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A pedagogical discussion on the unitarity gauge within the context of Hamiltonian path integral formalism is presented. A model based
on the groupO(N), spontaneously broken down to the subgroupO(N − 1), is used to illustrate the main aspects of this gauge–fixing
procedure. Among the issues, discussed with some extent, are: (1) the structure of model’s constraints following the Dirac’s method, (2)
the gauge–fixing procedure, using the unitarity gauge for the massive gauge fields and the Coulomb one for the massless gauge fields, (3)
the absence of BRST symmetry in this gauge–fixing procedure and its implications on the renormalizability of the theory, and (4) the static
role of the ghost and anti–ghost fields associated with the massive gauge fields and how their contributions can be eliminated by using the
dimensional regularization scheme.
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Se presenta una discusión pedaǵogica de la norma unitaria en el contexto de integral de trayectoria hamiltoniana. Un modelo basado en el
grupoO(N), roto espont́aneamente al subgrupoO(N − 1), es usado para ilustrar los aspectos principales de este procedimiento de fijación
de la norma. Entre los temas, discutidos con cierta extensión, est́an: (1) la estructura de las constricciones del modelo siguiendo el método
de Dirac; (2) el procedimiento de fijación de la norma, usando la norma unitaria para los campos de norma masivos y la norma de Coulomb
para los campos de norma sin masa, (3) la ausencia de la simetrı́a BRST en este procedimiento de fijación de la norma y sus implicaciones
sobre la renormalizabilidad de la teorı́; a y (4) el papel estático de los campos fantasma asociados con los campos de norma masivos y cómo
sus contribuciones pueden ser canceladas usando el esquema de regularización dimensional
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1. Introduction

Gauge theories play a central role in the formulation of mod-
ern physics theories. The known fundamental interactions
of the nature are all governed by this class of theories. The
main feature of a gauge system is that it is formulated us-
ing more degrees of freedom than those indeed necessary to
describes it. The gauge degrees of freedom, the redundant
ones, arise as a consequence of local transformations, called
gauge transformations. In the Lagrangian framework, this
redundancy leads to the well–known Noether identities [1],
while in the Hamiltonian framework, it appears as constraints
on the phase space [2, 3]. As a consequence of this gauge
freedom, there are many solutions of the equations of mo-
tion consistent with the initial data, the system is degenerate
in this sense. Though it is possible in principle to eliminate
the gauge degrees of freedom, it is not convenient, mainly to
preserve manifest covariance and also by calculational con-
venience. Therefore, it is convenient to keep the gauge de-
grees of freedom as true dynamical variables and introduce
anticommuting fields to cancel their effects in physical ob-
servables.

The quantization of gauge systems is not always straight-
forward, since it is necessary to lift the degeneration through
some gauge–fixing procedure. It results that in the Hamilto-
nian framework it is not possible to define a covariant gauge–
fixing procedure, so one ends up with a noncovariant gener-
ating functional. In order to recover manifest covariance, one

needs to recur to the Faddeev–Popov method [4]. Though this
method works well in Yang–Mills theories for a wide class
of gauge–fixing procedures, it fails in more general gauge
systems. For example, reducible gauge systems, in which
the gauge generators are not all independent [5]. There are
also gauge systems in which the structure constants depend
on the fields [6] or open systems, in which the commuta-
tor of two gauge transformations give rise to a trivial gauge
transformation which is proportional to the equations of mo-
tion [5]. In the least years, a powerful tool based in the an-
tifields Batalin–Fradkin–Vilkovisky formalism [7] has been
developed to quantize in a covariant way this class of sys-
tems. In this formalism, the generalized BRST transforma-
tions play a central role. This formalism has been developed
in both the Lagrangian [5] and Hamiltonian [8] framework
and their equivalence was proved perturbatively [9]. Yang–
Mills theories can be quantized using this general scheme,
but since they are of the irreducible type, closed and their
structure constants do not depend on fields,i.e, their gauge
algebra is a Lie algebra, the Faddeev–Popov method is valid.
In order to maintain our discussion as simple as possible, we
will use this method in studying the unitarity gauge.

Gauge systems can possesses a finite number of degrees
of freedom, but those with infinitely many ones (a field
theory) are the most interesting from the physical point of
view. Doubtless, the simplest and best known field the-
ory, which represents a gauge system, is quantum electro-
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dynamics (QED). This theory is described by the Abelian
gauge groupUe(1). At energies higher than the Fermi scale
(v = 246 GeV), the weak and electromagnetic interactions
are unified by means of the Yang–Mills groupSUL(2) ×
UY (1), known as the electroweak group, whereUY (1) is the
so–called hypercharge group. The standard model (SM) of
the strong and electroweak interactions is based in the group
SUC(3)×SUL(2)×UY (1), beingSUC(3) the group of the
strong interactions.

