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Experimental multi-scroll attractor driven by switched systems
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This article deals with an electronic implementation of a 3-D dynamical system that comprises multiple scrolls and is regarded as unstable
dissipative system. Such a system is dissipative in one of its components but unstable in the other two. The proposed electronic circuit is
implemented with resistors, capacitors and comparators and has the capability to generate two or three scrolls

Keywords: Phase portrait; Analog electronic; Differential equations; Operational Amplifier.

Este art́ıculo trata de la instrumentación de un sistema dinámico 3-D que puede presentar múltiples enroscados, cual se ha denominado
sistema disipativo inestable. Este sistema es disipativo en uno de sus componenets pero inestable en los otros dos. El circuito eléctrico
propuesto esta constituido por resistencias, capacitores y comparadores. Este circuito es capaz de generar dos y tres enroscados.

Descriptores: Retrato de fase; electrónica anaĺogica; ecuaciones diferenciales; amplificadores operacionales.

PACS: 02.10.Yn; 02.30.Hq; 02.10.Ab; 84.30.Sk; 84.30.Le

1. Introduction

In the last two decades, theoretical design of different kind
of electronic circuits based on chaos have been a central sub-
ject. In this regard, the design of multi-scroll chaotic attractor
is a challenging issue. Therefore, there are different choices
concerning the implementation of chaotic circuits and one of
them is the synthesis of electronic circuits with the capabil-
ity of generating multi-scroll chaotic attractors. One idea is
to modify a system that originally produces double-scroll at-
tractors in such a way that multi-scrolls arise; as for example
in the Chua and Lorenz systems [1-4]. As a matter of fact,
Suykens and Vandewalle introduced several methods for gen-
erating n-scroll chaotic attractors using simple circuits [5,6].
Likewise, Yalcin and his colleagues [7] also reported work
on multi-scroll chaotic attractors. Therefore, one of the main
goals of chaotic systems is the search for alternatives to ma-
nipulate the number of scrolls in attractors without losing its
dynamical behavior. Hitherto, different techniques are well
established in the design of such systems, such as the modifi-
cation of a simple sinusoidal oscillator [8], the improvement
of existing chaotic systems [9-12] and through multi-fractal
processes [13], among others.

In addition, new mechanisms of chaotic system genera-
tion have been reported from a theoretical viewpoint [14-17].
A simple technique is carried out in controlled systems by a
switching control law [14], aimed at changing the switching
control law in order to add further equilibria to the system,
where each equilibrium point generates a scroll around it.

In this work, we propose an electronic implementation
of a class of 3-D dynamical systems as already reported in
Ref. 14. This class of systems is termed unstable dissipative

systems (UDS) because it is dissipative in one of its com-
ponents while unstable in the other two. The UDS are con-
structed with a switching law in order to accomplish several
multi-scroll strange attractors. The strange multi-scroll at-
tractors appear as a result of the combination of several un-
stable “one-spiral” trajectories. Each of these trajectories lie
around a saddle hyperbolic stationary point.

This work is organized as follows. In Sec. 1, both the
UDS and the switching law are presented in order to produce
multi-scroll chaotic attractors. The proposed electronic cir-
cuit of multi-scroll chaotic attractors using this approach is
given in Sec. 2. Experimental results are given in Sec. 3, and
conclusions are outlined in Sec. 4.

2. Unstable Dissipative Systems

We consider a linear system given by:

Ẋ = AX, (1)

whereX = [x1, · · · , xn] ∈ Rn is a state vector andA ∈
Rn×n is a linear operator. The equilibrium point of this sys-
tem is located at the origin which is a saddle hyperbolic sta-
tionary point. Thus, one feature of matrixA relies on two
generated manifolds, one stableEs and another unstableEu.

If the system given by Eq. 1 has a saddle equilibrium
point responsible for unstable and stable manifolds and the
sum of its eigenvalues is negative, then the system is called
unstable dissipative system (UDS). In [14,15] two types of
UDS inR3 and two types of corresponding equilibria are de-
fined.
Definition 2.1 A system given by Eq. 1 inR3 with eigen-
valuesλi, i = 1, 2, 3, is said to be an UDS Type I, if
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∑3
i=1 λi < 0 and one of its eigenvaluesλi is both real and

negative, and the other two are complex conjugate with a pos-
itive real part.
Definition 2.2A system given by Eq. 1 inR3 with eigenvalues
λi, i = 1, 2, 3, is said to be an UDS Type II, if

∑3
i=1 λi < 0

and one of its eigenvalues is both real and positive, and the
other two are complex conjugate with a negative real part.

