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Symplectic structures and Hamiltonians of a mechanical system
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It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of m
can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket
that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.
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Se muestra que en el caso de un sistemaamieo con un timero finito de grados de libertad en la raeica chsica, cualquier constante
de movimiento puede usarse como hamiltoniana definiendo apropiadamente la estruct@ctisarg#l espacio fase (o, equivalentemente,
el paéntesis de Poisson) y que para una constante de movimiento dada, existe una infinidad de estructectisasmgpk reproducen las
ecuaciones de movimiento del sistema.

Descriptores: Estructura simg@ctica; ecuaciones de Hamilton.
PACS: 45.05.+x; 45.20.-d

1. Introduction whereH is the Hamiltonian function of the mechanical sys-

. ) . . _tem. In what follows we shall consider only the case where
The equations of motion of a mechanical system with a fiyhe right-hand sides of Egs. (1) do not depend on the time,
nite number of degrees of freedom in classical mechanicgen it can be assumed th&tdoes not depend explicitly on

are usually the Euler—Lagrange equations for the Lagrangiaghe time and making use of Egs. (1) and the chain rule it fol-
L =T — U, whereTl’ denotes the kinetic energy abdis the  |o\ws that

potential energy (assuming that the forces are derivable from _

a potential). The equations of motion can also be expressed ¢ _ 9H dq'  OH dp; OHOH OHOH _
in the form of Hamilton's equations, which are equivalentto dt  9q¢* dt ~ Op; dt  0q' Op;  Op; Oq' ’
df /dt = {f, H}, for any functionf that does not depend ex-
plicitly on the_ time, defm_ed on th_e phase space, wiéris . Similarly, one finds that for an arbitrary (differentiable)
the Hamiltonian and , } is the Poisson bracket. The Hamil- . i

tonian is usually obtained from the Lagrangian by means O;unctlonf = f{d"pi),

the Legendre transformation and, frequently, but not always, gr  9¢ dg®  of dp;, of OH 0f 0H

H corresponds to the total energy (seeg, Refs. 1, 2). =575 Yoy @t g opi 9ps 00 {f.H}, (2
As shown below, for a given mechanical system with a fi-

nite number of degrees of freedom there are infinitely manywhere{ , } is the Poisson bracket. If

Hamiltonians, which need not be derived from a Lagrangian,

and for each choice of the Hamiltonian, there are infinitely " (p,v,...=1,2,...,2n)

many Poisson brackets that allow us to express the equations , , .
of motion in Hamiltonian form (see also Refs. 3-5). is an arbitrary system of coordinates in the phase space, the

In Sec. 2 the basic theory is reviewed. In Sec. 3 Somépoisson bracket of two arbitrary functions,g, is expressed

concrete examples are given, considering two simple systemlass
with two degrees of freedom, and in Sec. 4 the general re- df dg Of dg (&Bu or?  Ort 89[;”)

which means thatl must be a constant of motion.

sults are egtablished. Throughout this paper the summation fﬂ}zaqi dp;  Opi Oqi
convention is employed.

dq* Op; Op; Oq°
of 99 .., 9f Og

—-— = 3
. dri oz C Dak Dz’ 3)
2. Symplectic structures _
with
Hamilton’s equations, expressed in terms of canonical coor-
dinatess!, ..., q", p1,...,pn, are given by ot = {a, 2"} (4)
dg' _OH dp; _ _0H (1) Since the Poisson bracket satisfies the Jacobi identity,