One peculiarity of the weak interaction is to be mediated
by massive gauge bosons. As it is known, a mass term for
a gauge boson can not be introduced explicitly in the the-
ory otherwise gauge symmetry is lost. In order to generate
masses for these fields, it is necessary to break this symme-
try, not explicitly, but spontaneously. This means that the
action remains invariant under the gauge group but not the
minimal energy state. To do this, it is necessary to introduce
scalar fields, in some appropriate representation of the gauge
group, that leads to an infinitely degenerate vacuum (the min-
imal energy state). In this situation, when one choose one
specific vacuum, the phenomenon known as spontaneously
symmetry breaking (SSB) arises, which means that the vac-
uum is not invariant under the group. In most physical inter-
est cases, the vacuum is invariant only under a subgroup of
the original group,i.e. only certain generators of the group
do not leave invariant the vacuum, they are broken genera-
tors in this sense. When a global invariant theory is consid-
ered, there arise massless scalar fields, one for each broken
symmetry, known as Goldstone bosons [10]. Though inter-
esting, it is unlikely that massless scalar particles exist in the
nature. However, when SSB is combined with local gauge
invariance, a new phenomenon arises: the gauge boson fields
associated with the broken generators acquire masses. This
phenomenon is known as the Higgs mechanism [11]. In the
local gauge invariant scheme, the massless scalars do not rep-
resent physical degrees of freedom, but they can be removed
of the theory in a specific gauge, called the unitarity gauge.
The main goal of this work is to study this gauge–fixing pro-
cedure both at the classical and quantum levels.

In this paper we present a pedagogical study of the main
properties of the unitarity gauge. For this purpose we will use
a toy model defined by the orthogonal groupO(N), sponta-
neously broken down to the subgroupO(N −1). Though we
first will present a brief study on the Goldstone theorem [10]
and the Higgs mechanism [11] in the context of this model,
our main purpose is to discuss some peculiarities that arise
when one quantize the theory using a gauge–fixing procedure
based in the unitarity gauge. In contrast with renormalizable
gauge–fixing procedures (Rξ–gauges) [12], defined by us-
ing gauge–fixing functions that depend on gauge and scalars
fields, the unitarity gauge is defined using supplementary
conditions depending only on the pseudo-Goldstone bosons
(PGB). The unitarity gauge is widely used to evaluate tree–
levelS matrix elements, though it is not necessarily the most
appropriate for practical loop calculations. Perhaps, its most
important property is that, due to the absence of PGB in the

theory, it provides an appropriate scheme to probe unitarity
of theS matrix.

Our presentation is organized as follows. In Sec. 2. we
discuss the Goldstone theorem and the Higgs mechanism in
the context of theO(N) group spontaneously broken down
to theO(N − 1) subgroup. We will take advantage of this
discussion to present the notation and conventions that will
be used through the paper. Section 3. is dedicated to study
with some detail the structure of the constraints of the model,
including the definition of a gauge–fixing procedure. We will
lift the degeneration in the massive gauge sector by using the
unitarity gauge, while in the massless gauge sector we will in-
troduce the Coulomb gauge. Our main contribution is given
in Sec. 4., where the quantization of the theory is presented
starting out from the fundamental Hamiltonian path integral.
The process of integrating out the generalized momenta as
well as the implementation of the gauge–fixing procedure are
discussed with some extent. Several aspects arising from the
unitarity gauge are discussed. Among other, we show how
the unitarity gauge leads to a generating functional which is
not invariant under the BRST symmetry. This fact has non-
trivial implications on the renormalizability of the theory. We
discuss also the role played by the ghost fields associated with
the massive gauge fields. In particular, it is show that their
contribution can be eliminated if it is used the dimensional
regularization scheme [13]. Finally, in Sec. 5. we present our
conclusions.

