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Radiative corrections to the weak-magnetic dipole moment of leptons in the
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We compute, within the context of the Minimal Supersymetric Standard Model, the one loop radiative corrections, to the weak-magnetic
dipole moment of leptons. We prove that this weak-magnetic dipole moment vanishes in the limit of exact supersymmetry, in analogy to the
vanishing of the magnetic moment.
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En el contexto del modelo estándar ḿınimo supersiḿetrico calculamos las correcciones radiativas, a un lazo, del momento débil magńetico
de leptones. Demostramos que este momento se anula en el lı́mite de supersimetrı́a exacta, en analogı́a con el resultado para el momento
magńetico.
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1. Introduction

Supersymmety is widely considered the most attractive can-
didate of new physics beyond the standard model. It provides
a high degree of symmetry in the description of nature and
solves some fundamental problems of grand unified theories.
However, it is not manifestly realized in the particle spectrum
of the real world, which means that it is broken at low ener-
gies.

In the unbroken limit of the supersymmetric version of
the standard model, bosonic and fermionic partners have
equal masses and couple with the same strengths, and so their
corresponding perturbation theory series cancel exactly. An
example of this is that the magnetic moment of a spin1/2
matter field vanishes [1]. Alternatively, a general argument
based on the concept of superfields shows that it is not possi-
ble to construct a supersymmetric operator for the magnetic
moment∼ ψσµνψqν , whereψ is the spinor field,qν is the
photon four-vector, andσµν = (i/2)(γµγν − γνγµ) with γµ

Dirac matrices. This implies that the anomalous magnetic
moment, arising from radiative corrections, vanishes too. In
other words, graphs involving standard model particles can-
cel against the corresponding diagrams with the superpart-
ners in the loop. A verification of this result, as a consistency
check, was also performed in Ref. 1 and in some subsequent
reexaminations of this issue. Analogously, the coupling be-
tween fermions and the neutral Z boson allows us to define a
weak-magnetic dipole moment. In the same token, an argu-
ment based on superfields, consistent essentialy in replacing
the photon field by the neutral weak Z-field, shows that this
weak-magnetic moment vanishes. The explicit verification of
this result is the concern of this work: we compute, within the
context of exact susy, the radiative corrections to one loop of
the lepton weak-magnetic dipole moment, and show the ex-

actly cancelation among the different contributions. We be-
lieve this is interesting by itself and also as an illustration of
the calculations involved.

Radiative corrections to the weak-magnetic moment of
leptons, in the Standard Model SU(2)×U(1), have been con-
sidered in Ref. 2, where a formal presentation of Feynman
amplitudes in the unitary gauge is presented, and in Ref. 3,
where an explicit numerical calculation is done. In the
present work, following Ref. 4, we compute the Feynman
amplitudes in the t’Hooft-Feynman gauge for the several con-
tributing supermultiplets:

(a) photon(γ)-photino(̃γ),

(b) W boson (W±)-wino (w̃±) - charged Higgs (H±),

(c) Z boson (Z) - zino (̃z) - neutral Higgs (H0),

(d) Higgs (hi) - Higgsino(̃h), and leptons (̀) - scalar lep-
tons (̃̀ i).

A distintive feature of this computation is that the contri-
butions depicted in Figs. 4 and 6 below are not present in
the radiative corrections to the anomalous magnetic moment.
An evaluation of the different contributions in the broken
case, taking into account bounds on several parameters aris-
ing from the recently reported measurement of the muon’s
anomalous magnetic moment [5], will be given elsewhere [6].

To proceed, we define the anomalous weak-magnetic
moment of leptonψ of mass m as the coefficient of
ψ(iσµνqν)ψεµ(q) in the coupling

iga`

4m cos θW
ψ (iσµνqν)ψεµ(q), (1)

whereg is theSU(2) weak coupling, anda` = g`L + g`R,
with g`L,R = T3L,R − Q sin2 θW , T3L,R being the lepton
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weak isospin third component andQ its electric charge. Us-
ing e = g sin θW , we observe that the weak magnetic mo-
ment of a charged lepton is approximately 5% smaller than
its magnetic dipole moment (e/2m).

The Feynman rules are described in a variety of mono-
graphs and papers; here, we follow Ref. 7, from which we
also take notation. For definiteness we consider the case of a
charged lepton, but the case for a neutral one can be deduced
after some changes. In the next sections we give our results.

