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Making use of the fact that for an arbitrary autonomous mechanical system any constant of motion can be used as Hamiltonian, the equations
of motion of a charged particle in an electromagnetic field are written in Hamiltonian form without introducing potentials for the electromag-
netic field. It is shown that the Hamiltonian and the Poisson bracket obtained here coincide with those appearing in the standard Hamiltonian
formulation.
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Haciendo uso del hecho de que para un sistemaamiez aubnomo arbitrario cualquier constante de movimiento puede usarse como
hamiltoniana, las ecuaciones de movimiento de unaquéatcargada en un campo electrométipo se escriben en forma hamiltoniana sin
introducir potenciales para el campo electroné@&go. Se muestra que la hamiltoniana y elgudesis de Poisson obtenidos agoinciden

con los que aparecen en la formutathamiltoniana eanhdar.

Descriptores: Ecuaciones de Hamilton; interadai electromagetica.

PACS: 45.20.Jj

1. Introduction of motion of a charged patrticle in a magnetostatic field can
be written in Hamiltonian form, with the usual Hamiltonian
As itis well-known, the equations of motion of a charged par-function of a free particle and the magnetic field embodied
ticle in a given electromagnetic field can be formulated mak4in the Poisson bracket, without having to introduce auxiliary
ing use of the Lagrangian formalism, introducing a velocity-quantities such as the vector potential. We also show that the
dependent potential that contains the potentials of the field;lamiltonian and the Poisson bracket employed here coincide
and also using the Hamiltonian formalism (seey, Ref. 1).  with those appearing in the standard Hamiltonian formula-
The fact that the electromagnetic potentials appear in the Laion for a particle in a magnetic field. The general case of a
grangian, and not the electromagnetic fields themselves, iséharged particle in an arbitrary electromagnetic field is dealt
drawback because the potentials are not uniquely determinesith in a similar way, considering the corresponding relativis-
by the electromagnetic fields; if the potentials possess somé equations of motion.
symmetry, the electromagnetic fields also have that symme- In Sec. 2 we give a summary of the Hamiltonian formal-
try, but if the electromagnetic fields possess some symmetrysm. In Sec. 3 we consider the equations of motion, according
the potentials may not share it. Hence, in the standard formue the Newtonian mechanics, of a charged particle in a mag-
lation, the Lagrangian or the Hamiltonian might not exhibit netostatic field and in Sec. 4 we consider the equations of
all the symmetries of the system. For instance, the uniformmotion of a charged particle in an arbitrary electromagnetic
magnetic fieldB = (0,0, Bs), with B3 = const., is invari-  field in the framework of relativistic mechanics.
ant under all translations in space, but the vector potential of
a nonva_mlshlng magnetic field cannot be invariant under alb. Hamilton’s equations
translations.
As shown in Ref. 2, the equations of motion of any au-Hamilton's equations are usually written in the form
tonomous mechanical system can be written in Hamiltonian ,
form (i.e., df /dt = {f, H}, for any differentiable functiony, dg' _ 0H dp; _ _8H 1)
defined on the phase space) with the Hamiltonian baimg dt  dpi’ dt oq"

constant of motion (not necessarily the total energy) provideqd; — 1 2 ... n), where H is the Hamiltonian function,

the number of degrees of freedom of the system is greatqhe phase space amdis the number of degrees of freedom.

than 1, for each choice of the Hamiltonian function, there argyamjiton’s equations (1) are equivalent to the formula

infinitely many suitable Poisson brackets (see also Refs. 3

and 4) V(. @
Using the fact that, in the framework of Newtonian me- dt

chanics, the kinetic energy of a charged particle is not modfor any differentiable functionf, defined on the phase space

ified by a magnetostatic field, we show that the equationshat does not depend explicitly on the time, whére } de-
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notes the Poisson bracket, defined by 3. Particle in a magnetostatic field

of 99  Of dg (3  Theequations of motion for a charged particle of masa a
magnetostatic field with inductioB, and possibly in a force

