
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 49 (5) 482–484 OCTUBRE 2003

Nonlinear size effects of hot electrons in semiconductor thin films
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Theory of nonlinear heat size effects is developed in semiconductor films in the presence of external d.c. electric field. It is supposed that
this field is applied along the film surfaces. The electron temperature is introduced, and it is shown that it depends on the electric field and
the film thickness. The main equations are obtained for calculation this temperature, and analysis is done for the case of the weak electron
heating. The characteristic length of the problem is discussed. It is the electron cooling length measured on submicron scale. It is shown that
the heat size effects arise in the case when this length is comparable or less of the film thickness.
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Se desarrolla una teorı́a de los efectos de grosor en semiconductores cuyo grosor es del orden de la longitud de difusión (longitud de
enfriamiento), la cual normalmente es de dimensiones submicronicas. Se supone que el campo eléctrico est́atico se aplica a lo largo de la
superficie. La temperatura de los electrones se introduce bajo la suposición de que se cumpla la condición de dispersión cuasieĺastica sobre
los fonones aćusticos. Se muestra que la temperatura depende de la intensidad del campo eléctrico y del grosor de la pelı́cula. Se presentan
las ecuaciones fundamentales para calcular esta temperatura y se hace el análisis para el caso en que se tiene un calentamiento débil. Por otro
lado, se presenta la discusión sobre la conductividad eléctrica no lineal.

Descriptores: Peĺıculas semiconductoras delgadas; electrones calientes; longitud de enfriamiento; conductividad eléctrica no lineal; efectos
de grosor.

PACS: 72.20.Ht; 73.50.Fq

1. Introduction

Microminiaturization of modern semiconductor devises leads
to decreasing of dimensions of the semiconductor working
regions taking part in the electric transport. In a number of
cases these dimensions can be comparable with some char-
acteristic parameters having the dimension of length. One of
them is the energy diffusion length (cooling length), that ap-
pears under the quasielastic collisions between the carriers of
charge and the scattering centers (for example the scattering
on acoustic phonons) when d.c. electric field is applied to the
semiconductor sample.

In this case the energy relaxation timeτε is much greater
than the momentum relaxation timeτ . Evaluations show that
the ratio of these times are of the order(τε)/(τ) ≈ 103 at the
room temperature. Presence of two relaxation times (“fast”
and “slow”) leads to appearance of the characteristic diffu-
sion lengthlε = VT (ττε)1/2 [1] which has been called above
by the cooling length, hereVT is the mean heat velocity of
the carriers of charge. This length is considerably exceeds
the mean free path, and the heat size effects are associated
namely with it. In the simplest case the heat size effects are
demonstrated by the coordinate dependence of the mean en-
ergy of carriers and in the nonlinearity of the current-voltage
characteristics under decreasing of the film thickness. The
existence of these effects firstly has been reported in the ex-
perimental paper [2].

The cooling lengths are different in different semiconduc-
tors but usually vary from10−4 up to10−2 cm [3]. They are
one of the greatest in the kinetic phenomena of semiconduc-
tors, and fabrication of semiconductor films with these thick-
ness does not the problem today. Just this fact determines the
great theoretic and experimental interest to discussed effects.
The present paper has the aim to study some aspects of them.

2. Electron heating and symmetric electron dis-
tribution function

Let us consider the isotropic, nondegenerate n-type semicon-
ductor layer with the thickness2a in thex-direction. At the
same time this layer is supposed to be infinite in they- and
z- directions. We assume that the external, homogeneous d.c.
electric fieldEz is applied along thez-axis, and the sample
surfacesx = ∓a contact with the heat reservoirs having the
constant temperatureT0 (the equilibrium temperature).

We will also assume that the carrier density is suffi-
ciently high so the cooling length exceeds the Debye radius
rD =

√
(κT0)/(4πe2n), whereκ is the dielectric permittiv-

ity, e is the electron charge, and n is the electron concentra-
tion. We use the energetic units in this paper, so the Boltz-
mann constant is equal to unity. This supposing allows to ne-
glect the charge redistribution in the presence of the electric
field. In this case the electron density is equal to the equilib-
rium concentration in any point of the layer.
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At the same time we are supposing similar to Ref. 4 that
the characteristic time of the electron-electron collisionsτee

is much less than the timeτε. For simplicity, we also as-
sume that the inelastic scattering mechanisms such as impact
ionization, scattering on the optic phonons, and so on do not
occur.

