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Optimization for maximum Raman frequency conversion in supercontinuum
sources using genetic algorithms

F.R. Arteaga-Sierraa,b,∗, C. Mili ánb,c,d, I. Torres-Ǵomeze, M. Torres-Cisnerosa,
H. Plascencia-Moraa, G. Moltód, A. Ferrandob,f
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A frequency convertor based on the soliton self-frequency shift by the supercontinuum generation is obtained by optimization of only three
parameters of a Ti:Sapphire laser pulse, namely, carrier wavelength, peak power and time duration. The frequency conversion is performed
and calculated by simulating the propagation of the pulse in a simple piece of25 cm long commercial photonic crystal fiber pumped by
the femtosecond Ti:Sapphire laser, whose only pre-requisite is to exhibit the standard supercontinuum. The resulting spectral broadening
has a maximum spectral conversion in the anomalous region just by playing with the three realistic controllable parameters. Optimization
is performed using pre-defined functions of genetic algorithms. Our results indicate that the efficiencies of Raman conversion achieved
by merely optimizing the pulse parameters in a commercial fiber are comparable with those obtained in more elaborated Raman convertor
devices.
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1. Introduction

The Soliton self-frequency shift (SSFS) [1, 2] has been
demonstrated as an important mechanism for the supercon-
tinuum (SC) generation with femtosecond pulses in optical
fibers [3, 4]. Specifically, many effects implied in SC gen-
eration would not be possible without the SSFS [5–11]. Its
characteristic large frequency shift has been exploited for the
fabrication of infrared (IR) sources [12–14], even its opti-
mization has been reported [15–17].

In previous works, we have shown that a fs-pulse can si-
multaneously generates several pre-defined spectral peaks by
means of dispersive waves in the normal GVD [18] or by
soliton self-frequency shift in the anomalous GVD [19]. It
is useful for potential applications of optical coherence to-
mography (OCT). Now, regarding the same kind of applica-
tions, we present a computational optimization with the use
of a genetic algorithm (GA) to obtain not only a tunable fre-
quency convertor (see,e.g., Refs. [20,21]), but also achieving
the maximum spectral conversion possible in the fixed chan-
nel regarding the scope of the initial set of input pulse pa-
rameters. This frequency convertor is useful for applications
where high power is demanded.

We simulate pulses propagation in a commercial highly
nonlinear photonic crystal fiber, NL-2.4-800 PCF (see

Ref. 19 for details of cross sectional geometry), exhibiting
SC generation at the Ti:Sapphire laser wavelengths. This
method finds the optimal input pulse parameters, namely cen-
tral wavelength,λ0, temporal width,T0, and peak power,P0,
that maximize the output SC power in a spectral channel of
fixed width and selected central frequency,ωc. Our typical
channel width chosen here narrow enough so the optimalωc

will be around the carrier frequency of the most powerful,i.e.
firstly ejected Raman soliton in the IR spectral region [22].
The inverse problem,i.e. the design of PCFs to optimize the
SC has indeed been previously solved satisfactorily in a wide
range of situations [23–27]. Our interest in the IR region is
motivated specifically by applications in OCT [28–34].

2. Pulse propagation and genetic algorithms
Using a Fourier split-step method, we simulate the propa-
gation of optical pulses with complex amplitudeA(z, t) by
integrating numerically the GNLSE [3],

−i∂zA(z, t) =
∑

q≥2

βq(ω0)
q!

(i∂t)qA(z, t)

+ γA(z, t)

+∞∫

−∞
dt′R(t′)|A(z, t− t′)|2, (1)
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wherez is the axis coordinate along the fiber propagation,
the dispersion coefficientsβq ’s (up to q = 10 in this work
computed with a FEM solver) account for the linear fiber
dispersion at the pump frequencyω0 = 2πc/λ0. Nonlin-
earity is included through the parameterγ and the response
function R(T ) ≡ [1 − fR]∆(T ) + fRhR(T )Π(T ), where
fR = 0.18, hR is the commonly used Raman response of sil-
ica [35], and∆(T ), Π(T ) are the Dirac, Heaviside functions,
respectively. The dispersion coefficientsβq were computed
using Optiwave [36].

The input pulse used in this work belong to a realistic
laser source, the form isA(z = 0, t) =

√
P0 sech(t/T0),

where the intensity full width at half maximumTFWHM =
2T0 ln[1 +

√
2] andP0 as the peak power. The soliton order

is computed byN = T0

√
γP0/|β2|.