.01 = dq' Op;  Ip; Oq*”
geld derivable from a potential, are given by

(Here, and in what follows, there is summation over repeate
indices.) In the case of an autonomous system, we can as- dp v xB-VU ®)
sume thatH does not depend explicitly on the time and dt ¢ ’

Egs. (1) imply thatf is a constant of motion. wheree is the electric charge of the particte,denotes its
The form of Egs. (1) and (3) is invariant under the re-ye|ocity, ¢ is the speed of light in vacuum aiidis some po-
placement of", p; by new coordinateg”, p;, if the latter are  ential that depends only on the position of the particle. The
obtained fromy’, p; by means of a canonical transformation; yectorp is the usual linear momentum

however, Eq. (2) is applicable in any coordinate system. In

terms of an arbitrary coordinate system in the phase space, P =mv. 9)
(x1,22, ..., 2%"), the Poisson bracket (3) is expressed as _ _
From Egs. (8) it follows thatp?/2m) + U is a constant of
(f.} = Ozt Oz” Ozt Oz \ Of Og motion. Hence, we can choose
95 = dq* Op;  Op; O¢° ) Oxt Oxv p?
H=— . 10
_ O.ul/ﬁ ag (4) 2m+U ( )
Ozt D Then, letting(z',...,2% = (¢, 4¢3 ¢* p1, P2, p3), Where
(1, v,...=1,2,...,2n), where we have introduced the def- (¢!, ¢?, ¢*) are the Cartesian coordinates of the particle and
inition (p1, p2, p3) are the Cartesian componentsmfand making
use of Egs. (8) and (9) one finds that Egs. (7) can be written
ot = {zt 2"} (5)  explicitly in matrix form as
The Poisson bracket (3) satisfies the Jacobi identity, - n - [ OU ]
i 6q1
{9}, 0} + {{g. b}, 1} + {{h. f}, 9} = 0; e o
therefore, s a2
{{a#,2"},2*} + {{2", 2}, 2"} + {{a} 2"}, 2"} = 0 " v
n| 99
which, according to Eqgs. (4) and (5) amounts to ) (Bsps — Bops) — U |=(o") - (11)
me Oq* D1
uv VA AL .
Up/\% +o™ 880 s T o 860 b 0- () ¢ B B ou "
X X X _ — P
me (B1ips 3D1) B Po
Conversely, if a set of functions*” = —g"# satisfies m
Egs. (6), then the bracket e ou
as- ) — | (B2p1 — Bip2) — 55 ,
me Jdq p3
{f.g} =0 O ) (2 ) ) L m
’ Oxk OxV

By inspection, one finds that an antisymmetric magex”)

satisfies the Jacobi identity. From Egs. (2) and (4) it followsthat satisfies this last equation is
that the Hamilton equations in an arbitrary coordinate system - -

are 0 0 0 1 0 0
0o 0 O 0 1 0
dxt OH 0 0 0 0 0 1
— =M . 7
dt 7 oxY (7) eBs3 eBy
)= | —1 0 0 0 — —— | (12
The equations of motion of a given autonomous system ¢Bs ¢ erl
expressed in terms of an arbitrary coordinate system can be 0 -1 0o —— 0 —
written in the Hamiltonian form (7) in infinitely many ways; 6302 eB, ¢
one just has to choose some constant of motion and use it as 00 1 - T U