2. The model

The model that will be used to discuss the unitarity gauge
is based in the orthogonal group inN dimensions,O(N).
Firstly, we discuss the SSB of this group. Letφ be an
N–component real field, with Lagrangian given by

L =
1
2
(∂µφa)(∂µφa)− V (φa), (1)

where

V (φa) =
1
2
m2φaφa +

1
4
λ(φaφa)2. (2)

L is invariant under global transformations of this group. In
this representation, the elements ofO(N) areN×N orthogo-
nal matrices given byO= exp{iθαTα}=1+iθαTα+O(θ2).
So, the infinitesimal transformations are given by
δφa = iθα(Tα)abφ

b, whereTα are the matrices represent-
ing to the 1

2N(N − 1) generators of the group. Since the
representation is real,iTα must be a real matrix, soTα is
imaginary, and because it is Hermitean, it is antisymmetric.
Occasionally, we will need to make explicit use of these ma-
trices. To this end, it is convenient to label these matrices
with two indices, as follows(T rs)ab, with r 6= s denoting
the rotation plane anda, b the element of the corresponding
matrix. Then, in general, we can write

(T rs)ab = −i(δr
aδs

b − δs
aδr

b ). (3)
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We now turn to analyze the classical configuration of
minimal energy of the system. This configuration corre-
sponds to a fieldφ ≡ φ0, which minimize the potential
V (φa), i.e. φ0 is solution of the equation

∂V

∂φa
= [m2 + λ(φbφb)]φa = 0. (4)

There are two cases. (i) Ifm2 > 0, the potential has a min-
imum atφ0 = 0. In this case, the parameterm can be inter-
preted (in the context of the quantum theory) as the masses
of the fieldsφa. (ii) If m2 < 0, the potential has a local max-
imum atφ0 = 0 and a minimum atφa

0φa
0 = −m2

λ ≡ v2.
The most interesting situation is the last one. In this case, the
minimal energy state (the vacuum state) is infinitely degener-
ate, all configuration of fields lying on the hypersphere with
radiusv satisfy Eq. ( 4). But these configurations are not ar-
bitrary at all, since all points on this surface are related one
to the other through an orthogonal transformation ofO(N).
SSB occurs when one choose only one of this vacuums. Let
us choose theN th component ofφ to be the one which de-
velops a vacuum expectation value. We denote the vacuum
by the following vector:

φ0 =




0
0
...
v


 , (5)

(in quantum theory, where the fieldsφa are operators, it
is said that the fieldφN develops the vacuum expectation
value 〈0|φN |0〉 = v). It is clear that this vacuum is not
invariant under the complete groupO(N), since there ex-
ist matricesO ∈ O(N) which do not leave invariantφ0,
i.e. φ′0 = Oφ0 6= φ0. However, there exist a subgroup of
O(N) which leaves invariantφ0, namely the subset of rota-
tions about theN th axes, which form the subgroupO(N−1).
Let O′ be an element ofO(N − 1), thenφ′0 = O′φ0 = φ0,
with O′ = exp{iθα′Tα′}, being theTα′ the 1

2 (N−1)(N−2)
generators ofO(N−1). Before showing the invariance ofφ0

under this subgroup, let us to establish our notation. Through
the paper we will use the following conventions:

a, b, c, · · · = 1, · · · , N

α, β, γ, · · · = 1, · · · ,
1
2
N(N − 1)

a′, b′, c′, · · · = 1, · · · , (N − 1)

α′, β′, γ′, · · · = N, · · · ,
1
2
(N − 1)(N − 2). (6)

In addition, we will reserve the middle letters of the Greek
alphabet,µ, ν, · · · to denote Lorentz indices. As usual, spa-
tial indices will be denoted by the lettersi, j, · · · . With
this notation, we can conveniently separate the generators
of O(N − 1) from the remaining ones ofO(N) in the way
Tα = (T a′ , Tα′). We now show that the vacuum is invariant

under the subgroupO(N − 1). WhatO(N − 1) leaves in-
variantφ0 means that it is annihilated by the generatorsTα′ .
In fact, using Eqs.( 3, 5), we obtain

(Tα′β′φ0)a = v(Tα′β′)aN = −iv(δα′
a δβ′

N − δα′
N δβ′

a ) = 0,

as it is evident from the fact thatα′ 6= β′ and from Eq.( 6).
Making the shiftφ = ϕ + φ0, the Lagrangian ( 1) takes

the form

L =
1
2
(∂µϕa)(∂µϕa)− λ(vϕN +

1
2
ϕaϕa)2 − 1

4
λv4. (7)

Evidently,ϕN is the field of a particle with mass(2λv2)1/2

while the N − 1 fields ϕa′ are massless. Notice that the
number of massless bosons is the same as the number of
broken generatorsT a′ . This is a special case of a gen-
eral result known as Goldstone theorem [10], which es-
tablish that for each broken generator there is a massless
scalar field, called Goldstone boson. In our example, the
group O(N) has 1

2N(N − 1) symmetries, while the sub-
group O(N − 1), which leaves invariant the vacuum, has
1
2 (N−1)(N−2) symmetries. The number of broken symme-
tries is then1

2N(N−1)− 1
2 (N−1)(N−2) = N−1, which

coincides with the number of Goldstone bosons. To conclude
this part, let us to emphasize that the Lagrangian ( 7) is still
invariant under theO(N) group. It must be so since noth-
ing violating this symmetry has been introduced. However, it
is important to stress that the vacuumφ0 is not invariant un-
der the complete groupO(N), but only under the subgroup
O(N − 1). The groupO(N) is spontaneously broken to the
O(N − 1) subgroup in this sense.