For the corresponding equilibria two types are defined ac-
cordingly. The above definitions imply that the UDSType I
is dissipative in one of its components but unstable in the
other two, which both are oscillatory. The converse is the
UDSType II, which is dissipative and oscillatory in two of its
components but unstable in the other one. These definitions
work well for R3 due to the fact that there is not ambiguity.
However, for bigger dimensionsRn, with n > 3, these type
of UDS could be satisfied for both types of UDS, generating
ambiguity. Therefore, a definition only for UDS systems is
given as follows.
Definition 2.3Let a system defined by Eq. 1 inRn with eigen-
valuesλj , j = 1, · · · , n with none a pure imaginary eigen-
value. Each matrixAi, i = 1, · · · , k, is said to be a dissipa-
tive and unstable system (UDS) if

∑n
j=1 λj < 0 and there is

at least oneλj that is positive real or complex with positive
real part.

The following proposition accounts for the types of be-
havior that are found in UDS system defined by Eq. 1.
Proposition 2.1 Let system(1) be a UDS with an ordered
set of eigenvaluesΛ = {λ1 · · ·λn} andλ1 ≤ λ2 · · · ≤ λn.
Then, the following statements are true:

(a) The system has a stable manifoldEs =
span{λ1 · · ·λm} ⊂ Rn and one unstableEu =
span{λm+1 · · ·λn} ⊂ Rn, with 1 < m < n.

(b) Any initial conditionX0 ∈ Eu generates an unstable
trajectory; that is, an unbounded trajectory.

(c) Any initial conditionX0 ∈ Es generates a stable tra-
jectory that converges to the equilibrium point.

(d) The basin of attractionB is Es ⊂ R.

Proof: Let the eigenvaluesΛ = {λ1 · · ·λn} have a set
of corresponding eigenvectors{v1, . . . , vn}, which are lin-
early independent. Thus, there arem negative eigenvalues
λ1 · · ·λm (real or complex with negative real part) account-
ing for the system to be dissipative. But there aren−m pos-
itive eigenvaluesλm+1 · · ·λn (real or complex with positive
real part) because of there are at least one pair ofλj complex
conjugate with positive real part. Then the stable and unsta-
ble subspaces of the linear system (1),Es andEu, are the lin-
ear subspaces spanned by{v1, . . . , vm} and{vm+1, . . . , vn},
respectively;i.e., Eu = span{λm+1 · · ·λn} ⊂ Rn with
1 < m < n. This proves (a).

For statement (b), using the fundamental theorem for lin-
ear systems, the initial value problem of system (1) has a
unique solution given by

x(t) = eAtX0,

for a givenX0 ∈ Eu; this unstable manifold is generated
by positive real eigenvaluesλ = a, and complex conjugate
eigenvaluesλ = a + ib with a, b ∈ R and0 < a. Without
loss of generality, the solution will be increasing according to
eat, whent → ∞ the solution|x(t)| → ∞, thus generating
unstable trajectories. In a similar way, for statement (c) the
solution will be decreasing according toeat due toa < 0,
thus whent →∞ the solution|x(t)| tends to the origin.

The spacesRn are the direct sum of subspacesEs and
Eu, thenRn = Es⊕Eu. Therefore, as a consequence of (b)
and (d), the basin of attractionB is Es ⊂ R, thus completing
the proof.

¤
As already outlined in Ref. 14, we now consider a class

of a switched system comprising affine piecewise linear sys-
tems given by:

Ẋ =





A1X + B1, for X ∈ D1,
...

AkX + Bk, for X ∈ Dk,

(2)

whereX = [x1, · · · , xn] ∈ Rn is the state vector,Bi ∈ Rn

is a constant vectors,Ai ∈ Rn×n are linear operators,Di

are subspaces ofRn, with i = 1, ..., k. The equilibria of
this system are located atX∗ = −A−1

i Bi, which are saddle
hyperbolic stationary points. Thus, one feature ofAi is the
existence of two generated manifolds: one stableEs and the
other unstableEu.

