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We present an application of the basic mathematical concept of complex functions as topological solitons, a most interesting area of research
in physics. Such application of complex theory is virtually unknow outside the community of soliton researchers.
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Presentamos una aplicación del concepto mateḿatico de funciones complejas como solitones topológicos, una interesantéarea de investi-
gacíon en f́ısica. Dicha aplicación de la teoŕıa compleja es prácticamente desconocida fuera del cı́rculo de investigación solit́onica.
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1. Introduction

The complex variablez = x + iy, wherex, y ∈ < and
i =

√−1, is one of the most familiar and useful concepts in
mathematics, with a very large number of well-documented
applications in science.

Over the past few years some interesting nonlinear mod-
els in physics have received a lot of attention, models bearing
the so-called solitons or energy ”lumps”. Some of these mod-
els exemplify yet another important application of complex
functions, with functions as simple asf(z) = z describing
a soliton configuration. Unfortunately, despite the vast lit-
erature dealing with complex analysis plus applications, one
finds no mention of the starring role ofz as a soliton. Ref-
erence to such an extraordinary role is found only in highly
specialized research books and journals, hence the existence
of z as a soliton field is practically unknown outside the group
of specialists in the area.

Using the nonlinear sigmaO(3) (or CP 1) model in two
spatial dimensions, the present work illustrates the context in
which z stands for a lump of energy. This fact is most re-
markable and, given the growing importance of solitons in
physics, we believe that more physicists should know about
it. They will find this fresh utility of complex variables quite
appealing.

2. Complex theory

Complex theory is a very important branch of mathematics.
As a brush-up we just recall that many integrals given in real
form are easily evaluated by relating them to complex inte-
grals and using the powerful method of contour integration

based on Cauchy’s theorem. In fact, the basis of transform
calculus is the integration of functions of a complex variable.
And intersections between lines and circles, parallel or or-
thogonal lines, tangents, and the like usually become quite
simple when expressed in complex form.

Familiarity with the complex numbers starts early, when
at high school the basics ofz are taught. Then in college alge-
bra/calculus one learns some more about complex variables,
with immediate applications to problems in both physics and
engineering like electric circuits and mechanical vibrating
systems. Later on complex holomorphic (analytic) functions
are introduced, and then applied to a variety of problems:
heat flow, fluid dynamics, electrostatics and magnetostatics,
to name but few.

The concept of analyticity is extremely important.
Many physical quantities are represented by functions
f(x, y), g(x, y) connected by the relations∂xf = ∂yg,
∂yf = −∂xg, where∂xf = ∂f/∂x, etc. It turns out thatf
andg may be considered as the real and imaginary parts of a
holomorphic functionh of the complex variablez:

h(z) = f + ig. (1)

The equations linkingf andg are the Cauchy-Riemann con-
ditions forh(z) being holomorphic, and can be written com-
pactly as

∂xh = −i∂yh. (2)

Whenh is a function ofz̄ = x − iy, the complex conjugate
of z, the condition (2) reads∂xh = i∂yh, andh(z̄) is said to
be anti-holomorphic [1].
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We hereby show how functions of the type (1) describe
solitons, giving yet another fundamental, if little known, ap-
plication of analytic complex functions.

3. Solitons

Nonlinear science has developed strongly over the past 40
years, touching upon every discipline in both the natural and
social sciences. Nonlinear systems appear in mathematics,
physics, chemistry, biology, astronomy, metereology, engi-
neering, economics and many more [2,3].

Within the nonlinear phenomena we find the concept of
‘soliton’. It has got some working definitions, all amounting
to the following picture: a travelling wave of semi-permanent
lump-like form. A soliton is a non-singular solution of a non-
linear field equation whose energy density has the form of
a lump localised in space. Although solitons arise from non-
linear wave-like equations, they have properties that resemble
those of a particle, hence the suffixon to covey a corpuscular
picture to thesolitary wave. Solitons exist as density waves in
spiral galaxies, as lumps in the ocean, in plasmas, molecular
systems, protein dynamics, laser pulses propagating in solids,
liquid crystals, elementary particles, nuclear physics. . .