We now proceed to discus the same theory analyzed
above but when it is invariant under local gauge transforma-
tions of theO(N) group. It is unlikely that Goldstone bosons
exist in the nature. However, when SSB and gauge invariance
are combined, there is an exception to Goldstone theorem.
This combination is known as the Higgs mechanism [11],
which play a fundamental role in the description of the SM
and its extensions.

The gauge invariant version of the Lagrangian ( 1) is
given by

L =
1
2
(Dab

µ φb)(Dµ
acφ

c)− V (φa)− 1
4
Fα

µνFµν
α , (8)

whereDab
µ = δab∂µ − igTα

abA
α
µ is the covariant derivative

in the N–dimensional representation ofO(N), Aα
µ are the

gauge fields, andg is the coupling constant. The Yang–Mills
tensorFα

µν is given by

Fα
µν = ∂µAα

ν − ∂νAα
µ + gfαβγAβ

µAγ
ν , (9)

wherefαβγ are the structure constants of the group. Un-
der infinitesimal local transformations, the matter and gauge
fields transform respectively as

δφa(x) = iθα(x)(Tα)abφ
b(x), (10)

δAα
µ(x) =

1
g
Dαβ

µ (x)θβ(x), (11)
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whereDαβ
µ = δαβ∂µ − gfαβγAγ

µ is the covariant derivative
in the adjoint representation ofO(N).

Since the potentialV (φa) in this Lagrangian is the same
that the one appearing in the globally invariant Lagrangian
( 1), it is clear that the gauge invariant theory presents SSB
whenm2 < 0. We now investigate the consequences of con-
sidering SSB and gauge invariance together. After SSB,i.e.
after making the shiftφ = ϕ + φ0, the Lagrangian ( 8) takes
the form

L =
1
2
(Dµϕ)a(Dµϕ)a + (Dµφ0)a(Dµϕ)a

+
1
2
(Dµφ0)a(Dµφ0)a − 1

4
λ(2vϕN − ϕaϕa)2

−1
4
Fα

µνFµν
α , (12)

where an irrelevant constant term has been ignored. As in the
globally invariant case,ϕN is the field of a particle of mass
(2λv2)1/2 while the remainingN − 1 components ofφ are
massless. There is, however, a new ingredient, the third term
of this Lagrangian. Taking into account thatTα′φ0 = 0, this
term can be written as

1
2
(Dµφ0)a(Dµφ0)a = −1

2
g2Aa′

µ Ab′µ(T a′φ0)a(T b′φ0)a

= −1
2
g2v2Aa′

µ Aa′µ, (13)

where use of Eq.( 3) was made. This shows thatN − 1
of the gauge fields are massive, while the remaining
1
2 (N−1)(N−2) ones are massless. Notice that the number
of massive gauge fields are the same as the number of bro-
ken symmetries ofO(N) and the number of massless gauge
fields coincides with the number of symmetries of the sub-
groupO(N−1). Notice also that the vector formed by the
PGB,φ′ = (φ1, φ2, · · · , φN−1), transform as theN−1–di-
mensional representation of the groupO(N − 1).

It is a well known fact that a massive gauge field pos-
sesses three polarization states, instead of the two ones that
characterize the massless gauge fields. Seemingly it seems
that we have end up with more degrees of freedom that those
of the original theory. This is not the case because of the
N − 1 Goldstone bosons represent spurious degrees of free-
dom, they can be removed of the theory in a specific gauge.
To do this, one writes theφ fields in a nonlinear way as fol-
lows:

φ = exp

{
i
T a′ηa′

v

}



0
0
...

v + h


 , (14)

where the fieldsηa′ are the pseudo–Goldstone bosons (PGB)
and we have renamed the massive scalar field ash = ϕN ,
which is known as the Higgs field. Expanding the above ex-
pression at first order in the fields and using Eq.( 3) for the

elements of the matricesT a′N , we recover the linear rep-
resentationφ = (η1, η2, · · · , ηN−1, v + h). Since the La-
grangian (12) is invariant underO(N), we can make the fol-
lowing special gauge transformation:

