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It is shown that in the case of a mechanical system with a finite number of degrees of freedom in classical mechanics, any constant of motion
can be used as Hamiltonian by defining appropriately the symplectic structure of the phase space (or, equivalently, the Poisson bracket) and
that for a given constant of motion, there are infinitely many symplectic structures that reproduce the equations of motion of the system.
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Se muestra que en el caso de un sistema mecánico con un ńumero finito de grados de libertad en la mecánica cĺasica, cualquier constante
de movimiento puede usarse como hamiltoniana definiendo apropiadamente la estructura simpléctica del espacio fase (o, equivalentemente,
el paŕentesis de Poisson) y que para una constante de movimiento dada, existe una infinidad de estructuras simplécticas que reproducen las
ecuaciones de movimiento del sistema.

Descriptores: Estructura simpĺectica; ecuaciones de Hamilton.

PACS: 45.05.+x; 45.20.-d

1. Introduction

The equations of motion of a mechanical system with a fi-
nite number of degrees of freedom in classical mechanics
are usually the Euler–Lagrange equations for the Lagrangian
L = T −U , whereT denotes the kinetic energy andU is the
potential energy (assuming that the forces are derivable from
a potential). The equations of motion can also be expressed
in the form of Hamilton’s equations, which are equivalent to
df/dt = {f, H}, for any functionf that does not depend ex-
plicitly on the time, defined on the phase space, whereH is
the Hamiltonian and{ , } is the Poisson bracket. The Hamil-
tonian is usually obtained from the Lagrangian by means of
the Legendre transformation and, frequently, but not always,
H corresponds to the total energy (see,e.g., Refs. 1, 2).
As shown below, for a given mechanical system with a fi-
nite number of degrees of freedom there are infinitely many
Hamiltonians, which need not be derived from a Lagrangian,
and for each choice of the Hamiltonian, there are infinitely
many Poisson brackets that allow us to express the equations
of motion in Hamiltonian form (see also Refs. 3–5).

In Sec. 2 the basic theory is reviewed. In Sec. 3 some
concrete examples are given, considering two simple systems
with two degrees of freedom, and in Sec. 4 the general re-
sults are established. Throughout this paper the summation
convention is employed.

2. Symplectic structures

Hamilton’s equations, expressed in terms of canonical coor-
dinatesq1, . . . , qn, p1, . . . , pn, are given by

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (1)

whereH is the Hamiltonian function of the mechanical sys-
tem. In what follows we shall consider only the case where
the right-hand sides of Eqs. (1) do not depend on the time,
then it can be assumed thatH does not depend explicitly on
the time and making use of Eqs. (1) and the chain rule it fol-
lows that

dH

dt
=

∂H

∂qi

dqi

dt
+

∂H

∂pi

dpi

dt
=

∂H

∂qi

∂H

∂pi
− ∂H

∂pi

∂H

∂qi
= 0,

which means thatH must be a constant of motion.
Similarly, one finds that for an arbitrary (differentiable)

functionf = f(qi, pi),

df

dt
=

∂f

∂qi

dqi

dt
+

∂f

∂pi

dpi

dt
=

∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
≡ {f, H}, (2)

where{ , } is the Poisson bracket. If

xµ (µ, ν, . . . = 1, 2, . . . , 2n)

is an arbitrary system of coordinates in the phase space, the
Poisson bracket of two arbitrary functions,f , g, is expressed
as

{f, g}= ∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
=

(
∂xµ

∂qi

∂xν

∂pi
−∂xµ

∂pi

∂xν

∂qi

)

× ∂f

∂xµ

∂g

∂xν
= σµν ∂f

∂xµ

∂g

∂xν
, (3)

with

σµν ≡ {xµ, xν}. (4)

Since the Poisson bracket satisfies the Jacobi identity,
{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0, we have
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{{xµ, xν}, xλ}+{{xν , xλ}, xµ}+{{xλ, xµ}, xν}=0 which,
according to Eqs. (3) and (4) amounts to

σρλ ∂σµν

∂xρ
+ σρµ ∂σνλ

∂xρ
+ σρν ∂σλµ

∂xρ
= 0. (5)

By combining Eqs. (2) and (3) it follows that,

dxµ

dt
= σµν ∂H

∂xν
, (6)

where the functionsσµν form an antisymmetric matrix,
σµν = −σνµ [see Eq. (4)] which must obey the nonlinear
differential equations (5). Equations (6) reduce to Eqs. (1)
when

(σµν) =
(

0 I
−I 0

)
, (7)

whereI denotes then× n unit matrix and

(x1, . . . , x2n) = (q1, . . . , qn, p1, . . . , pn)

(in which case Eqs. (5) are trivially satisfied). According
to Darboux’s theorem, if(σµν) is a nonsingular antisym-
metric matrix satisfying Eqs. (5), there exist locally coordi-
nates (defined up to canonical transformations) in terms of
which (σµν) takes the form (7) (see,e.g., Ref. 6).