Here, the goal is to find(Ai, Bi) subsystems that build up
a switched system capable of generating periodic or chaotic
oscillations inR3. We know that for a switched system to os-
cillate periodically or chaotically, it must contain at least two
subsystems and if the system contains three or more subsys-
tems, it can generate attractors with multiple scrolls.

Each subsystemAiX + Bi, for X ∈ Di, is denoted
with the pair (Ai, Bi) and Rn = ∪k

i=1Di, where X =
[x1, x2, x3]T ∈ R3 is the state variable,B = [b1, b2, b3]T ∈
R3 stands for a real vector and eachAi ∈ R3×3 denotes a
linear operator given as follows:

A =




α11 α12 α13

α21 α22 α23

α31 α32 α33


 . (3)

As pointed out above, each matrixAi is such that the sys-
tem (2) is dissipative, which implies that the sum of eigen-
values are negative. In this way the characteristic polynomial
of (3) is given by

g(λ) = λ3 − τλ2 + γλ− δ, (4)

where τ = Tr(A), γ = α11α22 + α11α33 + α22α33 −
α13α31 + α23α32 + α12α21 and δ = det(A). The classi-
cal Descartes’ Rule of Signs is an useful tool to assess how

Rev. Mex. Fis.63 (2017) 117–123



EXPERIMENTAL MULTI-SCROLL ATTRACTOR DRIVEN BY SWITCHED SYSTEMS 119

FIGURE 1. Two scrolls: a) states vs time, b) phase portraitX − Y .

FIGURE 2. Three scrolls: a) states vs time and b) phase portraitX − Y .

many positive or negative roots one can expect from polyno-
mial g(λ). Then, if τ < 0, δ < 0, andγ > 0 imply two
possibilities:(a) the roots ofg(λ) are all real negative or (b)
g(λ) has one real negative root and two complex roots with
a positive real part. Since the first choice results in a stable
equilibrium point, we are interested in case (b) because the
component related to the negative real eigenvalue is attract-
ing and the two complex eigenvalues are responsible for the
steady outward slide.

2.1. Two scrolls UDS

If we choseα11 = 0, α12 = 1, α13 = 0, α21 = −1,
α22 = −0.2465, α23 = 1, α31 = −6.8438, α32 = −2.006
andα33 = −1.1102 then the (b) condition of the previous
paragraph is satisfied and the system given by Eq. (2) is UDS.
The entries ofB vector are:

B =





[0, 0, 5]T , for x ≥ 0.3143,

[0, 0, 0]T , other case.
(5)

With these parameters, the equilibrium points are lo-
cated at(0.6286, 0, 0.6286) and(0, 0, 0), thus generating two
scrolls as shown in Fig. 1.

2.2. Three scrolls UDS

If we add another equilibrium point, for example at
(−0.6286, 0,−0.6286), we generate three scrolls, and itsB
vector is (see Fig. 2):

B =





[0, 0, 5]T , for x ≥ 0.3143,

[0, 0, 0]T , for −0.3143 < x < 0.3143,

[0, 0,−5]T , for x ≤ −0.3143.

(6)

We are capable of generating more scrolls with this
methodology if we add more equilibrium points as already
stated in Ref. 14.

3. Multi-scroll Electronic Circuit

The proposed electronic circuit is based on the block diagram
shown in Fig. 3, wherevx is a feedback to statevz. The vari-
ables statedx, y, andz in the above equations are the same
role as the potentialsvx, vy, andvz in our electronic model.
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FIGURE 3. Block diagram of the proposed electronic circuit.

FIGURE 4. Electrical diagram of proposed electronic circuit, whit
b3 as shown in Fig. 5.

The corresponding electronic diagram is implemented ac-
cording to Fig. 4

Analyzing electronic circuit shown in Fig. 4, it is possible
to get the following equations for nodevA:

vA = − 1
RC

∫
vydt,

vx = −vA; (7)

then
v̇x =

1
RC

vy. (8)

For statevy:

vy = − 1
RC

∫
vBdt,

vB = vx − vC − vz, (9)

vC = − R

R1
vy.