φ′ = Oφ, (15)

T a′A′a
′

µ = OT a′Aa′
µ O† − 1

g
(∂µO)O†, (16)

where

O = exp

{
−i

T a′ηa′

v

}
. (17)

Sinceφ′ = (0, 0, · · · , v + h), the PGB disappear when the
Lagrangian is written in the new gauge. This is known as the
unitarity gauge. In that gauge, the new Lagrangian ( 12) is
obtained by putting all PGB equal to zero:LUG = L|φa′=0.
It was shown by Weinberg that unitarity gauge always exists
[14]. This gauge–fixing procedure will be discussed in the
next section within the context of the Hamiltonian framework
by using the Dirac’s method for constrained systems.

3. The Hamiltonian of the theory

According to Dirac, to quantize a given system it is necessary
to put the theory in the Hamiltonian form. However, the stan-
dard method used for regular (not constrained) systems does
not works for the case of singular (constrained) systems due
to the presence of constraints.

The Hamiltonian formalism for constrained systems was
developed by Dirac [2]. The method allows us determine all
system’s constraints, which define a surface in the complete
phase space. The state of the system evolves on this surface,
but its evolution may be not unique due to the absence of
a well–defined Hamiltonian. When an unique Hamiltonian
exists, it is said that the system is subject to second–class
constraints. If it is not the case, the system possesses first–
class constraints. Gauge systems are subject to first–class
constraints, which are intimately related with the gauge sym-
metry of the theory. In this case, the Dirac’s algorithm does
not leads to an unique Hamiltonian, it depends on arbitrary
Lagrange multipliers. This Hamiltonian describes a degen-
erate system in the sense that given a state at an initial time,
it evolves following many histories on the constraint surface.
These histories must be recognized as physically equivalent
because they are consequence of arbitrary Lagrange multi-
pliers in the Hamiltonian. At a later time, the correspond-
ing physically equivalent states on the histories form an orbit
(see Fig.1). The states on the orbit are related one to an-
other through a gauge transformation, the generators being
the first–class constraints. It is clear that only one set of coor-
dinates, corresponding to a representative point of the orbit,
is necessary to specify the state of the system at a given time.
In order to specify a representative set of variables it is nec-
essary to introduce supplementary conditions, known in the
literature as gauge fixing–conditions, which lift the degener-
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FIGURE 1. Time evolution of a gauge system.Γc is the constraint
surface defined by all first–class constraints. Continue and dashed
lines represent histories and orbits, respectively.

ation of the system. For this aim, the number of gauge–
fixing functions must be equal to the number of the first–
class constraints. These functions can not be arbitrary at all,
they must have nonvanishing Poisson brackets with the first–
class constraints, which implies that first–class constraints
and gauge–fixing functions together form a set of second–
class constraints. Since we can lift the degeneration in many
different ways, it is clear that there exist many physically
equivalent classical theories, each determined once a specific
gauge–fixing procedure has been chosen [3].

We now proceed to illustrate the main aspects of a gauge
system by studying theO(N) gauge invariant theory dis-
cussed previously. In particular, we have interested in study-
ing those aspects that result of using the unitary gauge to lift
the degeneration in the massive gauge sector. Our goal con-
sist in deriving the Hamiltonian for the theory characterized
by the Lagrangian given by Eq.(8). The generalized momenta
associated with the matter and gauge fields are defined by

πa ≡ ∂L
∂φ̇a

= Dab
0 φb, (18)

π0
α ≡

∂L
∂Ȧα

0

= 0, (19)

πi
α ≡

∂L
∂Ȧα

i

= Fα
i0, (20)

(the shift introduced after SSB is not relevant for the present
discussion since the definition of the generalized momenta
are not affected by it). From the first and third equations we
can express the velocitieṡφa andȦα

i in terms of fields and
momenta as follows:

φ̇a = πa + ig(Tα)abA
α
0 φb, (21)

Ȧα
i = πα

i +Dαβ
i Aβ

0 . (22)

On the other hand, from the second equation we can see that
the Ȧα

0 velocities can not be expressed in terms of coordi-
nates and momenta. Instead of this, we have the primary
constraints

Φ(1)
α ≡ π0

α ≈ 0, (23)

(Through the paper, we will write weak equations using the
symbol≈).