Hamiltonian in Egs. (7), which, together with Eqgs. (6), deter-.
mine functionss#. If n > 1, there are infinitely many ways '-€-
of choosing the the functiong*” satisfying Eqgs. (6), (7), and i g i i €

the conditi(g)nsyw = —o""[2,4]. yno RS . (0 {a '} = 0. Ad"ps}k = ), {pips} = i (13)
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and it can be readily verified that this bracket satisfies the Jeand by comparing with Eq. (15) one concludes that
cobi identity [substituting Egs. (12) into Egs. (6) or directly p; + (e/c)® is a generating function of translations along
using Egs. (13)] as a consequence of the fact that the divethe ¢'-axis, which is a constant of motion as a consequence

gence ofB vanishes. of the invariance off under these translations. It should be
For an arbitrary mechanical system, any differentiableremarked thaf is defined up to an additive constant only.
function,G(x*), is the infinitesimal generator of a local one- According to Darboux’s theorem, Egs. (6) imply the local

parameter group of canonical transformations whose orbitexistence of canonical coordinaté®( coordinatesy?, P;,
are the solutions of the system of differential equations such tha{Q*, Q7} = 0 = {P;, P;}, {Q", P;} = &)). If the

dh e vector fieldA is a vector potential foB, thatis,B = Vx A,
o = JW@ (14)  then from Egs. (13) one finds that
[cf. Eq. (7)] or, equivalently, {d".pj + EAJ-} =65, {pi+ ;Ai,pj + ;Aj} =0, (18)
1% . .
ddi = {2",G}. (15)  which means tha®’ = ¢*, P; = p; + £A; are canonical co-
5 -

ordinates. If the Hamiltonian (10) is written in terms of these
The functionG(z#) is a constant of motion if and only if coordinates one obtains the standard expression
the Hamiltonian is invariant under the canonical transforma-

tions defined by~ [i.e., if and only if H is constant along the H= QL(P — EA)2 +U. (19)
solutions of (14)]. Conversely, given a local one-parameter m ¢ _
group of canonical transformationstl« — I“(S), Eq (14) It should be remarked that from EqS (18) it follows that

defines up to an additive constant its infinitesimal generatof iS the infinitesimal generator of translations along the
G and, if the Hamiltonian is invariant under these transforma4”-axisif and only if 94;/9¢* = 0, fori = 1,2,3. In spite
tions,G is a constant of motion. (The integrability conditions Of this fact, it is customary in quantum mechanics to re-
of Egs. (14) forG are the conditions for the transformations Place the canonical momenta by the differential operators
z# = z#(s) to be canonical.) —ihd/dq"*, which is the infinitesimal generator of transla-
Owing to the presence of the componentsBfin the tions along the/*-axis in the coordinate representation.
functionso* [or, equivalently, in the Poisson brackets (13)], ~ Another example, that perhaps illustrates this point more
it turns out that a translation or rotation is a canonical transclearly, is provided by the magnetic field
formationif and only if the magnetic field is invariant under r
that transformation. B=yg73.

Taking, for simplicity,U :20’ anytranslation or rotation \hich would be produced by a magnetic monopole placed
leaves the Hamiltonial/ = p®/2m invariant; however, not a4 yhe origin (though this field does not satisfy the condition
all of them lead to the existence of constants of motion. Only; "5 _ ) at the origin). The magnetic field (20) is invari-
the translations or rotations that leave the magnetic field inz; \\nder rotations about any axis passing through the origin

variant correspond to canonical transformations that leave thg, ; there is no spherically symmetric vector potential for this
Hamiltonian invariant, thus implying the existence of con- 4

stants o_f mpnon. (Note_thatthese_condmons|nvolve only the The infinitesimal generator of a local one-parameter
magnetic field itself, without making reference to the vectorgroup of canonical transformations can be derived from

potential which is defined up to gauge transformations.) Eq. (14). Denoting byw,., ) the inverse of the matrigr**),
For example, if the magnetic field is invariant under trans- ., Eq. (14) we have .

