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Considerations about the variability of the Bragg’s law fulfilment
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On working with an X-ray powder diffractometer, due to practical difficulties, the surface of the specimen some times is not accurately
placed on the working plane of the goniometer. This disagreement produces an asymmetric broadening of the diffraction line profile, and
also a shift in the peaks positions. In this work we expose some considerations about the way each diffracted beam fulfils the Bragg’s law,
addressed to its possible application for correcting the2θ shifts caused by the specimen-displacement error of polycrystalline samples.

Keywords: X-ray diffraction; polycrystals.

Al trabajar con un difract́ometro de rayos X para polvos, algunas veces, debido a dificultades prácticas, la superficie de la muestra no
queda colocada con precisión en el ćırculo focalizador del goniómetro. Este error produce un ensanchamiento asimétrico del perfil del pico
difractado, aśı como un desplazamiento de las posiciones de los picos. En este trabajo exponemos algunas consideraciones acerca de la
manera caracterı́stica con que cada haz difractado cumple la ley de Bragg, para su posible aplicación en la corrección, en difractogramas de
muestras policristalinas, de los desplazamientos angulares causados por el desplazamiento de la muestra.

Descriptores: Difracción de rayos X; policristales.

PACS: 61.80.Cb; 33.20.Rm; 06.30.Bp

1. Introduction

The quality of X-ray measurements depends on several fac-
tors; among them we can find:

a) the specimen quality [1,2],

b) the specimen preparation [3],

c) the specimen holder [4], and

d) the geometry deviations [5].

In connection with the last factor, we find the flat-specimen
error and the specimen-displacement error; these two errors
cause asymmetric broadening of the diffraction line profile
towards low2θ angles.

The specimen-displacement error additionally causes a
shift in the peaks positions, which can significatively com-
plicate the symmetry determination process, particularly in
the cases of low symmetry specimens. Generally, these2θ
shifts are corrected by displacing the diffraction pattern as a
whole to the most convenient position, which is determined
by using an internal standard; but displacing the diffraction
pattern in this way, one can not bring the complete set of the
standard’s peaks into coincidence with the reported2θ posi-
tions for it; only one experimental peak can be brought into
very good agreement, while the rest of them come only into
an approximate agreement.

The specimen-displacement error occurs because the sur-
face of the sample is not co-concentric with the goniometer
focusing circle, due to practical difficulties in accurately plac-
ing the sample at this level. According to Ron Jenkins [5],
the flat-specimen error and the specimen-displacement error
have respectively the following forms:

a) ∆2θ = - (1/6)α2 cot θ, in whichα is the angular aper-
ture of the divergence slit, and

b) ∆2θ = - 2s (cos θ/R) , wheres is the displacement of
the specimen from the focusing circle, andR is the go-
niometer radius.

This error gives an absolute shift in2θ peak position, which
amounts approximately 0.01o 2θ per each 15µm displace-
ment.

2. Development

The Bragg equation

nλ = 2d sin θ (1)

can be used to obtain a wide set of related angular values by
using a specific value of the wavelength (λ1) and a series of
valuesNλ1 whereN = 0.1, 0.2, 0.3, . . . 0.9, 1.0, 1.1, 1.2. . . .
On doing so, the Bragg equation takes the form

nNλ1 = 2d sin θ, (2)

whence we can calculate the2θ angles for the first order
(n=1) maxima by means of the following expression:

2θ = 2 arcsin
(

1 ∗Nλ1

2d

)
. (3)

By applying Eq. (3) to the (111) Silicon planes
(d(111) = 3.1354Å), using λ1 = 1.541783Å, we obtain the
set of values shown in Table I.
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TABLE I. Calculated angular values2θ for beams diffracted by
Si (111) planes as function ofλ.