If the 2n × 2n matrix (σµν) is invertible, its in-
verse,(ωµν), is also an antisymmetric, invertible matrix and
Eq. (5) is equivalent to

∂ωµν

∂xλ
+

∂ωνλ

∂xµ
+

∂ωλµ

∂xν
= 0. (8)

(Any matrix (ωµν) satisfying these conditions is said to de-
fine a symplectic structure.) Then, the Hamilton Eqs. (6) are
equivalent to

ωµν
dxν

dt
=

∂H

∂xµ
. (9)

As pointed out above, the Hamiltonian is usually obtained
from the Lagrangian of the mechanical system; however, un-
der the present assumptions,any constant of motion can be
used as Hamiltonian, with an appropriate definition of the
Poisson bracket (or, equivalently, of the symplectic struc-
ture). One choosesH and then findsωµν such that Eqs. (8)
and (9) are satisfied.

3. Examples

3.1. Particle in a uniform gravitational field

We shall consider the equations of motion

ẋ =
px

m
, ẏ =

py

m
, ṗx = 0, ṗy = −mg, (10)

corresponding to a particle with massm in a uniform gravita-
tional field (hereg is a positive constant representing the ac-
celeration of gravity). As can be readily seen using Eqs. (10),

pxpy/m + mgx andp2
x are constants of the motion. Then,

taking

H =
pxpy

m
+ mgx +

λ

2m
p2

x, (11)

whereλ is an arbitrary real constant, with

(x1, x2, x3, x4) = (x, y, px, py),

Eqs. (9) are given explicitly by

ω12
py

m
+ ω14(−mg) =mg,

−ω12
px

m
+ ω24(−mg) =0,

−ω13
px

m
− ω23

py

m
+ ω34(−mg) =

py

m
+

λpx

m
,

−ω14
px

m
− ω24

py

m
=

px

m
, (12)

where we have made use of Eqs. (10) and of the antisymme-
try of ωµν . By inspection, one finds that a particular solution
of Eqs. (12) is

ω12 = 0, ω13 = −λ, ω14 = −1,

ω23 = −1, ω24 = 0, ω34 = 0, (13)

which trivially satisfies conditions (8). Furthermore, for
any value ofλ, the determinant of the antisymmetric ma-
trix (ωµν) given by Eqs. (13) is equal to 1. The inverse
of (ωµν) is 



0 0 0 1
0 0 1 −λ
0 −1 0 0

−1 λ 0 0


 ,

which means that the only nonvanishing Poisson brackets
among the phase space coordinates are

{x, py} = 1, {y, px} = 1, {y, py} = −λ. (14)

In fact, using Eqs. (14) and (11) iṅxµ = {xµ,H} one re-
covers Eqs. (10) [see Eqs. (4) and (6)]. Thus,(x, y, px, py)
are not canonical coordinates with respect to the symplectic
structure defined by Eqs. (13) but one can readily verify that

Q1 = x, Q2 = y, P1 = py + λpx, P2 = px,

is a set of canonical coordinates. In terms of these variables,
the Hamiltonian (11) is given by

H =
P1P2

m
+ mgQ1 − λ

2m
P 2

2

[cf. Eq. (11)].
One can apply the Legendre transformation to find the

Lagrangian corresponding to this Hamiltonian and the result
is

L=PiQ̇
i−H=Pi

∂H

∂Pi
−H=

m

2
(2ẋẏ+λẋ2)−mgx. (15)

Substituting this Lagrangian into the Euler–Lagrange equa-
tions one obtains Eqs. (10). It may be noticed that (15) does
not depend ony and therefore the momentum conjugate toy,
∂L/∂ẏ = mẋ, is conserved.
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3.2. The two-dimensional isotropic harmonic oscillator

As a second example we shall consider the two-dimensional
isotropic harmonic oscillator, which is defined by the equa-
tions of motion