According to whether the solitonic field equations can be
solved or not, solitons are said to be integrable or noninte-
grable. Given the limitations to analitycally handle nonlin-
ear equations, it is not surprising that integrable solitons are
generally found only in one dimension. The dynamics of in-
tegrable solitons is quite restricted; they usually move undis-
torted in shape and, in the event of a collision, they scatter off
undergoing merely a phase shift.

In higher dimensions the dynamics of solitons is far
richer, but now we are in the realm of nonintegrable mod-
els. In this case analytical solutions are practically restricted
to static configurations and Lorentz transfomations thereof.
(The time evolution being studied via numerical simulations
and other approximation techniques.) A trait of nonintegrable
solitons is that they carry a conserved quantity of topolog-
ical nature, the topological charge –hence the designation
topological solitons. Entities of this kind exhibit interesting
stability and scattering processes, including soliton annihila-
tion which can occur when lumps with opposite topological
charges (one positive, one negative) collide. For areas like
nuclear/particle physics such dynamics is of great relevance.

Using the simplest model available, below we illustrate
the emergence of topological solitons and their representa-
tion as complex functions.

4. The planarO(3)O(3)O(3) model

Models in two dimensions have a wide range of applications.
In physics they are used in topics that include Heisenberg
ferromagnets, the quantum Hall effect, superconductivity, ne-
matic crystals, topological fluids, vortices and solitons. Some
of these models also appear as low dimensional analogues of
forefront non-abelian gauge field particle theories in higher
dimensions, an example being the Skyrme model of nuclear
physics [4,5].

One of the simplest such systems is theO(3) or CP 1

sigma model in (2+1) dimensions (2 space, 1 time). It in-
volves three real scalar fieldsφj (j=1,2,3) functions of the
space-time coordinates(t, x, y) [6, 7]. The model is defined
by the Lagrangian density

L =
1
4

3∑

j=1

[(∂tφj)2 − (∂xφj)2 − (∂yφj)2], (3)

where the fields, compactly written as the vector in field
space~φ ≡ (φ1, φ2, φ3), are constraint to lie on the unit sphere

S
(φ)
2 = {~φ : ~φ2 = 1}. (4)

The Euler-Lagrange field equation derived from (3)-(4) has
no known analytical solutions except for the static case,
which equation reads

∇2~φ− (~φ.∇2~φ)~φ = ~0 [∇2 ≡ ∂2
x + ∂2

y ]. (5)

TheCP 1 solitons are non-singular solutions of (5). With-
out the constraint (4) the said equation would reduce to
∇2~φ = ~0, whose only non-singular solutions are constants.
The condition (4) leads to the second term in (5), equation
which does yield non-trivial non-singular solutions as we will
later see.

Solitons must also be finite-energy configurations.
From (3) we readily get the static energy

E=
∫

1
4

3∑

j=1

[(∂xφj)2+(∂yφj)2] d2x=
∫

1
4

3∑

j=1

(∇φj)(∇φj) d2x[∇ ≡ (∂x, ∂y)]

=
1
4

∫
(∇~φ).(∇~φ) rdrdθ (in polar coordinatesr, θ). (6)

We ensure the finiteness ofE by taking the boundary condition

lim
r→∞

~φ(r, θ) → ~φ0 (a constant unit vector independent ofθ), (7)
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since the integrand in (6) will thus tend to zero at spatial in-
finity:

lim
r→∞

r|∇~φ| = lim
r→∞

r

√
(∂r

~φ)2 + (
1
r
∂θ

~φ)2 → 0. (8)

4.1. The complex plane

We are thus considering the model in thex − y plane with
a point at infinity, i.e., the extended complex planewhich

is topologically equivalent to the two-sphereS(x)
2 . The fi-

nite energy configurations are therefore fields~φ defined on
<2 ∪ {∞} ∼= S

(x)
2 and taking values onS(φ)

2 . In other
words, our finite-energy fields are harmonic maps of the form
S

(x)
2 → S

(φ)
2 [8].

