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Bose-Einstein condensation in real space
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We show how Bose-Einstein condensation (BEC) occurs not only in momentum space but also in coordinate (or real) space. Analogies
between the isotherms of a van der Waals classical gas of extended (or finite-diameter) identical atoms and the point (or zero-diameter)
particles of an ideal BE gas allow concluding that, in contrast with the classical case, the volume per particle vanishes in the pure BE
condensate phase precisely because the boson diameters are zero. Thus a BE condensate forms in real space without exhibiting a liquid
branch as does the classical gas.
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Mostramos ćomo la condensación Bose-Einstein (BEC, por sus siglas en inglés) ocurre no solamente en el espacio de momentos sino
tambíen en el espacio de coordenadas (o real). Para ello empleamos la analogı́a entre las isotermas del gas clásico de van der Waals de
átomos id́enticos con díametro finito y las del gas ideal cuántico de bosones puntuales (diámetro cero), que nos permite concluir, contrario
a lo que sucede en el caso clásico, que el volumen por partı́cula de la fase condensada de BE se anula precisamente porque los bosones son
puntuales. Aśı, el condensado de BE se forma en el espacio real sin exhibir la rama lı́quida del gas clásico.

Descriptores: Condensación Bose-Einstein; gas de bosones; gas de van der Waals.

PACS: 03.75.Hh; 05.30.Jp; 05.70.Fh

1. Introduction

Since its theoretical inception in 1925, and particularly its
experimental observation in 1995 [1–3], Bose-Einstein con-
densation (BEC) has commanded much interest and research
effort. Its proper discussion is essential in any elementary
course in statistical or quantum mechanics. There it is viewed
as the macroscopic manifestation of the quantum behavior of
a many-particle system, not to speak of its many applications
to superfluidity and superconductivity.

Nevertheless, several doubts remain as to the fundamen-
tal properties of this transition. It is sometimes said that the
BEC in a perfect or ideal (i.e., without interactions) boson
gas is a condensation in momentum spaceonly, and not in
coordinate or real space like the condensation of vapor into
liquid. For example: F. London [4] claims that“. . . one may
say that there is actually a condensation, but only in momen-
tum space, and not in ordinary space, ...[where] no separa-
tion of phases is to be noticed.”[5]. The same author speaks
of bosons that “. . .settle in some kind of order in momentum
space even at the expense of order in ordinary space.”Lan-
dau & Lifshitz [6] state that:“The effect of concentrating the
particles in the stateε = 0 is often called ‘BEC’. We must
emphasize that at best one might perhaps talk about ‘con-
densation in momentum space.’ Actual condensation cer-
tainly does not take place in the gas.”T.L. Hill [7] asserts
that “. . . As it is usually stated, the condensation occurs in

momentum space rather than in coordinate space: the con-
densed phase consists of molecules with zero energy and mo-
mentum, and macroscopic de Broglie wavelength.”Fetter &
Walecka [8] say this:“. . . The assembly is ordered in mo-
mentum space and not in coordinate space; this phenomenon
is called BEC.” B. Maraviglia [9] writes (freely translated)
that“. . . Superfluity results from the fact that the4He atoms,
since they obey BE statistics, can condense not in position
but in momentum space. . . ”F. Mandl [10] says“. . . It dif-
fers from the condensation of a vapor into a liquid in that no
spatial separation into phases with different properties oc-
curs in BEC.”Finally, D.A. McQuarrie [11] p. 176 concludes
“. . . Therefore the BEC is a first-order process. This is a very
unusual first-order transition, however, since the condensed
phase has no volume, and the system therefore has a uniform
macroscopic density rather than the two different densities
that are usually associated with first-order phase transitions.
This is often interpreted by saying that the condensation oc-
curs in momentum space rather than coordinate space,. . . ”

In this paper we argue, using a analogy with the well
known van der Waals gas of point classical particles, that the
BEC is a phase transition which occurs in the momentumas
well as in the real spaceprovided an external potential such
as a gravitational field [12] or a magneto-optical trap is ap-
plied, bringing us in agreement with the assertions of other
authors,e.g., R. Becker [13], D. ter Haar [14], K. Huang [15]
and D.L. Goodstein [16].
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We first summarize in Sec. 2 the van der Waals theory of
a classical gas and in Sec. 3 the Bose-Einstein condensation.
In Sec. 4 we stress an analogy between the van der Waals gas
in the limit of zero-diameter particles, and the ideal boson
gas which by definition consists of point bosons. Section 5
contains conclusions.