N Nλ1 2θ 2θ /N

0.2 0.308356 5.637 28.185

0.4 0.616713 11.288 28.220

0.6 0.925070 16.966 28.277

0.8 1.233426 22.687 28.359

1.0 1.541783 28.466 28.466

1.2 1.850139 34.320 28.600

1.4 2.158496 40.267 28.763

1.6 2.466853 46.331 28.957

1.8 2.775209 52.535 29.286

2.0 3.083566 58.909 29.454

3.0 4.625349 95.055 31.685

The third column shows that, in principle, we can direct
the beams diffracted by one family of planes, along a direc-
tion having the angular value of our choice, if we can mod-
ify accordingly the wavelength value. Figure 1 shows this
idea, applied to various Silicon planes families; here, we can
see that each one of these curves has its own slope, in other
words, we can say that: each curve has its own way of obey-
ing the Bragg’s law and it is for this reason that one cannot
correct properly the diffraction pattern just by displacing it in
the2θ direction in one movement.

From this, it turns out, that to correct a diffraction pattern,
we must perform the process one peak at a time.

The last column of Table I, corresponding to the “nor-
malized” angular values(2θ)/N , shows also that there is not
a linear dependence between2θ andλ. Figure 2 illustrates
the behavior of these “normalized” angular values, which in
the case of the beams diffracted by the (111) family planes
present a small deviation that suggests a small angular error
on displacing the diffraction pattern in the2θ direction, but

FIGURE 1. Calculated angular values2θ for beams diffracted by
various families of silicon planes, as function ofλ.

FIGURE 2. Normalized angular values2θ/N , of a set of silicon
family planes as function ofλ1.

this same displacement will correspond to a bigger error in
the cases of beams diffracted by other planes families, even
in this “normalized” situation.

In practice, to correct the diffraction pattern line by line,
we encounter two main difficulties to find out the behavior
of each diffracted beam as function ofλ. The first one is the
difficulty of changing the wavelength value, the second one is
that we need to know the values of the specimen’s interplanar
spacings.

However, we can avoid these two problems (λ and d),
using the following system of equations:

(a) nλ1 = 2d sin θ1,

(b) nλ2 = 2d sin θ2, (4)

in which we can expressλ2 asQ timesλ1; doing so, we ob-
tain

(a) nλ1 = 2d sin θλ1 ,

(b) nQλ1 = 2d sin θQλ1 . (5)

The solution of the system of Eqs. (5) is

Q =
sin θQλ1

sin θλ1

(6)

Applying this equation to the internal standard, for which
we have both, the set of experimental diffraction anglesθλ1

and the reported (PDF)θQλ1 , we obtain a set of correction
factors

∑
Qstd, for which we can find a mathematical ex-

pression as a function of2θ; this expression is the correction
function wich allows us to find the correction factorQs for
a given2θ value, which can be the angular value of a speci-
men’s peak.

Rearranging Eq. (6), we obtain

2θQλ1 = 2 arcsin(Q ∗ sin θλ1). (7)

By means of this equation we can find the corrected angu-
lar position2θQλ1 of the specimen’s diffracted beams. Let us
evaluate Eq. (7), with a known specimen like Silicon, which
is widely used as internal standard for correcting experimen-
tal diffraction patterns, for this it is useful to build up Table II.
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TABLE II. This table shows the experimental values 2θλ1 of a Silicon specimen (usingλ = 1.54056Å), the extended reported values 2θPDF ,
the correction factorsQ and the corrected values 2θQλ1 .

hkl 2θλ1 2θPDF Q 2θQλ1

111 28.440 28.4421748058 1.00007489321 28.4421748056

220 47.275 47.3022578510 1.00054346388 47.3022578512

311 56.083 56.1205290628 1.00061481484 56.1205290628

400 69.105 69.1301411514 1.00031857611 69.1301411516

331 76.341 76.3771771120 1.00040156479 76.3771771120

422 87.990 88.0261167604 1.00032638390 88.0261167602

In Table II, we can see that the corrected values given
in the fifth column coincide with high accuracy with the ex-
tended values in the third column obtained from data reported
in the PDF for Silicon.

3. Conclusion

From an experiment for which we mix carefully the specimen
with a standard material, we obtain the angular positions of
the beams diffracted by the standard. Using these values in
equation (6), together with the reported values for the stan-
dard, we obtain a set of correction factorsQstd. These are

used to obtain an equation or correction function which is
solved to get the correction factorsQspec for each experi-
mental value2θλ1of the specimen. These two values allows
us to solve Eq. (7) to obtain the set of corrected values2θQλ1

for the specimen.
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