The inequalityτee ¿ τε formally permits the exis-
tence of arbitrary ratio between the timesτee and τ (from
τee ¿ τ to τee À τ). Nevertheless, the following correla-
tion τee ≥ τ [4], really takes place in an unipolar semicon-
ductor. Thus, the characteristic times of the problem satisfy
the following conditions:

τ ≤ τee ¿ τε. (1)

From the physical point of view it does mean that being in
the electric field, electrons first of all get the energy from that
field and very fast redistribute it between themselves. Af-
ter that the energy relaxation to phonons is beginning. In
this case the electron subsystem is quasi independent from
the phonon subsystem and can be characterized by the own
thermodynamic electron temperatureTe(x,Ez) [4], and the
dependence onx appears due to the possible energy surface
relaxation. That temperature can exceed the equilibrium tem-
peratureT0, and by this reason these electrons are known as
the hot electrons. Thus, the symmetric part of the electron
distribution function in the d.c. electric field can be written
in the following form [4]:

f0(ε, x, Ez) =
n

[2πmTe(x,Ez)]
3
2

e
−

ε

Te (x,Ez). (2)

Hereε is the electron energy,m is the electron effective mass.
It is well known that under quasielastic collisions the full

nonequilibrium functionf(ε, ~r) can be represented by the
following Eq. (5):

f(ε, ~r) = f0(ε, ~r) + f1(ε, ~r)
~p

|~p| , (3)

wheref1(ε, ~r) is the asymmetric part of the electron distribu-
tion function,~p is the momentum vector,|~p| =

√
2mε, and

f1 ¿ f0.
It is important to note that the asymmetric part of the dis-

tribution functionf1(ε, ~r)can be easy obtained with the help
of the functionf0 (see, for example, Ref. 5). In our case both
f0 andf1 are depended on the electric fieldEz also through
the electron temperatureTe(x,Ez).

So, finally the problem is reduced to the calculation of
the electron temperatureTe(x,Ez). The dependence of this
temperature on coordinates just leads to appearing of the size
effects. The dependence of the electron temperatureTe on
the electric fieldEz leads to the nonlinearity of the electric
conductivity.

3. Main equations of theory

We will assume that the semiconductor sample dimensions
along y- and z- directions essentially exceed the cooling
lengthlε. In this case all values depend on the coordinatex
only, and the problem is one-dimensional. Besides, we con-
sider that the phonon subsystem is equilibrium, and is de-
scribed by the temperatureT0. So, the electron tempera-
tureTe(x, Ez) can be found from the following heat balance
Eq. (5):

dWx(x,Ez)
dx

+
nT0

τε(Te)

(
Te(x,Ez)

T0
− 1

)
= jzEz. (4)

Here,Wx(x,Ez) = −χe(Te)(dTe/dx) is the electron ther-
mal flux in the absence of the electric current along thex-
axes(jx = 0); χe(Te) is the electron thermal conductivity
at the same conditionjx = 0 ; τε(Te) = τoε(Te/T0)q−1;
jz = σ(Te)Ez is the electric current alongz-axes;σ(Te) is
the electric conductivity of the hot electrons. Equations for
σ(Te) andχe(Te) one can find in Ref. 7. The factorτ0ε and
exponentq are listed in Table I of Ref. 5.

Equation (4) has the simple physical sense. The change
of the electron heat flux associates with the Joule heating (the
right-hand side), and the energy transfer to the phonon sub-
system (second term in the left-hand side).

This equation must be supplemented by the boundary
conditions, determining the heat exchange atx = ∓a sur-
faces . They can be written in the following form [5]:

W |x=∓a = ±η± (Te − T0) |x=∓a , (5)

whereη± are the electron surface thermal conductivities.

4. Nonlinear electric conductivity of thin films

Let us assume that the external field is weak enough (the cor-
respondent criterion will be discussed later). By this reason
the electron temperatureTe(x,Ez) can be represented in the
following form:

Te(x,Ez) = T0 + ∆T (x,Ez), (6)

where∆Te(x,Ez) is the small addition to the equilibrium
temperature,∆Te(x,Ez) ¿ T0.