The time evolution of the system is governed by the pri-
mary Hamiltonian, which is given by

H(1) =
∫

d3xH(1)

=
∫

d3x(Hc + λαΦ(1)
α ), (24)

whereλα are Lagrange multipliers andHc is the canoni-
cal Hamiltonian. Using the expressible velocities given by
Eqs.( 21), we obtain

Hc =
1
2
πaπa +

1
2
πi

απi
α + Aα

0 [ig(Tα)abπ
aφb −Dαβ

i πi
β ]

−1
2
(Dab

i φb)(Di
acφ

c) + V (φa) +
1
4
Fα

ijF
ij
α . (25)

The primary Hamiltonian depends on the Lagrange mul-
tipliersλα, which in principle can be determined by demand-
ing consistency conditions on the primary constraints. A ba-
sic consistency requirement is the preservation of the con-
straints in time. So, we demand that

Φ̇(1)
α = {Φ(1)

α ,H(1)} ≈ 0, (26)

where the symbol{, } stands for Poisson brackets (PB). In
this stage, three different situations can arise. In one them,
one can simply obtain the identity0 = 0. In this case, the
process terminates and the Lagrange multipliers remain un-
determined. Another situation arises when one end up with
functions of the coordinates and momenta which are indepen-
dent of both the primary constraints and the Lagrange multi-
pliers. Such functions must be recognized as new constraints
and are called secondary constraints. A third situation can
occurs when one obtains relations involving the Lagrangian
multipliers. In this case, some or all Lagrange multipliers are
determined. In our case, we have

Φ̇(1)
α (x) =

∫
d3y[{Φ(1)

α (x),Hc(y)}

+ λβ(y){Φ(1)
α (x), Φ(1)

β (y)}] ≈ 0

=
∫

d3y{Φ(1)
α (x),Hc(y)}, (27)

where it is understood that the PB are calculated at equal
times. The last expression arises from the fact that the pri-
mary constraints only depend on the momentaπ0

α. Then, the
consistency condition does not determines the Lagrange mul-
tipliers but leads to secondary contraints given by

Φ(2)
α = Dαβ

i πi
β − ig(Tα)abπ

aφb ≈ 0. (28)

Following with the Dirac’s algorithm, the secondary con-
straints must also satisfy consistency conditions similar to the
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primary ones:

Φ̇(2)
α (x) =

∫
d3y[{Φ(2)

α (x),Hc(y)}

+ λβ(y){Φ(2)
α (x), Φ(1)

β (y)}] ≈ 0

=
∫

d3y{Φ(2)
α (x),Hc(y)}, (29)

where the last expression arises as a consequence from the
fact that the PB among the primary and secondary constrainst
vanish trivially. The calculation of the last PB is not trivial
and some work has to be done. After using the basic prop-
erties of the PB together with the equations of motion, we
obtain

Φ̇(2)
α = gAγ

0fαβγΦ(2)
β ≈ 0. (30)

We have the situation0 = 0 on the constraint surface. There
are no new constraints and the Lagrangian multipliers remain
undetermined.

According to Dirac, a functionF on the phase space is
a first–class quantity if it has, at least weakly, vanishing PB
with all the constraints. On the contrary, a function is called a
second–class quantity if it has nonvanishing PB with, at least,
one of the constraints. This definition allows us to classify
the constraints in first– and second–class ones. In our case,
all are first–class constraints because

{Φ(1)
α (x), Φ(1)

β (y)} = 0, (31)

{Φ(2)
α (x), Φ(1)

β (y)} = 0, (32)

{Φ(2)
α (x), Φ(2)

β (y)} = gfαβγΦ(2)
γ (y)δ(x− y) ≈ 0. (33)

In order to define an unique Hamiltonian, it is necessary
to introduce supplementary conditions. Before doing this,
let us present some brief comments about the role played by
the first– class constraints in the dynamics of the theory. As
it was mentioned previously, the primary Hamiltonian is the
generator of time evolution. Then, consider the time evolu-
tion of a functionF :

Ḟ (x, t) =
∫

d3y[{F (x, t),Hc(y, t)}

+λα(y, t){F (x, t), Φ(1)(y, t)}]. (34)

Let F0 be the initial value ofF at t = t0. At a later time
t > t0, we end up with different values forF , depending of
the values chooses for the Lagrange multipliersλα. In other
words,F takes different values on the different histories on
which evolves the state of the system. The transformation
connecting the values of the function on two different histo-
ries,Fλα andFλ′α , is given by a gauge transformation . The
infinitesimal variation ofF between two near points on the
same orbit is given by

