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Making use of the fact that for an arbitrary autonomous mechanical system any constant of motion can be used as Hamiltonian, the equations
of motion of a charged particle in an electromagnetic field are written in Hamiltonian form without introducing potentials for the electromag-
netic field. It is shown that the Hamiltonian and the Poisson bracket obtained here coincide with those appearing in the standard Hamiltonian
formulation.
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Haciendo uso del hecho de que para un sistema mecánico aut́onomo arbitrario cualquier constante de movimiento puede usarse como
hamiltoniana, las ecuaciones de movimiento de una partı́cula cargada en un campo electromagnético se escriben en forma hamiltoniana sin
introducir potenciales para el campo electromagnético. Se muestra que la hamiltoniana y el paréntesis de Poisson obtenidos aquı́ coinciden
con los que aparecen en la formulación hamiltoniana estándar.

Descriptores: Ecuaciones de Hamilton; interacción electromagńetica.
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1. Introduction

As it is well-known, the equations of motion of a charged par-
ticle in a given electromagnetic field can be formulated mak-
ing use of the Lagrangian formalism, introducing a velocity-
dependent potential that contains the potentials of the field,
and also using the Hamiltonian formalism (see,e.g., Ref. 1).
The fact that the electromagnetic potentials appear in the La-
grangian, and not the electromagnetic fields themselves, is a
drawback because the potentials are not uniquely determined
by the electromagnetic fields; if the potentials possess some
symmetry, the electromagnetic fields also have that symme-
try, but if the electromagnetic fields possess some symmetry,
the potentials may not share it. Hence, in the standard formu-
lation, the Lagrangian or the Hamiltonian might not exhibit
all the symmetries of the system. For instance, the uniform
magnetic fieldB = (0, 0, B3), with B3 = const., is invari-
ant under all translations in space, but the vector potential of
a nonvanishing magnetic field cannot be invariant under all
translations.

As shown in Ref. 2, the equations of motion of any au-
tonomous mechanical system can be written in Hamiltonian
form (i.e., df/dt = {f, H}, for any differentiable function,f ,
defined on the phase space) with the Hamiltonian beingany
constant of motion (not necessarily the total energy) provided
that the Poisson bracket is suitably defined. Furthermore, if
the number of degrees of freedom of the system is greater
than 1, for each choice of the Hamiltonian function, there are
infinitely many suitable Poisson brackets (see also Refs. 3
and 4).

Using the fact that, in the framework of Newtonian me-
chanics, the kinetic energy of a charged particle is not mod-
ified by a magnetostatic field, we show that the equations

of motion of a charged particle in a magnetostatic field can
be written in Hamiltonian form, with the usual Hamiltonian
function of a free particle and the magnetic field embodied
in the Poisson bracket, without having to introduce auxiliary
quantities such as the vector potential. We also show that the
Hamiltonian and the Poisson bracket employed here coincide
with those appearing in the standard Hamiltonian formula-
tion for a particle in a magnetic field. The general case of a
charged particle in an arbitrary electromagnetic field is dealt
with in a similar way, considering the corresponding relativis-
tic equations of motion.

In Sec. 2 we give a summary of the Hamiltonian formal-
ism. In Sec. 3 we consider the equations of motion, according
to the Newtonian mechanics, of a charged particle in a mag-
netostatic field and in Sec. 4 we consider the equations of
motion of a charged particle in an arbitrary electromagnetic
field in the framework of relativistic mechanics.

2. Hamilton’s equations

Hamilton’s equations are usually written in the form

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
(1)

(i = 1, 2, . . . , n), where H is the Hamiltonian function,
(q1, . . . , qn, p1, . . . , pn) is a set of canonical coordinates on
the phase space andn is the number of degrees of freedom.
Hamilton’s equations (1) are equivalent to the formula

df

dt
= {f, H}, (2)

for any differentiable function,f , defined on the phase space
that does not depend explicitly on the time, where{ , } de-
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notes the Poisson bracket, defined by

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (3)

(Here, and in what follows, there is summation over repeated
indices.) In the case of an autonomous system, we can as-
sume thatH does not depend explicitly on the time and
Eqs. (1) imply thatH is a constant of motion.