At op At 9 {F.90.h} + {{g.h}. 1} + {{h.[}.9} = 0, we have
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{{a*, 2v}, oM +{{z, 2}, 2+ {{z*, x#}, 2V }=0 which,  p,p,/m + mgx andp? are constants of the motion. Then,

according to Egs. (3) and (4) amounts to taking
A
StV o VA o AL :pmpy N2
0-/’)\ a + O-P/t o + O.l)V o =0. (5) H m + mgzr + 2mpma (11)
oxr oxP oxP . . .
where\ is an arbitrary real constant, with
By combining Egs. (2) and (3) it follows that, L 2 3 4
. - (x,2%,2%,2%) = (2,9, Du, Py):
1]
Y _ v , (6) Egs. (9) are given explicitly by
dt oxv »
Y —
where the functionss#* form an antisymmetric matrix, Wizl +wia(—mg) =myg,
ot = —g¥! [see EQ. (4)] which must obey the nonlinear Pa
differential equations (5). Equations (6) reduce to Egs. (1) Wiz + way(=mg) =0,
when » » » Ap
0 I —wiz— —we3 " +waa(—mg) =" + =,
uvy m m m m
@ )_<I O>’ @ Pz p P
—Wi4a— — w24*y =, (12)
m m m

where! denotes the: x n unit matrix and where we have made use of Egs. (10) and of the antisymme-

try of w,,,,. By inspection, one finds that a particular solution
of Egs. (12) is

1

2") = (q 7"'7qn7p17"'7p’ﬂ)

(...
(in which case Eqgs. (5) are trivially satisfied). According
to Darboux’s theorem, ifc*”) is a nonsingular antisym-
metric matrix satisfying Eqgs. (5), there exist locally coordi- woz =—1, wa =0, wy=0, (13)

hates (dizined up to canonical transformations) in terms Qfpich trivially satisfies conditions (8). Furthermore, for
which (o) takes the form (7) (see,g, Ref. 6). any value of), the determinant of the antisymmetric ma-

If the 2n x 2n matrix (o) is invertible, its in- (wuy) given by Egs. (13) is equal to 1. The inverse
verse,(w,, ), is also an antisymmetric, invertible matrix and

w12 =0, wiz = —A, wiy=—1,

. : of (wy,) is
Eq. (5) is equivalent to 0 00 1
me, (r“)wl,)\ &u,\ﬂ -0 (8) 0 01 =X 7
ox* Oz ozv 0 -1.0 0
-1 A0 O

(Any matrix (w,,, ) satisfying these conditions is said t0 de- \yhich means that the only nonvanishing Poisson brackets
fine a symplectic structure.) Then, the Hamilton Egs. (6) a'&mong the phase space coordinates are

equivalent to

dz¥  OH _ .
W= = 5o (9)  Infact, using Egs. (14) and (11) itt* = {z*, H} one re-
. o ~covers Egs. (10) [see Egs. (4) and (6)]. Thus,y,p.,py)
As pointed out above, the Hamiltonian is usually obtainedare not canonical coordinates with respect to the symplectic

from the Lagrangian of the mechanical system; however, unstructure defined by Egs. (13) but one can readily verify that
der the present assumptioms)y constant of motion can be

1 _ 2 _ _ _
used as Hamiltonian, with an appropriate definition of the & =% @ =¥ Pi=py+ps, 2 =ps,
Poisson bracket (or, equivalently, of the symplectic struc-s a set of canonical coordinates. In terms of these variables,
ture). One chooseX and then findsu,,, such that Egs. (8) the Hamiltonian (11) is given by

and (9) are satisfied. PP A
H=="214mgQ"' — —P}
2m
3. Examples [cf. Eq. (11)].
o ) o _ One can apply the Legendre transformation to find the
3.1. Particle in a uniform gravitational field Lagrangian corresponding to this Hamiltonian and the result
We shall consider the equations of motion 1S oH
e by . L=P,Q'~H=P, 3 ~H="3 2+ Xi”)~mge. (15)
Tr=—, y=— p$:07 py:_mg? (10) @ 2

m m Substituting this Lagrangian into the Euler-Lagrange equa-

corresponding to a particle with massin a uniform gravita-  tions one obtains Eqgs. (10). It may be noticed that (15) does
tional field (herey is a positive constant representing the ac-not depend oy and therefore the momentum conjugate to
celeration of gravity). As can be readily seen using Egs. (10)9L/9dy = m, is conserved.
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3.2. The two-dimensional isotropic harmonic oscillator These equations allow us to expressy, w14, wo3 and

