrtia axes
are again used. Contrasting with the previous section, all of

whereg is the rotation matrix in Euler angles. This matrix the relations in this section are valid for arbitrary angular mo-
transforms from the frame determined by the three principamentum.
inertia directions to the inertial frame. Its form in terms of However, in the three equal mass case
the Euler angles is selected with the same definition as used
in many texts of dynamics [6]. A more explicit definition, m =m; =my = ms, (15)
including a figure, was enclosed in our Ref. [3].

The focus of interest in this paper is on the three-bodythe vectorsa andb previously given in papers [3-5] are not
problem when the angular momentum vector is the null vecwell defined and new definitions are necessary.
tor. In this case, the first two components of the angular ve-  Since the vector formed with the masses
locity vector must be zero,

m = (mhmz,mg)
W1 = Wy = 0, (10)
is now proportional to thé€l, 1, 1) vector, the center of mass

which implies that the motion occurs in a constant plane. Thequations are just
Euler rotations by angle8 and ¢ are then supressed. As
a consequence, it is sufficient to take into account just the sy, + sg, + 53, =0,  s14 + S2, + 53, = 0, (16)
rotation angley, instead of three Euler angles, in order to
transform from the inertial reference frame to the frame ofwheres;jz, sjy, sjz are the position components of the three
principal axes of inertia. particles in the frame of the principal directions of inertia.
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Two unit vectorsa andb exist, which are orthogonal to the In terms of the coefficients of Egs. (20) and (21), the mo-

mass vector and orthogonal to each other ments of inertia become
a-m=b-m=a-b=0, a7) )
_ ij s2, =m(a® + %) (24)
that may be taken for convenience as
1 1
a=|—,———,0], 18
(J5-750) (18)  and
2
= (1717_2> : (19) Zm] Sjy = m(y’ +0%). (25)
V6 V6 V6

The particle coordinates in the frame of the principal axes o ]
of inertia are then written as linear combinations of these two ~ 1he coefficients«, 3,, §) may also be expressed in the

vectors same form we have used in previous publications [3-5]
(812, S22, $32) = ca + b (20) a B\ [ R 0 coso sino
and vy o6 ) 0 Ry —sino  coso

(514, 52y, S3y) = ya+db. (21) — ( Rycoso Rpsino ) ; (26)

o o . ~ \ —Rysinc Rjcoso
The frame of the principal axes of inertia gives the additional

restriction and the principal moments of inertia are written in terms of
S12S1y + S22:S2y + S3283y = 0, (22) the distance®; and R, simply as
which imposes the condition that 5 5
I1 = Tan y Ig = T?’LRQ . (27)
oay+pB6=0. (23)
| Explicitly, one has
1 1 1 1 2
S10 52 B B R "B (R 0 coso sino
S1y 82 1 1 1 1 2 - 0 Ry —sino  coso
V—=+0—= —V—=+0—7= —0—
V2 6 V2 Ve V6
1 1 0
- "5 2 in(o — i i
o V2 2 _ ]2 R O sm(o 2r/3) sin(c +27/3) sino . (28)
1 1 2 3 0 Ry cos(o —2m/3) cos(o +27/3) coso
V6 V6 VG
From these expresions, we compute the square of the distances of the particles in terms of the new coordinates as
3, % % -3 R?cos? o + R?sin’ o
rgl =3 3 V3 R3sin®o + R}cos’c | . (29)
T12 2 0 0 (R3 — R?)sino cos o

We have previously found [3-5] this form [cf. Eq. (6)] but
the constant matrix is much simpler in the equal mass case. The purely kinematic Eq. (30) implies an important re-
Computing the matrix product in (29), and rearranging in asylt. If the angler is a multiple ofr /6, then two of the dis-
way that will show useful in the next pages, the right handiances are of the same magnitude, forming either an isosce-
side can also be expressed in terms of the afglén the  |es triangle or an isosceles collinear configuration. Assuming

form thato increases monotonically with the dynamical evolution
2 1 cos(20+ Q,T) of the system, whenever the angldas one of these yalues,
23 5 o 5 o two of the sides are equal. The sequence of the pair of equal
"31 =(RI+R3)| L H(R3—R)| cos(20—3F) | - (30) gistances having a particle at a common vertex is permuted
12 1 cos(20) cyclically as shown in the following table, where the values

of the squares of the distances of the particles are expressed
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where the components of the basis vectarand b,