lations along the!-axis, then

(20)

d v
9B _, G = WW%CM. 1)
gl .
4 In the present case, from Eq. (12) one finds that
fori =1,2,3, and fromV - B = 0 it follows that -~ _
eBg EBQ
0By  0Bs 0 0 — T -1 0 0
9.2 T3 T
aq aq €B3 631
which means thaBs;dg®> — Badg® is an exact differential, -—— 0 - 0 -1 0
at least locally; hence, there exists a functify?, ¢*) such
eBg eBl
that (W)= — —— 0 0 0 -1} (22
C C
Bsdq® — Badg® = —d®. (16) 1 0 0 0 0 0
Then, making use of Egs. (13) and (16), one finds that 0 1 0 0o 0 0
. e i e
dp+-2b=0,  {ppp+ 2p=0 (17 0 0 1 0 0 0
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and for rotations about thg-axis,

dg?
- = €jimqm

ds
and

dp '

E = EjimPm,
wheres is the angle of the rotation. Thus, if; denotes the
infinitesimal generator of rotations about theaxis, from
Eq. (21) we obtain

B . ; ,
dL; = (ajkleclEkimqm - 5jimpm) dq’ + €jimq™ dp;
. e . . . .
= d(eijrq’pr) + E(Bi,q] d¢’ — Bjq’dq") (23)
and substituting Eq. (20) it follows that
. e i
L; = 5ijkquk - ﬁg’ (24)
c T

which does not coincide Withijkqj Py, the infinitesimal gen-

usual waye.g, p, = nup”, p* = n*p,.) From Egs. (26)
and the antisymmetry df,,, it follows that

H= Pup”
2m0

(27)

is a constant of motion. It can be readily verified that
Egs. (25) and (26) can be written as

dp*
H}a dr = {PM,H}

dg" "
dT _{q)

(&

{q,u’qV} = 07 {qﬂypu} = (55, {p/upu} = EF/,LV (28)
[cf. Egs. (13)]. The Jacobi identity is satisfied by virtue of the
Maxwell equations

OF,, 0F\,
og* oq”

Thus, a translation, rotation or boost is a canonical transfor-
mations if and only if it leaves the electromagnetic field in-

8F1/>\

=0.
oqt

erator of rotations of the canonical variables. With the aid ofvariant.

Egs. (13) and (20), one verifies thak;, L, } = e, Ly.

4. Particle in an electromagnetic field

If A, denotes a four-potential for the electromagnetic
field (e, F,, = 0A,/0¢" —0A,/0q") then from Egs. (28)
one finds thaQ* = ¢* andP,, = p,, + eA,,/c are canonical
coordinates but, again, thifbes notmean thatP, is the in-

In order to express the equations of motion of a charged pa,ﬂnitesimal generator of translations along tffeaxis, unless
ticle in an arbitrary electromagnetic field in a form similar 04,/0¢" = 0forv =0,1,2,3.

to that presented in the foregoing section, it is convenient to

consider them from the point of view of relativistic mechan-5,  Concluding remarks

ics. Since the derivations are almost identical to those given

in the previous case, we shall omit some details in what fol-The canonical coordinates are distinguished by the fact that
lows. In this section the lower case Greek indices take thén terms of them the Hamilton equations (7) and the Pois-

values 0, 1, 2, 3.

son bracket (4) reduce to the simpler forms (1) and (3), re-

Let ¢* be the Cartesian coordinates of a charged particlepectively, but in the case of particles interacting with the

(with respect to some inertial frame) with rest masg and
electric charge. If 7 denotes the particle proper time,

Pt =mo—— (25)

dr
is the usual four-momentum (seeg, Ref. 5). The relativis-

tic equations of motion for the particle in a given electromag-

netic field are given by

electromagnetic field it is preferable to employ noncanonical

coordinates, which may have clearer meaning, and without
having to introduce gauge-dependent quantities. The Pois-
son bracket obtained here as the simplest solution of Eqgs. (6)
and (11) is precisely the one found in the standard Hamilto-

nian formulation [2].

As pointed out above, the usual canonical momeniym
or P, need not be the infinitesimal generator of translations

along theg®- or ¢*-axis.
apt _ e v

dq” e
Fr, ol = ey,
dr c dr moc p

(26)
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