w34 in terms ofw;3, woy andwio
As a second example we shall consider the two-dimensional

isotropic harmonic oscillator, which is defined by the equa- w4 = Py w12 — E(44113 +1),
Yy

tions of motion mky
Pz Yy
woz = ———wi2 — —(was + 1),
T = &a Y= pla Dz = 7‘1{:%7 py - 7kya (16) * mkx 2 'T( “ )
wag=———(wi3+ w24+ w12.
wherem andk are constants. This time we shall make use of —+ mky " mkz 2t m2k2ay
the usual Hamiltonian If we setwiz3 = —1, wyy = —1 andws = 0, we obtain
1, 9 1., 9 w14 = woz = wzq = 0, which satisfy Egs. (9) and corre-
H= %(pm +py) + §k(x +y°), 17) spond to the usual symplectic structure. A different symplec-

. ) tic structure is given by
which corresponds to the total energy; however, as in the

preceding example, we might use any other constant of wiz=—1, woy=—1, wyy=mkay, (19)
motion as Hamiltonian (see below and Ref. 3). Taking
(21,22, 23,2%) = (z,y,p, py), EQs. (9) are given explicitly where) is an arbitrary real constant. Then Egs. (18) yield

by DPxDy

mk’

and a straightforward computation shows that Egs. (8) are
T 4 + waz(—kx) + wos(—ky) = ky, satisfied. The inyer_se of the matriv,, ) defined by
m Egs. (19) and (20) is given by

W14 = ATPy, Woz = —AYPy, W3g = A

(20)
W12% + wis(—kz) + wia(—ky) = ka,

—w1s 2wy 4y (—hy) = B2 PP
m m m {x,y} =A mky’ {mvpm} =1, {xvpy} = _)‘ypmv
R I R SR
wWia - wan = waa(—ke) = T {02} = Azpy, {0py} =1, {prpy} = Amkay (21)

| (recall thato*” = {x*, z"}). One can verify that

A P A
1_xcos{ 2+mk2}+ ad sin[ 2+mk2],
Q 1 m(py y°) ik 1 m(py y°)
Q? = ycos { A (p2 + mkmz)} Dy gy [ A (p2 + mka)} ,
4vmk vmk 4v/mk
A A
Py, = p, cos 2+mk2}—\/mk;xsin{ 2+mk2},
A . A
Py = p, cos [4\/%(1032K + mka)] + vmkysin {4\/%(;03 + mka)} , (22)
are canonical variables with respect to the Poisson
:)hr:tcket (21). Making use of Egs. (17) and (22) one find y (r,6, p, ¢) according to
H= L(PQ—i—PQ)—i—lk[(Ql)Q—&—(QQf] x = ! rcosf =rsind
- 2m 1 2 2 9 - m 9 pm - )
1 .
which is of the form (17). Y= Epcosé py=psing (23)

The most general symplectic structure that leads to th% h . f db irs of . .
equations of motion (16) with the Hamiltonian (17) may be note tha(r, 6, p, ¢) is not formed by pairs of conjugate vari-

obtained substituting Egs. (18) into Egs. (8). However, in2PI€s)- Then from Egs. (16) we obtain

order to solve these partial differential equations easily, itis . ) .
convenient to replace the variables y, p., p,) F=0, 0=—Vk/m, p=0, ¢=—k/m, (24)
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and the Hamiltonian (17) is expressed as we have [see Egs. (23)]