TABLE |. Values of the squares of the inter-particle distances for grouped in a matrix as in Eq. (28), are left-transformed
the values of the angle when two sides are of the same length. or right-transformed with equivalent result.
o "33 & riy 2. In a similar way, permutation of particles 1 and 2 is
3 1 3 1 equivalent to a change of sign of vector
0,67/6 in + §R§ 53% + 533 2R3 q 9 9
1 3 1 3 1 1 01 0
2 2 P2 “p2 2 Y p2 L _ 1 0
7T/6, 771'/6 R1 2R1 + 2R2 2R1 + 2R2 ( f \{i Y ) 1 O 0
3 1 3 1
2n/6,87/6  SRE+ SR 2R3 SR+ RS Ve Ve ¥ 0 01
1 1
1 3 1 3 ~-1 0 —-= ——= 0
3 001 3 01 Ve VB VB
4m/6, 107/6 2R3 SR+ oRE oRI+ R
1., 3., ) 1., 3., But this is also equivalent to a change of sign of coor-
5m/6,11n/6 SRy + 5Rj 2Ry it + ke dinatess and R, as follows from
in terms of our coordinates for values®qual to a multiple < -1 0 > ( coso sino ) ( -1 0 )
of 7/6. This is a necessary and sufficient condition for two of 0 1 —sino coso 0 1
the sides to be equal. The distances repeat their expressions cOSO —sing
aftero increases byt. = ( sno  coso ) . (33)

These results are independent of the constant values of
the energy and of the angular momentum vector. They would ) ) ]
still hold even if the potential energy were different, as long ~ Denote byX(¢) the coordinates of the three particles in
as it is only a function of the inter-particle distances. Thethe inertial system,
only relevant restriction is the equality of the three masses. .

The Routhian formulation for zero angular momentum X (t)=G ( Slz  S2¢ 3z ) = < C(,)Sw —sing )
can be employed with minor modifications in the three equal S1y  S2y  S3y siny  cosy
mass case. Magsis replaced by the common valueof the S1w  Sow  S3z
masses except for an irrelevant different factor/@f in the x ( S1y Sy S3y ) - (34)
coordinatesk? and R%. Additionally, the potential energy
assumes the simplest possible expression as a consequenceCalling T" the period of the orbit, one of the symmetries
of the increased mass symmetry. Further results for the zerof the orbit is expressed in matrix notation as
angular momentum and equal mass case are obtained in the

following section. 1 0 0 01
. . . X(t+T/6) = X(t 100 |. (35
4. The figure-eight orbit (t+17/6) ( 0 1 ) (t) 01 0 (39)

In this section we study the figure-eight orbit for three equaLI-hiS symmetry means that when time is increased by one-

masses, discovered by I\_/Ioo_re [1] and described by Chencingf, i, of the periodt—t + T'/6), the particle coordinates are
and Montgomery [2], which is a zero angular momentum so-

Ut H Kabl ies th h &ermuted cyclically1—3—2—1), with a change of sign in
ut|on._ It has remarkable symmetry properue_s that are herg,q 1\qrizontal coordinate along the symmetry axis intersect-
described very simply in terms of our coordinates. Otheri

. : X . ng three points of the orbit. In terms of our coordinates, this
forms of representing the symmetries of this orbit have bee

: r%ymmetry implies an increase ofby 7/3 and a change of
used by Chencmer_and Montgomery [2] a”‘?' Marchal [_7]' sign of they) and R; coordinates, while th&; coordinate re-
These symmetries result from the following properties.

peats its value (since it is periodic in time with perifdoc).
1. A cyclic permutation of the particles is equivalent to a The square of the transformations representing this symmetry
shift in theo value by an angler/3, as follows from implies just a cyclic permutation of the particles when time

the property is increased by’/3 and simultaneously increases its value
by 27 /3.
AL 0 0 0 1 The orbit has another symmetry, expressing time reversal
. (1) (1) 8 invariance, namely
6 6 6

-1 = 1 =1 _ 010

:<3§ f)(@@_f),(sl) X(—t)z( é_?)X@) 100 |, (9
v 3 s & Ve 001
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which expresses the permutation of particles 1 and 2, with Combination of these last two symmetries implies that
a change of sign of the two coordinates of the threethe orbit can be considered to be formed by twelve equivalent
particles. This is equivalent in our coordinates to a changsegments. If the orbit is parametrized dythis requires that

of sign of o and R;. These quantities are therefore odd func- R3 and R? are functions otos 6. Summing up the proper-
tions of time, and?; should also be an odd function@f On  ties of R; and R,, we put forward that they can be satisfied
the other hand, the coordinatésand R, are even functions by Fourier series of the forms

of time and even functions af.

|

Ry (o) = sin(30) Z b; cos(6jo), Z c; cos(6jo), (37)
j=0 Jj=0
whereb, andc, are constant Fourier coefficients.
As a consequence, the determination of the trajectory can be simplified eliminating the time by using Jacobi’s form [8]
Maupertuis’ principle, which gives
w/6

2 _ p2)\2
o—a/\/ 2B - V) ((de) +(dRa)? 4+ m(da)2>. (38)

The formulation in terms of this variational principle, instead

of Hamilton’s principle (7), has the advantage of reducing th

number of dependent coordinates from four to two. The period of the orbit can thus be computed from
Substitution of the Fourier series (37) fd@t; (o) and

Ry (o) in the integral of this variational problem gives Ja- T—=19

cobi’s action as a function of the parameterandc,. These

parameters are then varied in an iterative procedure that re- A2 raman2 | (

duces the value of the action until no further decrease can be 76 (G)"+ (42) T RIIRT

0

obtained. In this form an aproximation to the equation of the X
orbit is found.