We may imagine the coordinate spaceS
(x)
2 as made of

rubber and the field spaceS(φ)
2 as made ofmarble; the map

~φ constrains the rubber to lie on the marble. Then with each
point (x, y) in the rubber we have a quantity

~τ = ∇2~φ− (~φ.∇2~φ)~φ

at the point~φ in the marble representing the tension in the
rubber at that point. Thus the map is harmonic if and only
if ~φ constrains the rubber to lie on the marble in a position
of elastic equilibrium,~τ = ~0, which is just Eq. (5). These
are our finite-energy configurations, of which the soliton so-
lutions are a subset.

4.2. Topological charge

In general, as the coordinatez = (x, y) ranges over the
sphereS

(x)
2 once, the coordinate~φ = (φ1, φ2, φ3) ranges

overS(φ)
2 N times. This winding number is called the topo-

logical charge in soliton parlance, and classifies the maps
S

(x)
2 → S

(φ)
2 into sectors (homotopy classes); maps within

one sector are equivalent in that they can be obtained from
each other by continuos transformations.

An expression for the topological charge is obtained by
expanding the coordinatesφj of the area element ofS(φ)

2 in
terms of coordinates(x, y) in S

(x)
2 , and integrating off. In

plainer language, from the college formula that computes the
flux of a vector~A through a regionD of a surfaceS :

∫

D

~A.n̂dS [n̂ a normal unit vector], (9)

the topological chargeN follows by calculating the flux of
~A = (N)/(4πa2)~φ through the sphereS(x)

2 of radiusa = 1:
∫

D

~A.n̂dS →
∫

S
(x)
2

N

4πa2
~φ.~φ dS = N.

Notably, a field with topological chargeN describes pre-
cisely a system ofN solitons.

In order to actually find charge-N finite-energysolutions,
it is convenient to express the model in terms of one inde-
pendent complex field,W , related to~φ via the stereographic

projection

W =
φ1 + iφ2

1− φ3
. (10)

In this formulation, the topological charge is given by

N =
1
π

∫

S
(x)
2

|∂zW |2 − |∂z̄W |2
(1 + |W |2)2 d2x, N ∈ Z, (11)

connected with the energy (6) through

E ≥ 2π|N |. (12)

5. Lumps

The solitonic solutions we seek correspond to the equality
in (12) [9–11]. That is, in a given topological sectorN the
static solitons of the planarCP 1 model are the configurations
whose energyE is an absolute minimum. Combining (11)
with E = 2π|N | we find that solutions carrying positive or
negative topological charge satisfy, respectively,

∂z̄W = 0 → ∂xW = −i∂yW, (13)

∂zW = 0 → ∂xW = i∂yW. (14)

But recalling Eq. (2) we immediately recognise the above
equations as the Cauchy-Riemann conditions forW being a
holomorphic function ofz or z̄. This is most remarkable.

For instance, a single-soliton solution (N = 1) may be
described by

W = z [note that this satisfies equation (13)]; (15)

its energy density distribution is given by

E =
2

1 + |z|2 . (16)

Plots of (16) reveal a lump of energy localised in space, as
shown in Fig. 1. The same energy corresponds toW = z̄,
which hasN < 0 and sometimes is referred to as an anti-
soliton.

FIGURE 1. The energy distribution corresponding to the soliton
W=z.
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A more generalN = 1 solution is given by a rational
function W = λ(z − a)/(z − b), which we should note is
non-singular:W (z = b) = ∞ corresponds toφ3 = 1, the
north pole ofS(φ)

2 according to (10). A prototype solution for
arbitraryN > 0 is λ(z − a)N .

The dynamics of these structures is studied by numer-
ically evolving the full time-dependent equation derived
from (3), with the fieldsW (z) as initial conditions [12,13].

SigmaCP 1-type models have several applications, note-
worthy among them being the Skyrme model in (3+1) dimen-
sions where the topological solitons stand for ground states
of light nuclei, with the topological charge representing the
baryon number.

The role of complex functions as topological solitons de-
serves widespread attention and should not be missing from
the modern literature dealing with complex theory and its ap-
plications.
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