Optimization algorithms have been developed in order to
solve problems involving multiple variables in which solu-
tion seems to be non trivial (see Refs. [37–39] for reviews on
the topic). A GA is a evolutionary computational algorithm
for optimization which makes evolve an initial population of
individuals in order to find global minima when a number of
generations is generated [40, 41]. Each individual is the re-
sult of the evaluation of a set of parameters (λ0, P0 andT0

in this work) and applies a minimization strategy to find the
solutions taking the minimum value of the fitness functionφ.
The use of GAs in the fiber-design context is not new [23,24].
Previously, some works have made use of GAs for the opti-
mization of the dispersion management [26,27], even the de-
sign of PCF structural parameters for SC generation [25]. We
use a GA using pre-defined functions of Matlab [42]. In the
first stage, the GA starts generating a randomly initial popu-
lation of p = 50 individuals. In the second stage, the most
promising individuals generated in the first stage are allowed
to reproduce to determine the next generation of individuals
according to the pre-established evolution rules of Mutation
M̂ , Cross-over̂X and Random̂R . The Mutation operator̂M
[5% in this work] makes possible the change of one chromo-

FIGURE 1. Diagram of the operation of the GA. In first stage a pop-
ulation of possible solutions is generated randomly. In the second
stage, new individuals are created byM̂ , X̂ or R̂ and each one is
compared with the worst solution created in the initial population,
if the new individual is better, then it is selected as a new individ-
ual in the next generation instead the worst solution, otherwise is
dismissed. The process causes the mean fitness improvement in the
population. At Stage 3 (afterm = 150 in our case), the best in-
dividual is picked of the evolved population and chosen as optimal
solution.

some of the promising individuals. The Cross-over operator
X̂ [95% in this work] acts as a parent selection method,i.e.
a mix of two promising individuals (parents) and their rates
to obtain the offspring for the next generation. Most parent
selection methods are stochastic in order to keep the diver-
sity of the population, preventing premature to a sub-optimal
convergence solution. The Random operatorR̂ is selected
if population is smaller than the threshold valuec (c < p)
and by the genetic operator̂M for chromosome changes. At
the end (afterm = 150 in our case), the best individual is
picked of the evolved population and chosen as optimal solu-
tion. The optimization process is depicted in Fig. 1.

3. Raman frequency conversion

It has been proved that high axial resolution in OCT systems
is aimed in the spectral region of800 nm to1400 nm [43,44].
Aditionally, the NIR II light decrease in scattering and in-
crease in transparency of the biological tissues over the NIR
range [45]. Moreover Gaussian spectral shapes avoid spuri-
ous structures in OCT images [46]. For these reasons, IR-
Raman soliton can be considered a very good option to OCT
applications.

In Sec. 3.1, we search the optimal parameters,λ0, T0 and
P0, by implementing the fitness function defined as

φ(ωc; δ) ≡



ωc+δ∫

ωc−δ

dω′|Ã(ω′)|2


−1

, (2)

where|Ã(ω′)|2 is the output pulse power amplitude,2δ = 50
nm is the chosen spectral channel width, andωc is the central
frequency, determined by inspection of the output spectrum,
to minimizeφ(ωc; δ) and, consequently to increase the effi-
ciency of conversion given by

η =
φ−1

∫ +∞
−∞ dω′|Ã(ω′)|2

. (3)

In order to prove the convenience of our method, it is
made an exhaustive search of the best fitness value by scan-
ning the entire ranges of parameters. It is shown in Sec. 3.2.

3.1. Optimal solution using genetic algorithms

The optimization consisted in the search of parameters that
originate the maximum output power in each selected spec-
tral channel on the NIR II using the GA to vary the pulse
parametersP [1, 15] kW, λ [750, 850] nm andT [30, 110] fs.
The range of values used in this work are attainable in real-
istic Ti:Sapphire lasers. In this particular optimization prob-
lem, each individual evaluation typically required90 s what
amounted for about∼ 3.75 h of CPU time to perform a single
run of the GA with 150 individuals. The set of all the indi-
viduals generated by the GA in each channel optimization is
shown as a example in a3D “cloud” graphic in the space of
parameters in Fig. 2(a).
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FIGURE 2. (a) Cloud ofm = 150 individuals generated by the
GA for a channel ofλc = 1225 nm. The color of the points
shows the fitness (φ) value of each individual, lighter points have
smaller (thus, better fitness values) and the optimal individual is
represented as the red point sited in the coordinates of the three
optimized parameters. (b) Typical fitness value evolution of execu-
tions in chronological order of generation during the optimization
procedure with its mean fitness value (black line) and the minimum
global value (red line), dashed magenta vertical line separate the
best individual within the first random individuals (m = pth = 50)
generated in the stage 1 of the process.