The angley (o) can be obtained from the angular mo-
mentum conservation [Eg. (12)] as

2R, R»

AR (39) 5. Numerical results

Y(o)= [ do
w/6
In particular, the slope angle between the isosceles collineaie have been able to reproduce with some accuracy C.
configuration and the symmetry axis (of the orbit and of theSimo’s [2,9] and D. Viswanath’s [10] numerical computa-

isosceles triangular configuration) is given by the integral  tions for the figure eight orbit, finding the first Fourier coeffi-

/6 cients which minimize the integral in (38). Our values are re-

2R R ported in the following table. All our computations, made in
—9(0) = / d"m' (40)  gouble precision, used the same physical units reported in the
0 first page of Chenciner and Montgomery’s publication [2].
The relation between the coordinate and time follows We have used the energy vallie= —1.28714199563186,
from energy conservation consistent with the extremely precise computations oféSim
2 2 and Viswanath. The initial valuB, (0) = v/2, fixes the scale
(dRﬁ> N <dR2> (R3—R7)? of our physical units withn; = ms = ms = G = 1. For
Y do do RI+R3 dR1(0)/do, instead of using Sidis and Viswanath’s results,
t(o)= / do SE—V () - (41)  we chose a value.17039427473812, determined by a com-

0 promise between minimization of the Jacobi integral and ful-

|  fillement of the condition
v/6 dR1\* | (dR2\? | (R3— R})?
I= do,|2(F — — — —2_ 17
/0 J\l ( V) <da> +(da) + R? + RZ
within double precision.

=_ET/6, (43)
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This equation is a direct consequence of the virial theo6. Relation between our coordinates and other
rem, written in terms of the coordinate and should be sat- coordinates
isfied by the exact solution. Transforming this integral to the
time integration variable we obtain the value of the actionThere are simple relations between our coordinates and the
predicted by the virial theorem coordinates that have been used by other authors in the equal-
mass case.

Define polar-like coordinates (with an extra one-half fac-
This result is compatible with the value published by tor) for the R, and R, variables and for, one-half of thed
Chenciner and Montgomery [2] if one uses Viswanath'’s [10]angle
physical units.

These values predict Soits orbit and the val-
ues ] = 1.357058258032642, T' = 6.32591398293920 and
—1(0) = 0.245547563748942, which are close to the re-
ported numbers.

fdt(K ~V)=-3ET. (44)

Ry =rcos¢/2, Ro=rsing/2, oc=0/2. (45)
Then the metric associated with the kinetic energy for
the zero angular momentum case becomes the Chenciner-

Montgomery spherical-like expression [2]

TABLE Il. Fourier coefficients of th&; (o) andR2 (o) coordinates

2
as they appear in Egs. (37) ds* = dr® + %(COSQ ¢ do? + do?). (46)
j b; ) o . :
0 58325335469245310-' 1.3615149937521510+° ?og]ever, in this p|>aper, we found that this relation holds even
r thr n m .
1 1.12255306874748107"  4.34551784798245102 orthree u _equa asses ) ) )
> 21220809432576910-2  7.15968013904149 10-2 In addition, our Eq. (30) relating the sides of the triangle
: ’ to the coordinates, becomes
3 4.9511133436316%107°  1.553795427912841073
4 1.2844241718198710 %  3.8516308849663410 * T34 1 cos(6+2F)
5  3.5523398041898010* 1.0330008595921410*
4 . r3, | =r*| 1 | 4+r%cos? o 008(9—2?77) , (A7)
6  1.0237967599783610 2.9188562173215610
7  3.02059195873733107°  8.5601312469613610° %, 1 cos 6
8  8.9002476811164010 °  2.5817763780802010 ° o . _ _
9 2.472088131963110-°  7.9672296666262210~ 7 that coincides with Hsiang'’s I_Eqs._ [11],_ quoted_ by Chenciner
; ; and Montgomery [2], but which is valid only in the equal-
10 5.3748145525481610~ 2.4877059282108310 mass case
11  1.5380989832386710°%  7.1963083411950210°
12 -6.24885009256139107°  2.8480485349160510°
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