2. Van der Waals gas

The van der Waals equation of state for a classical monatomic
gas is [

P + a

(
N

V

)2
]

(V −Nb) = NkBT, (1)

whereP is the pressure,V the volume,T the absolute tem-
perature,N the number of atoms andkB Boltzmann’s con-
stant. The effective “excluded volume” per particle [17] is

b =
1
2

(
4
3
πσ3

)
=

2
3
πσ3; (2)

whereσ is the diameter of each particle, thought of as a hard
sphere. It is the reduction in the original volume per par-
ticle V/N due to finite-sized atoms, and was proposed by
Clausius for an imperfect gas [17]. In 1873 van der Waals
introduced a second correction term (seee.g., Ref. 17) to the
equation of statePV = NkBT of an ideal gas to account for
the attractive forces between molecules. In (1) the parameter
a is given by

a ≡ −4π

2

∫ ∞

σ

u(r)r2dr, (3)

whereu(r) ≤ 0 is the attractive interaction potential between
two atoms whose center-to-center separation isr.

On aP − V phase diagram (1) exhibits the well-known
isotherm loops signaling a vapor to liquid phase transition.
One such loop (at a givenT ) is shown in Fig. 1 (left panel),
where the horizontal plateau connecting points D and B is
called the “Maxwell construction.” Loops occur only for
isotherms withT < Tc, whereTc is the critical point where
both (dP/dV )T = 0 (zero slope) and(d2P/dV 2)T = 0
(change of curvature). These two conditions along with (1)
give

Pc =
a

27b2
; Vc = 3Nb; Tc =

8a

27kBb
(4)

for the critical pressure, volume and temperature.

3. Bose-Einstein condensation

For a quantum ideal gas in three dimensions

PV =
2
3
U, (5)

where U is the internal energy, if a quadratic energy-
momentum (or dispersion) relation holds for each parti-
cle [18]. If Tc is the BEC transition temperature below
which there is

FIGURE 1. Left : Schematic sketch of a typical van der
Waals isotherm below the critical temperatureTc in the pressure-
volume plane (in arbitrary units) for a classical monatomic
fluid of finite-sized atoms. The horizontal plateau DCB corre-
sponds to Maxwell’s construction, which separates “stable” from
“metastable” states, the latter being separated by an “unstable”
portion as shown.Right: illustration of how, as the volume of
the system is reduced from points A to B to C and D along the
chosen isotherm on the left, the vapor condenses first into several
“droplets” of different sizes and finally into a single “self-bound”
drop, D and E. All points such as E correspond to a sharp rise in
pressure because the single drop at D is being compressed as vol-
ume is reduced.

macroscopic occupation in a given single quantum state (not
mix up with critical temperature for a van der Waals gas), the
internal energy for the ideal Bose gas forT ≤ Tc (or alterna-
tively V ≤ Vc whereV is the bosonic system volume andVc

the transition volume) is given in Ref. 15, Eq. (12.62). If we
substitute Eqs. (12.55) into (12.62) of Ref. 15 we obtain

U(V, T )
NkBT

=
3
2

ζ(5/2)
ζ(3/2)

(
T

Tc

)3/2

, for all V ≤ Vc. (6)

Hereζ(σ) is the Riemann-Zeta function. Thus, (5) and (6)
give

P =
2
3

U

V
=

ζ(5/2)
ζ(3/2)

NkBT

V

(
T

Tc

)3/2

, (for Vc). (7)

If we use for the thermal wavelengthΛ ≡ h/
√

2πmkBT and
Eq. (10.58) of Ref. 11, the condensate fraction forT ≤ Tc is

N0(T )
N

= 1− ζ(3/2)
8π3/2(~2/2mBkBT )3/2(N/V )

, (8)

whereN0(T ) is the condensate particle number andN the
total particle number. Using the fact thatN0(T ) is negligible
compared withN whenT ≥ Tc, (8) leads to the well-known
BECTc formula