In this case Eq.(4) can be rewritten in the following form:

−d2∆Te(x,Ez)
dx2

+ k2∆Te(x,Ez) =
σ0

χ0
E2

z . (7)

Here

k2 =
1
l2ε

=
1

V 2
T τ0τε0

=
n

χ0τε0

is the squire of the reciprocal cooling length;τ0 is the mo-
mentum relaxation time of the energy equilibrium electrons;
σ0 andχ0 are the electric and thermal conductivities at the
equilibrium temperature, respectively.
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The solution of Eq.(7) with the boundary conditions (5)
is

∆Te(x,Ez) =
σ0τε0

n

(
1− c1e

kx − c2e
−kx

)
E2

z , (8)

where

c1,2 =
ξ+ (1± ξ−) e±ka + ξ− (1∓ ξ+) e∓ka

(1 + ξ+) (1 + ξ−) e2ka − (1− ξ+) (1− ξ−) e−2ka
;

ξ± =
η±
χ0a

.

The expression in the brackets in Eq.(8) does not exceeds
unity within the limits of 0 ≤ ξ± < ∞, i.e. under the
variation of the heat boundary conditions from the adiabatic
boundary conditions to the isothermal ones. So, the condi-
tion of the weak electron heating∆Te(x,Ez) ¿ T0 can take
place if

Ez ¿ E0 =
√

nT0

σ0
. (9)

The characteristic electric fieldE0 can be rewritten in the
form E0 = (T0)/(elε). Thus, it is the field in which the
electron increases its equilibrium energy twice much in the
distance of the cooling length.

Setting the temperatureTe(x,Ez) from Eq.(6) to equa-
tion for the electric currentjz = σ(Te)Ez, and averaging
it by the sample section we obtain that the average electric
current

< jz >=
1
2a

a∫

−a

∆T (x,Ez) dx = σ0

(
1 + βE2

z

)
Ez. (10)

Here

β =
1

2aσ0

dσ0 (Te)
dTe

|Te=T0

1
E2

z

a∫

−a

∆Te(x)dx (11)

is the coefficient of nonlinearity describing the carrier heating
by the external electric field.

Taking into account Eq.(8) we can get that

β = β∞

(
1− thka

ka
γ

)
, (12)

where

β∞ =
τε0

n

dσ0(Te)
dTe

|Te=T (13)

is the coefficient of nonlinearity in the case when the elec-
tron temperature is homogeneous along the film thickness
(infinitely long sample or the elastic scattering at the surfaces,
ξ± = 0),

γ =
2ξ+ξ−thka + ξ+ + ξ−

2 (1 + ξ+ξ−) thka + (ξ+ + ξ−) (1 + th2ka)
. (14)

The second term in Eq.(12) is accompanied with the cool-
ing of the electron gas at the film boundaries due to the pres-
ence of inelastic surface scattering mechanisms.

It is followed from the definitionβ∞ [see Eq. (13)] that
β > 0 if the electric conductivity increases with the elec-
tron temperature increasing under some electron scattering
mechanisms. In this case the current-voltage characteristic
is superlinear curve. In the opposite case, when the electric
conductivity decreases with increasing the electron tempera-
ture,β < 0, and the current-voltage characteristic is sublinear
curve.

It is easy to see that the coefficient of nonlinearityβ de-
creases with decreasing of the film’s thickness, and tends to
zero if this thickness is much less than the cooling lengthlε.
This means that the deviation from the Ohm’s law in the thin
films have to be observed at the intensities ofEz being much
greater than in the thick samples.

It is follows from Eqs. (6) and (8) that the surfaces
x = ∓a cool the hot electrons throughout the volume of the
film if its thickness is less or is of the order of the cooling
length. At the same time these surfaces are cooling the hot
carriers only nearby the surfaces ifa À lε.

5. Conclusion

It is analyzed the simplest size effect in thin films which
comes to the inhomogeneous of the electron heating along
the film’s thickness in the presence of d.c. electric field di-
rected along the film surfaces. This heating results in the de-
viation from the Ohm’s law, and this deviation is different in
the thick and thin semiconductor layers. The criterion of the
thick and thin layer is defined by the ratio between the sam-
ple length and the cooling length. The observed size effects
must be taken into account under the designing the submicron
electric circuits.
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