The form of Eqs. (1) and (3) is invariant under the re-
placement ofqi, pi by new coordinatesq′i, p′i, if the latter are
obtained fromqi, pi by means of a canonical transformation;
however, Eq. (2) is applicable in any coordinate system. In
terms of an arbitrary coordinate system in the phase space,
(x1, x2, . . . , x2n), the Poisson bracket (3) is expressed as

{f, g} =
(

∂xµ

∂qi

∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)
∂f

∂xµ

∂g

∂xν

= σµν ∂f

∂xµ

∂g

∂xν
(4)

(µ, ν, . . . = 1, 2, . . . , 2n), where we have introduced the def-
inition

σµν ≡ {xµ, xν}. (5)

The Poisson bracket (3) satisfies the Jacobi identity,

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0;

therefore,

{{xµ, xν}, xλ}+ {{xν , xλ}, xµ}+ {{xλ, xµ}, xν} = 0

which, according to Eqs. (4) and (5) amounts to

σρλ ∂σµν

∂xρ
+ σρµ ∂σνλ

∂xρ
+ σρν ∂σλµ

∂xρ
= 0. (6)

Conversely, if a set of functionsσµν = −σνµ satisfies
Eqs. (6), then the bracket

{f, g} = σµν

(
∂f

∂xµ

)(
∂g

∂xν

)

satisfies the Jacobi identity. From Eqs. (2) and (4) it follows
that the Hamilton equations in an arbitrary coordinate system
are

dxµ

dt
= σµν ∂H

∂xν
. (7)

The equations of motion of a given autonomous system
expressed in terms of an arbitrary coordinate system can be
written in the Hamiltonian form (7) in infinitely many ways;
one just has to choose some constant of motion and use it as
Hamiltonian in Eqs. (7), which, together with Eqs. (6), deter-
mine functionsσµν . If n > 1, there are infinitely many ways
of choosing the the functionsσµν satisfying Eqs. (6), (7), and
the conditionsσµν = −σνµ [2,4].

3. Particle in a magnetostatic field

The equations of motion for a charged particle of massm in a
magnetostatic field with inductionB, and possibly in a force
field derivable from a potential, are given by

dp
dt

=
e

c
v ×B−∇U, (8)

wheree is the electric charge of the particle,v denotes its
velocity,c is the speed of light in vacuum andU is some po-
tential that depends only on the position of the particle. The
vectorp is the usual linear momentum

p = mv. (9)

From Eqs. (8) it follows that(p2/2m) + U is a constant of
motion. Hence, we can choose

H =
p2

2m
+ U. (10)

Then, letting(x1, . . . , x6) = (q1, q2, q3, p1, p2, p3), where
(q1, q2, q3) are the Cartesian coordinates of the particle and
(p1, p2, p3) are the Cartesian components ofp, and making
use of Eqs. (8) and (9) one finds that Eqs. (7) can be written
explicitly in matrix form as




p1

m
p2

m
p3

m
(

e

mc

)
(B3p2 −B2p3)−

∂U

∂q1

(
e

mc

)
(B1p3 −B3p1)−

∂U

∂q2

(
e

mc

)
(B2p1 −B1p2)−

∂U

∂q3




=(σµν)




∂U

∂q1

∂U

∂q2

∂U

∂q3

p1

m

p2

m

p3

m




. (11)

By inspection, one finds that an antisymmetric matrix(σµν)
that satisfies this last equation is

(σµν)=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0
eB3

c
−eB2

c

0 −1 0 −eB3

c
0

eB1

c

0 0 −1
eB2

c
−eB1

c
0




(12)

i.e.,

{qi, qj} = 0, {qi, pj} = δi
j , {pi, pj} =

e

c
εijkBk, (13)
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and it can be readily verified that this bracket satisfies the Ja-
cobi identity [substituting Eqs. (12) into Eqs. (6) or directly
using Eqs. (13)] as a consequence of the fact that the diver-
gence ofB vanishes.