This “cloud” of individuals corresponds to all solutions
generated by the GA, theirfitnessfunction being represented
by the color code bar. Lighter points have smaller fitness val-
ues (thus, better) than darker ones. We observe that there
exists a zone where the GA tends to accumulate points. It
is precisely in this region where the best fitness value (red
point) is found. It is worth mentioning that in general these
regions could contain more candidates to optimal solutions
than those eventually selected by the GA. Thus, keeping track
of these “quasi-optimal” individuals can also be of great in-
terest from the physical point of view since they can provide
extra-local minima of thefitnessfunction not considered in
a preliminary physical analysis of the optimization scenario.
Once the local minima have been detected, a more accurate
search around them combining GA strategies and other opti-
mization techniques can be performed in order to find a better
minimum of thefitnessfunction.

Figure 2(b) shows clearly the “dynamical” improvement
in the fitness value as the GA evolves [referred to in Fig. 1].
The initial “optimized” value is obtained in the stage 1, when
the initial population of 50 individuals is randomly generated
(delimited by the vertical dashed line). After the 50th eval-
uation, the stage 2 of our algorithm initiates, when genetic
operators start to act on the previous population. A signifi-
cant improvement in the fitness of the population is apparent,
the mean fitness value of the population is monotonically de-
creasing as new individuals are generated, as the black con-
tinuous curve. The red line shows the minimum global value
until the instant of the last individual is generated in the pro-
cess. Our GA has not a tendency to converge towards local
optima or arbitrary points rather than the global optimum of
the problem, this is caused because the operatorM̂ gives a
lower probability of occurrence than crossover operator, this
combination gives a good diversity in the generation of new
individuals with the better probability to conserve the best
properties of its predecessors ensuring the good convergence
of the GA. The set of optimized parameters for eachλc within
the NIR II region and under the mentioned conditions are
shown in Table I.

TABLE I. Optimal parameters,T0, λ0, P0, obtained using the GA. The soliton order,N , fitness value,φ, output central wavelength,λc, and
efficiency of frequency conversion,η, are shown as the obtained results.

Optimal parameters Results

T0 (fs) λ0 (nm) P0 (kW) N φ (10−4/W ) λc (nm) η(%)

37.09 813.23 7.00 9.06 1.182 1025 21.34

34.54 837.13 6.79 4.94 0.916 1075 24.78

56.18 827.63 8.92 10.70 1.136 1125 24.15

85.09 845.25 7.83 11.83 1.093 1175 21.67

50.45 829.05 14.54 11.96 0.832 1225 26.67

57.97 849.25 13.00 9.94 0.086 1275 21.35

91.51 842.28 14.91 18.17 1.125 1325 24.34

110.00 845.65 14.57 20.87 0.992 1375 24.65
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TABLE II. Best parameters,T0, λ0, P0, obtained by exhaustive search withm = 675. The soliton order,N , fitness value,φ, output central
wavelength,λc, and efficiency of frequency conversion,η, are shown.

Optimal parameters Results

T0 (fs) λ0 (nm) P0 (kW) N φ (10−4/W ) λc (nm) η(%)

90 810 10 53.32 1.466 1025 17.29

100 810 10 59.24 1.496 1075 15.22

100 850 7 22.03 1.552 1125 17.67

90 830 10 30.69 1.458 1175 16.29

100 850 9 24.98 1.332 1225 16.76

100 850 12 28.84 1.247 1275 14.89

100 850 14 31.15 1.927 1325 14.17

110 850 15 32.32 1.582 1375 15.54

FIGURE 3. Spectral (a) and temporal (b) evolutions on dis-
tance z corresponding to optimized parametersT0 = 50.45 fs,
λ0 = 829.05 nm andP0 = 14.54 KW for a channel centred in
λc = 1225 nm (as in Table ). In the spectral window, dashed verti-
cal lines shows the channel with maximum spectral power obtained
by the GA. The black continuous line represent thezero GVD.

The spectral and temporal evolutions of the best individ-
ual found in the optimization process (see Fig. 1) are shown
in Figs. 3(a)-(b) respectively. It clearly demonstrates the op-
timality of the result provided by the GA: the spectrum of the
first Raman soliton (the reddest one) is accurately centered in
the targeted channel (delimited by the dashed lines).