δF =
∫

d3yεα(y, t){F (x, t), Φ(1)
α (y, t)}, (35)

whereεα = δt(λα−λ
′α). This means that the primary first–

class constraints are the generators of the gauge transforma-
tions. According to Dirac’s conjecture, also the secondary
first–class constraints might be considered as gauge genera-
tors. Though it has been found counterexamples where this
conjecture fails [3], it is indeed not the case for Yang–Mills
theories, in which is necessary to consider the secondary
first–class constraints in order to make the connection with
the local gauge transformations introduced at the level of the
Lagrangian. To take into account these constraints as genera-
tors of gauge transformations, it is necessary to include them
in the theory by defining an extended Hamiltonian as follows:

HE = H(1) +
∫

d3xλl
s(x)Φ(s)

l , (36)

wheres = 2, 3 · · · stands for secondary, thirdary,· · · first–
class constraints. Usually, secondary, thirdary,· · · con-
straints are all called simply as secondary, since there is no
physical reasons to distinguish among them. In our case, the
extended Hamiltonian can be written as

HE = H(1) + uαΦ(2)
α

= H+ λα
2 Φ(2)

α + λαΦ(1)
α , (37)

whereH = Hc − Aα
0 Φ(2)

α , since the secondary constraints
are already present in the canonical Hamiltonian. Besides,
λα

2 = Aα
0 + uα andλα = Ȧα

0 , which are completely un-
known. TakingHE as the generator of time evolution, we
have for the variation of theF function

δF =
∫

d3yεα
r (y, t){F (x, t),Φ(r)

α (y, t)}, (38)

wherer = 1, 2. From this expression, we can see that ifF
is a first–class quantity, thenδF = 0, i.e. F is constant on
the orbit. It is a gauge invariant quantity in this sense. This
allows us to define a classical observable as those quantity
which is a first–class quantity. In particular,H(1) andHE

are first–class quantities. We now apply this equation to the
φa andAα

µ fields. The corresponding infinitesimal changes
are given by

δφa = −igεα
2 (Tα)abφ

b, (39)

δAα
µ = εα

1 −Dαβ
i εβ

2 . (40)

If we compare these expressions with the local gauge trans-
formations given in Eqs.( 10, 11), we see that they can be
reproduced if

εα
1 =

1
g
Dαβ

0 θβ , (41)

εα
2 = −1

g
θα. (42)

It is clear now that both primary and secondary constraints
are needed as gauge generators in order to reproduce the lo-
cal gauge transformations.
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3.1. The gauge–fixing procedure: the unitarity gauge

As it was seen, the Hamiltonian defined above for theO(N)
model represents a degenerate theory since it depends on ar-
bitrary Lagrange multipliers. This means that one has in-
deed many equivalent classical theories, each defined once
a gauge–fixing procedure has been chosen to determine the
Lagrange multipliers. According to canonical quantization,
there is a quantum theory corresponding to each classical
Hamiltonian and since all of them are physically equivalent,
one may believe that the quantum versions of these classical
theories must also be physically equivalent. It is, therefore,
reasonable to quantize only one of the physically equivalent
classical theories. The gauge–fixing procedure that we will
choose is the following. We will lift the degeneration in the
massive gauge sector by using the unitarity gauge, which is
defined by means of the PGB. In the massless gauge sector,
we will use the Coulomb gauge. Then, our gauge–fixing pro-
cedure is defined by

χ
(1)
a′ = gvφa′ ≈ 0, (43)

χ
(1)
α′ = ∂iA

i
α′ ≈ 0, (44)

where we have introduced the group constantg by conve-
nience and the vacuum expectation valuev by dimensional
considerations. The first equation define the unitarity gauge,
while the second one is called the Coulomb gauge. It is im-
portant to notice that it is not possible to introduce at this
stage the covariant (Lorenz) gauge∂µAα′

µ because it involves

the arbitrary velocitiesȦα′
0 . Notice also that, unlike the

Coulomb gauge, the unitarity gauge is manifestly covariant.
As in the case of genuine constraints, we demand that the

supplementary conditions satisfy consistency conditions

χ̇
(1)
a′ = {χ(1)

a′ ,HE} ≈ 0, (45)

χ̇
(1)
α′ = {χ(1)

α′ ,HE} ≈ 0. (46)

These conditions lead not to the determination of the La-
grange multipliers, but to new constraints given by

χ
(2)
a′ = gvπa′ + ig2vAα

0 (Tα)a′NφN ≈ 0, (47)

χ
(2)
α′ = −∂iπ

i
α′ − ∂iDα′α

i Aα
0 ≈ 0. (48)

