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Complex functions as lumps of energy
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We present an application of the basic mathematical concept of complex functions as topological solitons, a most interesting area of res
in physics. Such application of complex theory is virtually unknow outside the community of soliton researchers.
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Presentamos una aplicanidel concepto mateftico de funciones complejas como solitones togmos, una interesantgea de investi-
gacbn en fsica. Dicha aplicaén de la tedia compleja es jarcticamente desconocida fuera detulo de investigaéin solibnica.

Descriptores: Soliton; funcbn compleja; topoloig.

PACS: 01.90.+g; 11.27.+d

1. Introduction based on Cauchy’s theorem. In fact, the basis of transform
) ' calculus is the integration of functions of a complex variable.
The complex variable: = = + iy, wherez,y € % and  And intersections between lines and circles, parallel or or-
i = v—1, is one of the most familiar and useful concepts inthogonal lines, tangents, and the like usually become quite
mathematics, with a very large number of well-documentedsjmple when expressed in complex form.
applications in science. _ _ _ Familiarity with the complex numbers starts early, when
Over the past few years some interesting nonlinear mody high school the basics ofare taught. Then in college alge-
els in physics haye received a lot of attention, models bearing, - /calculus one learns some more about complex variables,
the so-called solitons or energy "lumps”. Some of these mody,ith immediate applications to problems in both physics and
els exemplify yet another important application of complexgngineering like electric circuits and mechanical vibrating
functions, with functions as simple g%z) = =z describing  gystems. Later on complex holomorphic (analytic) functions
a soliton cohf|gur§t|on. Unfortunate_ly, despite _the.vast lit- 5re introduced, and then applied to a variety of problems:
erature dealing with complex analysis plus applications, ongea; fiow, fluid dynamics, electrostatics and magnetostatics,
finds no mention of the starring role efas a soliton. Ref-  j hame but few.
erence to such an extraordinary role is found only in highly The concept of analyticity is extremely important.

specialized research books and journals, hence the existen%ny physical quantities are represented by functions
of z as a soliton field is practically unknown outside the groupf(m y), gl(e,y) connected by the relation8, f = d,g

T . ) 9 9 x) — Yy
of specialists in the area. Oy = —0.g, whered, f = 0f /dx, etc It turns out thatf

. ; . 1 .
Using the nonlinear sigma(3) (or CP") model in two 4. may be considered as the real and imaginary parts of a
spatial dimensions, the present work illustrates the context B olomorphic functiorh of the complex variable:

which z stands for a lump of energy. This fact is most re-
markable and, given the growing importance of solitons in h(z) = f +ig. 1)
physics, we believe that more physicists should know about

it. They will find this fresh utility of complex variables quite ¢ equations linking’ andg are the Cauchy-Riemann con-
appealing. ditions for(z) being holomorphic, and can be written com-
pactly as

2. Complex theory

Ozh = —i0yh. 2
Complex theory is a very important branch of mathematics.
As a brush-up we just recall that many integrals given in reaWhenh is a function ofz = = — iy, the complex conjugate
form are easily evaluated by relating them to complex inte-of z, the condition (2) read8,h = i9,h, andh(z) is said to
grals and using the powerful method of contour integratiorbe anti-holomorphic [1].
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We hereby show how functions of the type (1) describe  Using the simplest model available, below we illustrate
solitons, giving yet another fundamental, if little known, ap- the emergence of topological solitons and their representa-
plication of analytic complex functions. tion as complex functions.

3. Solitons 4. The planar O(3) model

Nonlinear science has developed strongly over the past 40 delsi di . h id f licat
years, touching upon every discipline in both the natural andviodels in two dimensions have a wide range of applications.

social sciences. Nonlinear systems appear in mathematic'sQ physics they are used in topics that include Hel_sgnberg
physics, chemistry, biology, astronomy, metereology, engiferrc_)magnets, the quar_ltum I-!all eﬁegt, supercon(_juctwny, ne-
neering, economics and many more [2,3]. matic crystals, topological fluids, vorug:es an_d solitons. Some
Within the nonlinear phenomena we find the concept oiOf these models a[so appearas low d|r.nenS|ona.I anglogues of
‘soliton’. It has got some working definitions, all amounting fqrefron_t non-abelian gauge field particle theories in higher
to the following picture: a travelling wave of semi-permanentd'mens'ons’ an example being the Skyrme model of nuclear

lump-like form. A soliton is a non-singular solution of a non- physics [4, 5].

linear field equation whose energy density has the form of One of the simplest such systems is 1€3) or CP*

a lump localised in space. Although solitons arise from nonsigma model in (2+1) dimensions (2 space, 1 time). It in-

linear wave-like equations, they have properties that resembi¢olves three real scalar fields; (j=1,2,3) functions of the

those of a particle, hence the suffirto covey a corpuscular Space-time coordinatés, z, ) [6, 7]. The model is defined

picture to thesolitary wave. Solitons exist as density waves in Py the Lagrangian density

spiral galaxies, as lumps in the ocean, in plasmas, molecular

systems, protein dynamics, laser pulses propagating in solids, 1S

liquid crystals, elementary particles, nuclear physics. . . L= D 10:65)° = (9265)% = (9,5)7) 3)
According to whether the solitonic field equations can be 7=1

solved or not, solitons are said to be integrable or noninte- ) ) o

grable. Given the limitations to analitycally handle nonlin- Where_the fields, compactly ert_ten as the vectqr in field

ear equations, it is not surprising that integrable solitons ar§PaC8 = (1, ¢2, ¢3), are constraint to lie on the unit sphere

generally found only in one dimension. The dynamics of in-

tegrable solitons is quite restricted; they usually move undis- Sé‘w = {5: P = 1}. 4)
torted in shape and, in the event of a collision, they scatter off
undergoing merely a phase shift. The Euler-Lagrange field equation derived from (3)-(4) has