By manipulating Eq. (9), one obtains:

v̇y = − 1
RC

vx − 1
R1C

vy +
1

RC
vz, (10)

and thevz state equation is given by:

vz = − 1
RC

∫
vF dt,

vF = −vD − vE − vG − b3,

vD = −R2

R
vx, (11)

vE = −R3

R
vy,

vG = −R5

R4
vz,

and therefore one obtains:

v̇z = − R2

R2C
vx − R3

R2C
vy − R5

RR4C
vz +

1
RC

b3. (12)

Finally, from (8), (10) and (12), theA matrix andB vec-
tor are determined to be:

A =




0 1
RC 0

− 1
RC − 1

RC
1

RC

− R2
R2C − R3

R2C − R5
RR4C


 , (13)

B =




0
0
1

RC b3


 . (14)

According to Eq. (2), each matrixAi = A. For vector
B, the block diagram is shown in Fig. 5. Fig. 5a) shows the
case in which two scrolls are generated. The circuit works
as follows: when the statevx is greater than 0.3 V, the com-
parator amplifier sets its output in high impedance and thus
b3 goes to 5 V; in the other case, whenvx is less than 0.3 V
the comparator amplifier output is grounded and thusb3 takes
a 0 volts value. Thus, in this wayb3 switched between 0 V
and 5 V according to Eq. (5).

b3 =





5 V, for vx ≥ 0.3V,

0 V, other case;
(15)

thus theBi vectors are given by (14) and (15). According to
Fig. 5b), the operation mode is as follows. The upper com-
parator operates in the same way as described for the case in
Fig. 5a). The behavior of the lower comparator amplifier is as
follows: if statevx is less than -0.3 V , its output goes to high
impedance (5 volts), otherwise takes0 volts. The response of
the two comparators and operational amplifiers is as follows:
when statevx is greater than 0.3 V ,b3 is set to 5 V , or0
volts if vx lies between 0.3 V and -0.3 V; finally the response
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FIGURE 5. Electrical diagram for theB function as described in the text.

FIGURE 6. Double-scroll attractor: a) experimental time series of states. Different projections of the attractor on the b)vx − vz plane, c)
vx − vy plane, and d)vy − vz plane.
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FIGURE 7. Triple-scroll attractor: a) experimental time series of states. Different projections of the attractor on the b)vx − vz plane, c)
vx − vy plane, and d)vy − vz plane.

is -5 V if vx attains a value less than -0.3 V. Accordingly, the
response satisfies the following equation:

b3 =





5 V, for vx ≥ 0.3 V,

0 V, for −0.3 V < vx < 0.3 V,

−5 V, for vx ≤ −0.3 V;

(16)

where,Bi are given by Eqs. (14) and (16).

4. Experimental Results

The experimental results for a double-scroll attractor gener-
ated by the electronic circuit that corresponds toBi, with
i = 1, 2 given by Fig. 5a) and described by Eq. (13), is shown
in Fig. 6. The experimental time series are shown in Fig. 6a):
the signal at the top corresponds to thevx state, the middle
signal is thevy state, and the signal at the bottom is the
vz state. Different projections of the attractor are shown in

Fig. 6b) onto thevx− vz plane, c) onto thevx− vy plane and
d) onto thevy − vz plane.

TABLE I. Electrical components used in the proposed circuit. See
text for details.

Component Value

R 1 KΩ

R1 4 KΩ

R2 7 KΩ

R3 3 KΩ

R4 4 KΩ

R5 4.4 KΩ

C 1 µF

Amplifier TL081

Comparator LM311
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Figure 7 shows the experimental results for triple-scrolls
attractor generated by the proposed circuits of Figs. 4 and 5b),
which behavior is described by (16). The experimental time
series are shown in Fig. 7a): the signal at the top corresponds
to thevx state, the middle signal is thevy state, and the sig-
nal at the bottom is thevz state. Different projections of the
attractor are shown in Fig. 7b)vx−vz plane, c)vx−vy plane
and d)vy − vz plane.

The components and values used to implement both,
double-scroll and triple-scroll attractors, are given in Table I.

5. Conclusions

We have developed and implemented an electronic circuit
based on what is called unstable dissipative system as pro-
posed in Ref. 14, wherein the construction takes place

through PWL systems in a three dimensional space. The
PWL system is given by the commutation ofBi vectors
through one parameter, for which multiple scrolls are gener-
ated. The present work reports only double and triple scrolls
but its generalization can be obtained in a similar way; to gen-
erate more scrolls in the proposed circuit, one has to modify
vectorB. In this way more equilibria are added to the system.
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