For an arbitrary mechanical system, any differentiable
function,G(xµ), is the infinitesimal generator of a local one-
parameter group of canonical transformations whose orbits
are the solutions of the system of differential equations

dxµ

ds
= σµν ∂G

∂xν
(14)

[cf. Eq. (7)] or, equivalently,

dxµ

ds
= {xµ, G}. (15)

The functionG(xµ) is a constant of motion if and only if
the Hamiltonian is invariant under the canonical transforma-
tions defined byG [i.e., if and only ifH is constant along the
solutions of (14)]. Conversely, given a local one-parameter
group of canonical transformations,xµ = xµ(s), Eq. (14)
defines up to an additive constant its infinitesimal generator
G and, if the Hamiltonian is invariant under these transforma-
tions,G is a constant of motion. (The integrability conditions
of Eqs. (14) forG are the conditions for the transformations
xµ = xµ(s) to be canonical.)

Owing to the presence of the components ofB in the
functionsσµν [or, equivalently, in the Poisson brackets (13)],
it turns out that a translation or rotation is a canonical trans-
formationif and only if the magnetic field is invariant under
that transformation.

Taking, for simplicity,U = 0, any translation or rotation
leaves the HamiltonianH = p2/2m invariant; however, not
all of them lead to the existence of constants of motion. Only
the translations or rotations that leave the magnetic field in-
variant correspond to canonical transformations that leave the
Hamiltonian invariant, thus implying the existence of con-
stants of motion. (Note that these conditions involve only the
magnetic field itself, without making reference to the vector
potential which is defined up to gauge transformations.)

For example, if the magnetic field is invariant under trans-
lations along theq1-axis, then

∂Bi

∂q1
= 0,

for i = 1, 2, 3, and from∇ ·B = 0 it follows that

∂B2

∂q2
+

∂B3

∂q3
= 0,

which means thatB3dq2 − B2dq3 is an exact differential,
at least locally; hence, there exists a functionΦ(q2, q3) such
that

B3dq2 −B2dq3 = −dΦ. (16)

Then, making use of Eqs. (13) and (16), one finds that

{qi, p1 +
e

c
Φ} = δi

1, {pi, p1 +
e

c
Φ} = 0 (17)

and by comparing with Eq. (15) one concludes that
p1 + (e/c)Φ is a generating function of translations along
theq1-axis, which is a constant of motion as a consequence
of the invariance ofH under these translations. It should be
remarked thatΦ is defined up to an additive constant only.

According to Darboux’s theorem, Eqs. (6) imply the local
existence of canonical coordinates (i.e., coordinatesQi, Pi,
such that{Qi, Qj} = 0 = {Pi, Pj}, {Qi, Pj} = δi

j). If the
vector fieldA is a vector potential forB, that is,B = ∇×A,
then from Eqs. (13) one finds that

{qi, pj +
e

c
Aj} = δi

j , {pi +
e

c
Ai, pj +

e

c
Aj} = 0, (18)

which means thatQi ≡ qi, Pi ≡ pi + e
cAi are canonical co-

ordinates. If the Hamiltonian (10) is written in terms of these
coordinates one obtains the standard expression

H =
1

2m
(P− e

c
A)2 + U. (19)

It should be remarked that from Eqs. (18) it follows that
Pk is the infinitesimal generator of translations along the
qk-axis if and only if ∂Ai/∂qk = 0, for i = 1, 2, 3. In spite
of this fact, it is customary in quantum mechanics to re-
place the canonical momentaPk by the differential operators
−i~∂/∂qk, which is the infinitesimal generator of transla-
tions along theqk-axis in the coordinate representation.

Another example, that perhaps illustrates this point more
clearly, is provided by the magnetic field

B = g
r
r3

, (20)

which would be produced by a magnetic monopole placed
at the origin (though this field does not satisfy the condition
∇ · B = 0 at the origin). The magnetic field (20) is invari-
ant under rotations about any axis passing through the origin,
but there is no spherically symmetric vector potential for this
field.