ẋ =
px

m
, ẏ =

py

m
, ṗx = −kx, ṗy = −ky, (16)

wherem andk are constants. This time we shall make use of
the usual Hamiltonian

H =
1

2m
(p2

x + p2
y) +

1
2
k(x2 + y2), (17)

which corresponds to the total energy; however, as in the
preceding example, we might use any other constant of
motion as Hamiltonian (see below and Ref. 3). Taking
(x1, x2, x3, x4) = (x, y, px, py), Eqs. (9) are given explicitly
by

ω12
py

m
+ ω13(−kx) + ω14(−ky) = kx,

−ω12
px

m
+ ω23(−kx) + ω24(−ky) = ky,

−ω13
px

m
− ω23

py

m
+ ω34(−ky) =

px

m
,

−ω14
px

m
− ω24

py

m
− ω34(−kx) =

py

m
.

These equations allow us to express,e.g., ω14, ω23 and
ω34 in terms ofω13, ω24 andω12

ω14 =
py

mky
ω12 − x

y
(ω13 + 1),

ω23 = − px

mkx
ω12 − y

x
(ω24 + 1),

ω34=− px

mky
(ω13+1)+

py

mkx
(ω24+1)+

pxpy

m2k2xy
ω12. (18)

If we setω13 = −1, ω24 = −1 andω12 = 0, we obtain
ω14 = ω23 = ω34 = 0, which satisfy Eqs. (9) and corre-
spond to the usual symplectic structure. A different symplec-
tic structure is given by

ω13 = −1, ω24 = −1, ω12 = λmkxy, (19)

whereλ is an arbitrary real constant. Then Eqs. (18) yield

ω14 = λxpy, ω23 = −λypx, ω34 = λ
pxpy

mk
, (20)

and a straightforward computation shows that Eqs. (8) are
satisfied. The inverse of the matrix(ωµν) defined by
Eqs. (19) and (20) is given by

{x, y} = λ
pxpy

mk
, {x, px} = 1, {x, py} = −λypx,

{y, px} = λxpy, {y, py} = 1, {px, py} = λmkxy (21)

(recall thatσµν = {xµ, xν}). One can verify that

Q1 = x cos
[

λ

4
√

mk
(p2

y + mky2)
]

+
px√
mk

sin
[

λ

4
√

mk
(p2

y + mky2)
]

,

Q2 = y cos
[

λ

4
√

mk
(p2

x + mkx2)
]
− py√

mk
sin

[
λ

4
√

mk
(p2

x + mkx2)
]

,

P1 = px cos
[

λ

4
√

mk
(p2

y + mky2)
]
−
√

mk x sin
[

λ

4
√

mk
(p2

y + mky2)
]

,

P2 = py cos
[

λ

4
√

mk
(p2

x + mkx2)
]

+
√

mk y sin
[

λ

4
√

mk
(p2

x + mkx2)
]

, (22)

are canonical variables with respect to the Poisson
bracket (21). Making use of Eqs. (17) and (22) one finds
that

H =
1

2m
(P 2

1 + P 2
2 ) +

1
2
k[(Q1)2 + (Q2)2],

which is of the form (17).

The most general symplectic structure that leads to the
equations of motion (16) with the Hamiltonian (17) may be
obtained substituting Eqs. (18) into Eqs. (8). However, in
order to solve these partial differential equations easily, it is
convenient to replace the variables(x, y, px, py)

by (r, θ, ρ, φ) according to

x =
1√
mk

r cos θ, px = r sin θ,

y =
1√
mk

ρ cos φ, py = ρ sinφ (23)

(note that(r, θ, ρ, φ) is not formed by pairs of conjugate vari-
ables). Then from Eqs. (16) we obtain

ṙ = 0, θ̇ = −
√

k/m, ρ̇ = 0, φ̇ = −
√

k/m, (24)
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and the Hamiltonian (17) is expressed as

H =
1

2m
(r2 + ρ2). (25)

Substituting Eqs. (24) and (25) into Eqs. (9) we find that

−
√

k/m(ω12 + ω14) =
r

m
,

ω24 = 0, (26)
√

k/m(ω23 − ω34) =
ρ

m
,

where nowωµν are the components of the symplectic form
with respect to the coordinates(x1, x2, x3, x4) = (r, θ, ρ, φ).
Thus we can write

ω14 = −ω12 − r√
mk

, ω23 = ω34 +
ρ√
mk

(27)

[cf. Eqs. (18)]. Substituting Eqs. (27) into Eqs. (8), with
ω24 = 0 we obtain

∂ω34

∂φ
+

∂ω34

∂θ
= 0,

∂ω34

∂r
+

∂ω13

∂φ
+

∂ω12

∂ρ
= 0,

∂ω12

∂θ
+

∂ω12

∂φ
= 0,

∂ω12

∂ρ
− ∂ω13

∂θ
+

∂ω34

∂r
= 0.