In higher dimensions the dynamics of solitons is farno known analytical solutions except for the static case,
richer, but now we are in the realm of nonintegrable mod-which equation reads
els. In this case analytical solutions are practically restricted
to sta’gic configu_rations_ and Lorentz transfor_natio_ns the_reof. V3G — (3V20)g =0 [V2=02+ 02 (5)
(The time evolution being studied via numerical simulations Y
and other approximation techniques.) A trait of nonintegrable ) ) ) )
solitons is that they carry a conserved quantity of topolog-  TheCP* solitons are non-singular solutions of (5). With-
ical nature, the topological charge —hence the designatiofut_the constraint (4) the said equation would reduce to
topological solitons Entities of this kind exhibit interesting V¢ = 0, whose only non-singular solutions are constants.
stability and scattering processes, including soliton annihilaT "€ condition (4) leads to the second term in (5), equation
tion which can occur when lumps with opposite topologicaIWh'Ch does yield non-trivial non-singular solutions as we will
charges (one positive, one negative) collide. For areas liktater see.
nuclear/particle physics such dynamics is of great relevance. Solitons must also be finite-energy configurations.
|  From (3) we readily get the static energy

B= [ £ 100024000 o= [ 13 (V6;)(V65) dalV = (0,.0,)
Jj=1 j=1

=~ |

:i /(V@-(V@ rdrdf (in polar coordinates, 6). ©)

We ensure the finiteness éfby taking the boundary condition

lim $(r, 0) — q?o (a constant unit vector independent 6, @)
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since the integrand in (6) will thus tend to zero at spatial in-projection
finity:

W= ¢1 + i (10)

- - 1. - — .
lim #|V| = lim r\/(a,.¢)2 + (0B - 0. ®) 1=¢3
In this formulation, the topological charge is given by
4.1. The complex plane

2 |19 2
1/( ) [0-W " — [0:WW] d*z, NeZz, (11)
S;

We are thus considering the model in the- y plane with N = p 1+ [W]2)2
a point at infinity, i.e,, the extended complex planghich

is topologically equivalent to the two-sphe.ﬁé‘”). The fi-  connected with the energy (6) through
nite energy configurations are therefore fiefflslefined on

Ry U {oo} = SI”) and taking values or${”. In other E > 27|N|. (12)
words, our finite-energy fields are harmonic maps of the form
S5 — 557 8. 5. Lumps

We may imagine the coordinate spaﬁ&”) as made of
rubber and the field spacS§¢) as made ofnarble the map  The solitonic solutions we seek correspond to the equality
¢ constrains the rubber to lie on the marble. Then with eachn (12) [9-11]. That is, in a given topological sectdr the

point (z, ») in the rubber we have a quantity static solitons of the plandi P! model are the configurations
L whose energy is an absolute minimum. Combining (11)
F=V2¢— (¢.V*¢)o with E = 2x|N| we find that solutions carrying positive or

— ) o negative topological charge satisfy, respectively,
at the point¢ in the marble representing the tension in the

rubber at that point. Thus the map is harmonic if and only W =0 — 8,W = —id,W, (13)
if ¢ constrains the rubber to lie on the marble in a position

of elastic equilibrium7 = 0, which is just Eq. (5). These

are our finite-energy configurations, of which the soliton so- W =0 — 9, W = id,W. (14)
lutions are a subset. '

) But recalling Eq. (2) we immediately recognise the above
4.2. Topological charge equations as the Cauchy-Riemann conditionsfobeing a
holomorphic function ot or z. This is most remarkable.
For instance, a single-soliton solutio’v (= 1) may be
described by

In general, as the coordinate = (z,y) ranges over the
sphereSéx) once, the coordinate = (¢1, P2, ¢p3) ranges
0verS§¢) N times. This winding number is called the topo-
logical charge in soliton parlance, and classifies the maps
Sél') — S§¢) into sectors (homotopy classes); maps within
one sector are equivalent in that they can be obtained fromg energy density distribution is given by
each other by continuos transformations.

An expression for the topological charge is obtained by 2
expanding the coordinates of the area element cﬂ’éw in €= 1422
terms of coordinate$z, y) in Sé”“'), and integrating off. In
plainer language, from the college formula that computes th&lots of (16) reveal a lump of energy localised in space, as

=z [note that this satisfies equation (t3) (15)

(16)

flux of a vectorA through a regiorD of a surfaces : shown in Fig. 1. The same energy correspondéto= z,
which hasN < 0 and sometimes is referred to as an anti-
/ AfdS [fanormal unit vectdr (9)  soliton.
D

the topological chargév follows by calculating the flux of
A = (N)/(4ma?)¢ through the spherﬁéz) of radiusa = 1:

/ AndS — / N 6.¢dS = N.
D s(» 4ma?

Notably, a field with topological chargh’ describes pre-
cisely a system olV solitons.

In order to actually find chargé* finite-energysolutions
it is convenient to express the model in terms of one indeFicure 1. The energy distribution corresponding to the soliton
pendent complex field}/, related tag via the stereographic W=z.
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A more generalV = 1 solution is given by a rational The role of complex functions as topological solitons de-
function W = A(z — a)/(z — b), which we should note is serves widespread attention and should not be missing from
non-singular:WW(z = b) = oo corresponds t@s = 1, the  the modern literature dealing with complex theory and its ap-
north pole ofS{” according to (10). A prototype solution for plications.
arbitraryN > 0is A(z — a)™.

The dynamics of these structures is studied by numer-
ically evolving the full time-dependent equation derived ACknowledgements
from (3), with the fieldd¥ (z) as initial conditions [12, 13].
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