The maximum spectral power found for each channel re-
sults very approximate to the Kodama and Hasegawa predic-
tions for the soliton amplitude [22].

It is known that SSFS can be made large by propagating
shorter pulses with high peak powers inside highly nonlinear
fibers and that the fission of higher-order solitons generates
frequency-shifted pulses in form of Raman solitons [1,35].

In order to validate of our method, it is made an exhaus-
tive search of the best fitness value by scanning the entire
ranges of parameters. It is shown in Sec. 3.2.

FIGURE 4. (a) Fitness value charts for differentP0 values with
m = 675 generated forλc = 1225 nm without the use of the GA
(see Table ). The color of the points shows the fitness (φ) value of
each individual, lighter points have smaller (thus, better fitness val-
ues) and the best individual is represented as the red point sited in
the coordinates of the three parameters. The black polygonal-line
sorts the best individuals for the specificP0. (b) Fitness value evo-
lution of executions in chronological order of generation during the
optimization procedure with the minimum global value (red line).
The sawtoothbehavior of the fitness value evolution is shown in
the inset.
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TABLE III. Best parameters,T0, λ0, P0, obtained in the zoom-in by exhaustive search withm = 675. The soliton order,N , fitness value,φ,
output central wavelength,λc, and efficiency of frequency conversion,η, are shown.

Optimal parameters Results

T0 (fs) λ0 (nm) P0 (kW) N φ (10−4/W ) λc (nm) η(%)

93 814 10.06 46.54 1.296 1025 19.46

98 812 10.12 52.98 0.953 1075 23.83

101 847 6.92 22.79 1.289 1125 21.43

88 833 10.27 28.88 1.212 1175 19.45

97 850 8.84 23.48 0.992 1225 22.46

103 850 12.25 29.65 0.908 1275 20.45

103 850 13.82 31.86 1.413 1325 19.34

108 850 14.78 31.69 1.098 1375 22.54

3.2. Optimal solution using exhaustive search

Now, a searching method is implemented to check the reli-
ability of our results. It consists of picking the individual
with the best fitness value from a systematic evaluation of
all possible combinations of parameters (m = 675) within
the defined ranges with defined steps. It is worth mentioning
that this process requires larger capabilities of time-machine
(∼ 16.5 h) than the shown using GAs in the previous section.
The set of optimized parameters by this method is shown in
Table II.

The chart of different values for theλc = 1225 nm case is
shown in the Fig. 4(a). The black polygonal-line shows how
the best individual of fixed power jumps randomly in the case
when the use of a GA is avoided. Figure 4(b) shows the fit-
ness value evolution in chronological order for the exhaustive
search. Asawtoothbehavior of the fitness value evolution is
because the fitness value becomes better and worse by re-
peating the parameter values for each individual while they
are evaluated in the search.

By comparing Tables and , we can see that the efficiency
obtained in the optimization using the GA is better than the
search made without using the GA, even using more execu-
tions in the exhaustive search. We perform a new search level
by focusing on a smaller region around the neighbourhood of
the previously optimized results in Table . The new condi-
tions are:P ∈ [P0±0.5] kW, T ∈ [T0±5] fs andλ ∈ [λ0±5]
nm. The results of the ”zoom-in” for each channel are shown
in Table . The efficiency of conversion based on the exhaus-
tive search zoom-in is still not better than the efficiency ob-
tained using GA (see Tables and ). Although, it is possible
to perform a new search level, the time required will be con-
siderably longer (∼ 48 h compared with∼ 3.75 h using the
GA). However, this new search level still does not ensure to
find the best solution like GA does.

4. Conclusions

We have presented a well defined and efficient optimization
procedure of a Ti:Saphire laser pulse parameters to obtain
the maximum frequency conversion using a simple device by
means of solitonic red-shift in the anomalous region. This op-
timization is achieved with the use of GAs. Therefore, it has
been shown that efficient spectral conversion based on SSFS
can be achieved using a simple PCF as a medium of gen-
erating spectral broadening pumped by a Ti:Sapphire laser
just by properly controlling the input parameters of the input
pulses. This scenario typically involves soliton fission and
emission of dispersive waves into the normal GVD regime,
situation in which precise analytical estimates are not avail-
able and therefore the use of numerical simulations in com-
bination with GA is of great usefulness. In summary, this
work results in a tool with great potential for optimization of
the output of SC spectra for practical OCT applications in the
NIR II region.
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