Tc=
~2

2mkB

[
8π3/2N/V

ζ(3/2)

] 2
3

' 3.313
~2

mBkB

(
N

V

) 2
3

, (9)
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sinceζ(3/2) ' 2.612. Alternatively, from (8) the critical
volumeVc below which BEC appears at any temperatureT
is

Vc =
(~2/2mBkBT )3/28π3/2N

ζ(3/2)
. (10)

Combining (9) with (7) leaves thevolume-independentpres-
sure

P =
2
3

U

V
=

ζ(5/2)√
(2π)3

(√
mB

~

)3

(kBT )5/2

' 0.0851
(√

mB

~

)3

(kBT )5/2, for all V ≤ Vc, (11)

which is consistent with Eq. (12.56) in Ref. 15, and where
in the last step we usedζ(5/2) ' 1.341. So, at constant
temperatureT if we reduce the volume below the valueVc

given by (10), the pressure stays constant. This corresponds
to the portion BCD of the isotherm depicted in the left panel
of Fig. 2. The condensate fraction given by (8), combined
with (10), simplifies to

N0(T )
N

= 1− V/Vc for all V ≤ Vc. (12)

4. Zero volume a sign of real-space BEC

Imagine the ideal Bose gas to be in a cylinder with a movable
piston. According to (11), if we push the piston in, decreas-
ing the available volume belowVc, given by (10), at constant
temperatureT , the pressure remains constant. The piston can
be pushed in at constant pressure until the two-phase region
BCD of Fig. 2 vanishes,i.e., until the condensate particle
numberN0 equals the total number of particlesN . Thus, at
B the condensate just begins to appear and at D there is100%
condensate.

FIGURE 2. Left : schematic isotherm in theP − V plane (in arbi-
trary units) for an ideal Bose gas at some fixedT = Tc as given
by (9). Being ideal, the gas consists ofzero-diameter particles,i.e.,
with zero-range interparticle repulsions.Right: illustration of how
system behaves at different volumes marked as A, B, C and D on
the isotherm, with circled dots of varying sizes denoting possibly
different sized condensates of zero volume (since the bosons are
point particles).

So, to have BEC in coordinate space the gas must be con-
densed in momentum space,i.e., a macroscopic number of
bosons must be in the ground state. The whole gas occu-
pies zero volume only if the bosons are not moving with
different speeds and directions. In the two-phase region,
whereN 6= N0 6= 0, the condensed phase consisting of sev-
eral zero-diameter “droplets” with possibly different particle
numbers does not occupy any volume at all. Fig. 2 shows
how the volume becomes zero when the bosonic system is
entirely condensed at point D; see also (12) whenN = N0.
However, for a van der Waals fluid when the vapor is entirely
condensed into liquid at D, Fig. 1, the volume cannot be zero
because of finite particle sizes, and the pressure rises steeply
to points E and beyond as the particles are further compressed
against each other.

We have apparently fallen into a contradiction since
N = N0 usually applies to an ideal bosonic system atT = 0,
and not to a system along a finiteT isotherm. However, we
note that in keeping withN → N0 for someT 6= 0, we
approach the endpoint of the two-phase region whereall the
isotherms merge together, in particular theTc isotherm with
which we began as well as theT = 0 isotherm.

5. Conclusions

We have discussed a scenario in which, by analogy with a
van der Waals gas of zero-diameter atoms, we illustrate how
Bose-Einstein condensation (BEC) occurs not only in mo-
mentum space,i.e., N = N0, but also in real space if one
applies a external potential such as a trap or a gravitational
field. This vindicates the following claims in the largely text-
book literature:

• R. Becker [13] p. 120, freely translated:“. . . the num-
ber of atoms in the condensate phase,N0, exhibits null
volume. . . ”

• D. ter Haar [14] “. . .one can also consider Ein-
stein condensation to be a condensation in coordinate
space.”

• K. Huang [15] p. 290 “. . .If we examine the equation of
state alone, we discern no difference between the BEC
and an ordinary gas-liquid condensation. . . ”

• D.L. Goodstein [16] p. 132 “. . .condensation takes
place in real as well as momentum space. . . ”
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