The infinitesimal generator of a local one-parameter
group of canonical transformations can be derived from
Eq. (14). Denoting by(ωµν) the inverse of the matrix(σµν),
from Eq. (14) we have

dG = ωµν
dxν

ds
dxµ. (21)

In the present case, from Eq. (12) one finds that

(ωµν)=




0
eB3

c
−eB2

c
−1 0 0

−eB3

c
0

eB1

c
0 −1 0

eB2

c
−eB1

c
0 0 0 −1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




, (22)
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and for rotations about theqi-axis,

dqj

ds
= εjimqm

and

dpj

ds
= εjimpm,

wheres is the angle of the rotation. Thus, ifLi denotes the
infinitesimal generator of rotations about theqi-axis, from
Eq. (21) we obtain

dLi =
(

εjkl
eBl

c
εkimqm − εjimpm

)
dqj + εjimqmdpj

= d(εijkqjpk) +
e

c
(Biq

jdqj −Bjq
jdqi) (23)

and substituting Eq. (20) it follows that

Li = εijkqjpk − eg

c

qi

r
, (24)

which does not coincide withεijkqjPk, the infinitesimal gen-
erator of rotations of the canonical variables. With the aid of
Eqs. (13) and (20), one verifies that{Li, Lj} = εijkLk.

4. Particle in an electromagnetic field

In order to express the equations of motion of a charged par-
ticle in an arbitrary electromagnetic field in a form similar
to that presented in the foregoing section, it is convenient to
consider them from the point of view of relativistic mechan-
ics. Since the derivations are almost identical to those given
in the previous case, we shall omit some details in what fol-
lows. In this section the lower case Greek indices take the
values 0, 1, 2, 3.

Let qµ be the Cartesian coordinates of a charged particle
(with respect to some inertial frame) with rest massm0 and
electric chargee. If τ denotes the particle proper time,

pµ = m0
dqµ

dτ
(25)

is the usual four-momentum (see,e.g., Ref. 5). The relativis-
tic equations of motion for the particle in a given electromag-
netic field are given by

dpµ

dτ
=

e

c
Fµ

ν
dqν

dτ
=

e

m0c
Fµ

νpν , (26)

where theFµν are the components of the electromagnetic
field tensor. (The tensor indices are lowered or raised with
the aid of(ηµν) = diag(1,−1,−1,−1) and its inverse in the

usual way,e.g., pµ = ηµνpν , pµ = ηµνpν .) From Eqs. (26)
and the antisymmetry ofFµν it follows that

H ≡ pµpµ

2m0
(27)

is a constant of motion. It can be readily verified that
Eqs. (25) and (26) can be written as

dqµ

dτ
= {qµ,H}, dpµ

dτ
= {pµ,H}

if

{qµ, qν} = 0, {qµ, pν} = δµ
ν , {pµ, pν} =

e

c
Fµν (28)

[cf.Eqs. (13)]. The Jacobi identity is satisfied by virtue of the
Maxwell equations

∂Fµν

∂qλ
+

∂Fνλ

∂qµ
+

∂Fλµ

∂qν
= 0.

Thus, a translation, rotation or boost is a canonical transfor-
mations if and only if it leaves the electromagnetic field in-
variant.

If Aµ denotes a four-potential for the electromagnetic
field (i.e., Fµν = ∂Aν/∂qµ−∂Aµ/∂qν) then from Eqs. (28)
one finds thatQµ = qµ andPµ = pµ + eAµ/c are canonical
coordinates but, again, thisdoes notmean thatPµ is the in-
finitesimal generator of translations along theqµ-axis, unless
∂Aν/∂qµ = 0 for ν = 0, 1, 2, 3.

5. Concluding remarks

The canonical coordinates are distinguished by the fact that
in terms of them the Hamilton equations (7) and the Pois-
son bracket (4) reduce to the simpler forms (1) and (3), re-
spectively, but in the case of particles interacting with the
electromagnetic field it is preferable to employ noncanonical
coordinates, which may have clearer meaning, and without
having to introduce gauge-dependent quantities. The Pois-
son bracket obtained here as the simplest solution of Eqs. (6)
and (11) is precisely the one found in the standard Hamilto-
nian formulation [2].

As pointed out above, the usual canonical momentumPi

or Pµ need not be the infinitesimal generator of translations
along theqi- or qµ-axis.
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