2. (γ)− (γ̃)(γ)− (γ̃)(γ)− (γ̃) Contribution

Figures 1(a)-(b) shows the contributing diagrams from the su-
permultiplet(γ)−(γ̃). For photon exchange, Fig.1(a), we ob-
tain for the anomalous weak-magnetic moment, after Feyn-
man parametrization,

∆µ(γ)(q2) = −8g2 sin2 θW m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(1− x− y)(x + y)[

k2 − f(γ)

]3 , (2)

wheref(γ) = m2(x + y)2 − q2xy, andq2 = M2
Z . For

photino exchange, Fig.1(b), we obtain for the anomalous
weak-magnetic moment,

∆µ(γ̃)(q2)=−8g2 sin2 θW

a`
mi

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4

×





( 1
2− sin2 θW )(1−x−y)[m(x+y)+Mγ̃ ]

[
k2−fL

(γ̃)

]3

− sin2 θW (1−x−y)[m(x+y)+Mγ̃ ][
k2−fR

(γ̃)

]3





, (3)

where

fL,R
(γ̃) = −m2(1− x− y)(x + y) + M2

L,R(x + y)2

+M2
γ̃ (1− x− y)− q2xy,

with ML,R the mass of the scalar lepton in the loop, and
Mγ̃ the mass of the photino. To obtain Eq.(3) we have as-
sumed that the sleptons are mass eigenstates. Furthermore,
in the limit of exact supersymmetry (susy)ML = MR = m ,
Mγ̃ = 0, fL

(γ̃) = fR
(γ̃) = f(γ), and Eq.(3) reduces to

∆µ(γ̃)(q2) = 8g2 sin2 θW m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(1− x− y)(x + y)[

k2 − f(γ)
]3

cancelling the contribution from Eq.(2).

FIGURE 1. Diagrams corresponding to (a) photon and (b) photino
exchange. Particles momenta are denoted in parenthesis.

3. (h0
1)− (h0

2)− (h̃)(h0
1)− (h0

2)− (h̃)(h0
1)− (h0

2)− (h̃) Contribution

The diagrams are shown in Fig.2(a)-(b). The contribution
from the scalar Higgs particleh0

1 is given by

∆µ(h0
1)(q2) = −2g2 cos2 α

cos2 β

m2

M2
W

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(2− x− y)(x + y)[

k2 − f(h0
1)

]3 , (4)

and the one from the pseudoscalarh0
2 is

∆µ(h0
2)(q2) = 2g2 tan2 β

m2

M2
W

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y)2[

k2 − f(h0
j )

]3 , (5)

wheref(h0
j ) = m2(x + y)2 + M2

h0
j
(1− x− y)− q2xy, with

Mh0
j

the mass of the neutral Higgs particle,tan β is the ratio
of the two Higgs vacuum expectation values andα is the mix-
ing angle that arises in the process of diagonalizing the 2×2
neutral scalar Higgs mass matrix . For the neutral Higgsino
exchange in Fig.2(c), we obtain

∆µ(h̃)(q2) = 4g2 m2

M2
W

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(1− x− y)(x + y)[

k2 − f(h̃)

]3 , (6)

where we have assumed the same mass for the left and right
sleptons and added their contributions, and

f(h̃) = −m2(1− x− y)(x + y) + M2
L,R(x + y)2

+M2
h̃
(1− x− y)− q2xy,

with Mh̃ the mass of the higssino. Again, in the limit of exact
susy we haveML = MR = m, Mh0

1
= Mh0

2
= Mh̃ = Mh,

tan β = 1, cos2 α = cos2 β, and the sum of Eqs.(4) and (5)
cancels Eq.(6).
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FIGURE 2. Set of diagrams for Higgs particle exchange (a)h0
1,

(b) h0
2, and higgsino exchange (c)h̃.