1 H="Lsin(¢—0), (32)
H= %(ﬁ +p?). (25) m>

- . ) and, instead of Egs. (27), we obtain
Substituting Egs. (24) and (25) into Egs. (9) we find that

psin(0—g¢) rsin(0—o)
r WI=—Wio+——F=——", Waz=W3y———F———,
— k/m(w12—|—w14) = o 14 2 vmk S vmk
was = 0, (26) gy PO0=0) a3
p vmk
Vk/m(wss —wsa) = -, and Egs. (8) imply that: -, wy3, andws, depend om, p, and

where noww,,, are the components of the symplectic form 0 — ¢ = aonly, with

with respect to the coordinatés', 22, 2, z*) = (r,0, p, ¢). oF oG . 0K _ sina (34)
Thus we can write dp  Oa  Or  mk’
T _ P whereF’, G, andK are defined as in Egs. (28). In the present
w14 = —Wi2 Tm, w23 = W34 + Tﬂ (27) case
[cf. Egs. (18)]. Substituting Egs. (27) into Egs. (8), with  det(w w)z[(F—pSlnaXK_rsm a)
w4 = 0 we obtain ' vmk vmk
2
aLL)34 aW34 aW34 3w13 3w12 FK GTp COS Oé:|
= = - + ) 35
a6 " o0 " o Tas Tap v | &
Owiy  Owis Owia  Owis  Owsy therefore, we can choose,g, two functions of three vari-
90 ¢ =0, op 00 or 0. ables,F and K, thenG is determined by Eq. (34) up to a

function ofr andp, which must be chosen in such a way that
These equations imply thatz, w3, andwss must depend  the right-hand side of Eqg. (35) does not vanish.
onr, pandf — ¢ only; thatis, makingx = 6 — ¢, It may be remarked that, by contrast with the Hamilto-
nian (17), which is a non-negative function, the Hamilto-

leZF(Tv P Ol), W13:G(7'7 P Ol), W34:K(7’, P Ck), (28) nian (31) can take any real value.

where F', G, and K are functions of three variables which
must be related by the condition 4. General propositions

oF _9G 0K _ 0 (29)  Given a mechanical system withdegrees of freedom, there

op da  Or exist, at least locally2n — 1 functionally independent con-

Making use of Egs. (27) and (28) one finds that stants of motiong?, ..., 22" which can be used as part of
a coordinate system in phase space; furthermore, it is pos-

r p 2 sible to find locally a functionz! such thati! = 1. (For
det(w, )= {<F+m> (K+\/ﬂ) _FK] - (30) instance, in the case of the equations of motion (24) we can

takel‘l = —%\/m/k(Q + ¢), 1‘2 =0 — gb, £U3 =, 1‘4 — p)
Thus, choosing two functions of three variablésand X,  Any constant of motion,H, is a function ofz2,...,z%"
such that the right-hand side of Eq. (30) does not vanish, thgnly. Therefore, by means of a coordinate transformation
functionG is determined by Eq. (29), up to an arbitrary func- (32, 22") (x2’ ,xZ"') such thatz2 = H, from

P

tion of r andp. Once(w,,, ) is known, one can compute its Egs. (9), dropping the primes, we havg, 6% = 53 that is,
inverse, whose entries are the Poisson brackets amafg

p and¢, and using the properties of the Poisson bracket one wiz=-1, w=wu=-=wion =0

can also find the Poisson brackets among the original variy.q Egs. (8) imply that the remainirig — 1)(2n — 1) inde-
ablesz, y, p, andp,. A more involved problem is that of pendent components,, must be functions ofz?, . .., z2")
finding canonical coordinates. only, such that

If we choose as Hamiltonian the constant of motion
&u#,, 8wy)\ + &uM

k ox> oxH oxV
H =\ —(py — yp2), (31) y ! . |
m (v, A =2,...,2n) [cf.Eq. (29)]. Any solution of Eqgs. (36)

which, apart from a constant factor, is the angular momencan be locally expressed in the form
tum, then in terms of the coordinates 04, 0A,

(1:17'1:271:37x4) = (r7 97 p? ¢)

=0. (36)

W= _
H T dgp oxv
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(n,v = 2,...,2n), where A,,..., Ay, depend on Acknowledgment
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