These equations imply thatω12, ω13, andω34 must depend
on r, ρ andθ − φ only; that is, makingα ≡ θ − φ,

ω12=F (r, ρ, α), ω13=G(r, ρ, α), ω34=K(r, ρ, α), (28)

whereF , G, andK are functions of three variables which
must be related by the condition

∂F

∂ρ
− ∂G

∂α
+

∂K

∂r
= 0. (29)

Making use of Eqs. (27) and (28) one finds that

det(ωµν)=
[(

F+
r√
mk

)(
K+

ρ√
mk

)
−FK

]2

. (30)

Thus, choosing two functions of three variables,F andK,
such that the right-hand side of Eq. (30) does not vanish, the
functionG is determined by Eq. (29), up to an arbitrary func-
tion of r andρ. Once(ωµν) is known, one can compute its
inverse, whose entries are the Poisson brackets amongr, θ,
ρ andφ, and using the properties of the Poisson bracket one
can also find the Poisson brackets among the original vari-
ablesx, y, px andpy. A more involved problem is that of
finding canonical coordinates.

If we choose as Hamiltonian the constant of motion

H =

√
k

m
(xpy − ypx), (31)

which, apart from a constant factor, is the angular momen-
tum, then in terms of the coordinates

(x1, x2, x3, x4) = (r, θ, ρ, φ)

we have [see Eqs. (23)]

H =
rρ

m
sin(φ− θ), (32)

and, instead of Eqs. (27), we obtain

ω14=−ω12+
ρ sin(θ−φ)√

mk
, ω23=ω34−r sin(θ−φ)√

mk
,

ω24=
rρ cos(θ−φ)√

mk
(33)

and Eqs. (8) imply thatω12, ω13, andω34 depend onr, ρ, and
θ − φ ≡ α only, with

∂F

∂ρ
− ∂G

∂α
+

∂K

∂r
=

sin α√
mk

, (34)

whereF , G, andK are defined as in Eqs. (28). In the present
case

det(ωµν)=
[(
F−ρ sin α√

mk

)(
K−r sin α√

mk

)

−FK+
Grρ cosα√

mk

]2

, (35)

therefore, we can choose,e.g., two functions of three vari-
ables,F andK, thenG is determined by Eq. (34) up to a
function ofr andρ, which must be chosen in such a way that
the right-hand side of Eq. (35) does not vanish.

It may be remarked that, by contrast with the Hamilto-
nian (17), which is a non-negative function, the Hamilto-
nian (31) can take any real value.

4. General propositions

Given a mechanical system withn degrees of freedom, there
exist, at least locally,2n − 1 functionally independent con-
stants of motion,x2, . . . , x2n which can be used as part of
a coordinate system in phase space; furthermore, it is pos-
sible to find locally a functionx1 such thatẋ1 = 1. (For
instance, in the case of the equations of motion (24) we can
takex1 = − 1

2

√
m/k(θ + φ), x2 = θ − φ, x3 = r, x4 = ρ.)

Any constant of motion,H, is a function ofx2, . . . , x2n

only. Therefore, by means of a coordinate transformation
(x2, . . . , x2n) 7→ (x2′ , . . . , x2n′) such thatx2′ = H, from
Eqs. (9), dropping the primes, we haveωµνδν

1 = δ2
µ that is,

ω12 = −1, ω13 = ω14 = · · · = ω1,2n = 0

and Eqs. (8) imply that the remaining(n− 1)(2n− 1) inde-
pendent componentsωµν must be functions of(x2, . . . , x2n)
only, such that

∂ωµν

∂xλ
+

∂ωνλ

∂xµ
+

∂ωλµ

∂xν
= 0. (36)

(µ, ν, λ = 2, . . . , 2n) [cf.Eq. (29)]. Any solution of Eqs. (36)
can be locally expressed in the form

ωµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
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(µ, ν = 2, . . . , 2n), where A2, . . . , A2n depend on
(x2, . . . , x2n) only. The only restriction on the functionsAµ

comes from the conditiondet(ωµν) 6= 0.
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