4. (W±)− (w̃±)− (H±)(W±)− (w̃±)− (H±)(W±)− (w̃±)− (H±) Contribution

In this case we have two sets of diagrams, shown in
Fig.3(a)-(f) and Fig.4(a)-(d). The contribution from Fig.3(a)

is given by

∆µ(ν)(q2) =
2g2 cos2 θW

a`
m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(1 + 2x + 2y)(x + y)[

k2 − f(ν)

]3 (7)

where

f(ν) = −m2(1− x− y)(x + y) + M2
W (x + y)2

+m2
ν(1− x− y)− q2xy,

with MW and mν the mass of the W-boson and the neu-
trino, respectively. For the sum of the contributions from
Figs.3(b)-(c) we obtain

∆µ(ν)(q2) =
2g2 sin2 θW

a`
m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y)[

k2 − f(ν)

]3 (8)

The contribution coming from Fig.3(d) is

∆µ(ν)(q2) =
g2 cos 2θW

a`

m2

M2
W

i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
[(m2 + m2

ν)(x + y)− 2m2
ν ](1− x− y)[

k2 − f(ν)

]3 (9)

and from Fig. 3(e) is

∆µ(ν)(q2) = −g2 cos 2θW

a`

m2

M2
W

i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
[(m2 + m2

ν)(x + y)− (tan2 β + cot2 β)m2
ν ](1− x− y)[

k2 − g(ν)

]3 , (10)

where

g(ν) = −m2(1− x− y)(x + y) + M2
H(x + y)2 + m2

ν(1− x− y)− q2xy,

MH being the mass of the charged Higgs boson in the loop.
The contribution from the wino, and the wino-higgsino mixing, in Fig.3(f) is

∆µ(ν̃)(q2) =
2g2

a`
m2i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y)[2(1− x− y) cos2 θW − (1 + 2 cos2 θW ) Mw̃

MW
]

[
k2 − f(ν̃)

]3 , (11)

with

f(ν̃) = −m2(1− x− y)(x + y) + M2
w̃(x + y)2

+m2
ν̃(1− x− y)− q2xy.

In the limit of exact susy the sum of Eqs. (7) and (8) cancels
Eq. (11), and Eqs. (9) and (10) cancel each other.

Now we consider the contributions coming from the set
of graphs in Fig. 4, which are absent in the case of the mag-

netic moment. The contibution from Fig.4(a) is

∆µ(W )(q2)=−4g2(aν − bν)
a`

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(1−x−y)(2−x−y)[

k2−f(W )

]3 . (12)

Rev. Mex. F́ıs. 50 (1) (2004) 24–29
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FIGURE 3. Neutrino (ν) exchange (a)-(e), and sneutrino (ν̃) exchange (f).

Here

f(W ) = −m2(1− x− y)(x + y) + M2
W (x + y)2 + m2

ν(x + y)− q2xy,

andaν andbν are the neutrino Z-boson couplings. From Fig.4(b) we obtain

∆µ(G)(q2) = −4g2

a`

m2

M2
W

i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y){[m2(aν − bν) + m2

ν(aν + bν)](1− x− y)− 4m2
νaν[

k2 − f(W )

]3 (13)

and from Fig. 4(c)

∆µ(H)(q2) =
4g2aν

a`

m2

M2
W

i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y){[m2 tan2 β + m2

ν cot2 β](1− x− y)− 2m2
ν[

k2 − f(H)

]3 , (14)

where

f(H) = −m2(1− x− y)(x + y) + M2
H(x + y)2 + m2

ν(x + y)− q2xy.

The contribution from Fig.4(d) is

∆µ(w̃)(q2) =
2g2

a`
m2i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4

(1− x− y)

(
2Mw̃

MW
− x− y

)

[
k2 − f(w̃)

]3 ; (15)
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here

f(w̃) = −m2(1− x− y)(x + y) + M2
w̃(1− x− y)

+m2
ν(x + y)− q2xy.

The term linear in wino mass arise from wino-higgsino mix-
ing, a consequence of explicit soft susy breaking. When tak-
ing the susy limit we observe that Eq.(12) cancels Eq.(15),
while Eq.(13) cancels Eq.(14).

5. (Z)− (z̃)− (H0)(Z)− (z̃)− (H0)(Z)− (z̃)− (H0) Contribution

The diagrams from this supermultiplet are depicted in
Fig.5(a) - (d) and Fig.6(a) - (d). The results are given by

∆µ(Z)(q2) =
4g2

cos2 θW
m2i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4

× (1− x− y)
[
(a2

` + 3b2
`)(x + y)− 8b2

`

]
[
k2 − f(Z)

]3 (16)

from Fig.5(a), where

f(Z) = m2(x + y)2 + M2
Z(1− x− y)− q2xy.

Diagrams in Fig.5(b) and (c) leads to

∆µ(G)(q2) = 2g2 m2

M2
W

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(x + y)2[

k2 − f(Z)

]3 (17)

and

∆µ(H)(q2) = 2g2 m2

M2
W

sin2 α

cos2 β
m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
(2− x− y)(x + y)[

k2 − f(H)

]3 . (18)

heref(H) = m2(x + y)2 + M2
H(1− x− y)− q2xy. Finally,

for the zino contribution we obtain

∆µ(z̃)(q2) = − 2g2

cos2 θW
m2i

1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4

×
(1− x− y)

[
2(a2

` + 3b2
`)(x + y)− Mz̃

MZ

]

[
k2 − f(z̃)

]3 , (19)

wheref(z̃) = −m2(1− x− y)(x + y) + M2
z̃ (1− x− y) +

M2
L(x + y) − q2xy, and the term linear inMz̃ comes from

zino-higgsino mixing. As can be seen, in the limit of exact
susy, the sum of Eqs.(16)-(18) cancels the one in Eq.(19).

FIGURE 4. W-boson (W ) exchange (a)-(c), and wino (̃w) ex-
change (d).

FIGURE 5. Z-boson exchange (a)-(b), Higgs (H) exchange (c), and
zino (̃z) exchange (d).

The next set of graphs is depicted in Fig. 6, with the fol-
lowing contributions. From Fig.6(a),

∆µ(h,Z)(q2) =
g2

cos2 θW

sin α sin(β − α)
cosβ

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
x

[k2 − fh]3
, (20)

with fh = (1 − x − y)2m2 + xM2
h0
1

+ yM2
Z − xyq2. From

Fig.6(b) we obtain

∆µ(Z,h)(q2) =
g2

cos2 θW

sin α sin(β − α)
cos β

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
y

[k2 − f ′h]3
(21)
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with f ′h = (1 − x − y)2m2 + yM2
h0
1

+ xM2
Z − xyq2. The

contributions from the higgs H are quite similar to these two
previous:

∆µ(H,Z)(q2) =
g2

cos2 θW

cos α cos(β − α)
cosβ

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
x

[k2 − fH ]3
(22)

wherefH = (1− x− y)2m2 + yM2
Z + xM2

H − xyq2, and

∆µ(Z,H)(q2) =
g2

cos2 θW

cos α cos(β − α)
cosβ

m2i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
y

[k2 − f ′H ]3
(23)

wheref ′H = (1− x− y)2m2 + xM2
Z + yM2

H − xyq2.
Finally, the contributions from Figs.6(c) are

∆µ(h̃,z̃)(q2) =
g2

cos2 θW
m2

(
Mz̃

MZ

)
i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
x[

k2 − f̃1L

]3 (24)

where

f̃1L = −(1− x− y)(x + y)m2 + (1− x− y)M2
L

+xM2
h̃

+ yM2
z̃ − xyq2,

and From Fig.6(d)

∆µ(z̃,h̃)(q2) =
g2

cos2 θW
m2

(
Mz̃

MZ

)
i

×
1∫

0

dx

1−x∫

0

dy

∫
d4k

(2π)4
y[

k2 − f̃2L

]3 (25)

with

f̃2L = −(1− x− y)(x + y)m2 + (1− x− y)M2
L

+xM2
z̃ + yM2

h̃
− xyq2.

FIGURE 6. Lepton (̀ ) exchange (a)-(b), and slepton (˜̀) ex-
change (c)-(d).

In the limit of exact susycos(β − α) = 0, then Eqs. (20)
and (21) vanish. AlsoMh̃ = Mh0

1
, Mz̃ = MZ , ML = m,

andsin α = − cosβ, then the sum of Eqs.(22) and (23) can-
cels the sum of Eqs.(24) and (25).

6. Conclusions

We have computed the weak-magnetic dipole moment of lep-
tons, in the minimal supersymmetric standard model, and
we showed that in the unbroken limit the various contribu-
tions cancel within each multiplet, without performing the
integrals. This is the analogous result for the magnetic case
(q2 = 0), which only include diagrams in Figs. 1-3 and 5.
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