Again, we demand that

χ̇
(2)
a′ = {χ(2)

a′ ,HE} ≈ 0, (49)

χ̇
(2)
α′ = {χ(2)

α′ ,HE} ≈ 0. (50)

It can be shown that these conditions do not lead to new con-
straints, but to the determination of the Lagrange multipliers.
Instead of presenting this explicitly, we will show that the
primary and secondary constraints together with the supple-
mentary conditions given by Eqs.( 43, 44, 47, 48) form a set
of second–class constraints. This guarantees the determina-
tion of the Lagrange multipliers. We need to probe that the
matrix formed with all the PB among the constraints is non-
singular. After some algebra, we obtain




0 0 0 0 {Φ(1)
α , χ

(2)
a′ } {Φ(1)

α , χ
(2)
α′ }

0 0 {Φ(2)
α , χ

(1)
a′ } {Φ(2)

α , χ
(1)
α′ } {Φ(2)

α , χ
(2)
a′ } {Φ(2)

α , χ
(2)
α′ }

0 {χ(1)
a′ ,Φ(2)

α } 0 0 {χ(1)
a′ , χ

(2)
b′ } 0

0 {χ(1)
α′ ,Φ(2)

α } 0 0 0 {χ(1)
α′ , χ

(2)
β′ }

{χ(2)
a′ , Φ(1)

α } {χ(2)
a′ ,Φ(2)

α } {χ(2)
a′ , χ

(1)
b′ } 0 0 0

{χ(2)
α′ , Φ(1)

α } {χ(2)
α′ ,Φ(2)

α } 0 {χ(1)
α′ , χ

(1)
β′ } 0 0




,

where the nonvanishing elements are given by

{χ(1)
a′ (x), Φ(2)

α (y)} = −ig(Tα)a′bφ
b(y)δ(x− y), (51)

{χ(1)
α′ (x), Φ(2)

α (y)} = ∂iDi
αα′(y)δ(x− y), (52)

{χ(2)
a′ (x), Φ(1)

α (y)} = ig2v(Tα)a′NφN (x)δ(x− y), (53)

{χ(2)
a′ (x), Φ(2)

α (y)} = ig2v[(Tα)aa′πa(y)

− ig(Tα)bN (T β)a′NAβ
0 (x)φb(y)]δ(x− y), (54)

{χ(2)
a′ (x), χ(1)

b′ (y)} = −g2v2δa′b′δ(x− y), (55)

{χ(2)
α′ (x), Φ(1)

α (y)} = ∂iDi
α′α(y)δ(x− y), (56)

{χ(2)
α′ (x), Φ(2)

α (y)} = gfα′αβπi
β(y)∂iδ(x− y)

+ gfα′βγ∂i[A
β
0 (x)Dαγ

i (y)δ(x− y)], (57)

{χ(2)
α′ (x), χ(1)

β′ } = ∂i∂
iδα′β′δ(x− y). (58)

Since neither the rows nor the columns are null, this matrix
is nonsingular, though it is important to mention that this is
holds only locally since for large values of the fields the Gri-
bov phenomenon arises and no gauge–fixing is possible [15].

4. Quantization

Having defined a gauge–fixing procedure in the previous sec-
tion, we now turn to quantize the theory. We will use the path
integral method, which is the appropriate for Yang–Mills the-
ories. We will start from the Hamiltonian path integral (HPI),
which is the fundamental one. Next, we will integrate out the
generalized momenta in order to recover an expression de-
fined in the configuration space [the Lagrangian path integral

Rev. Mex. F́ıs. 50 (2) (2004) 107–119
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(LPI)]. In this intermediate stage, some additional terms will arise. We will see that the Coulomb gauge leads to a noncovariant
term, while the unitarity gauge is responsible for the presence of a nonpolinomial divergent term in the Higgs field. Manifest
covariance is recovered by recurring to the Faddeev–Popov method [4], whereas the divergent term can be eliminated using
the dimensional regularization scheme.

4.1. The Hamiltonian path integral

According to Faddeev’s theorem [16], the HPI for a system subject to first–class constraints only is given by

Z[J ] =
∫

DφaDAα
µDπaDπµ

αDet {[χα(x),Φβ(y)] δ(x0−y0)} δ(Φ(1)
α )δ(Φ(2)

α )δ(χ(1)
a′ )δ(χ(1)

α′ )δ(χ(2)
a′ )δ(χ(2)

α′ )

× exp
[
i

∫
d4x

(
πaφ̇a + πµ

αȦα
µ −Hc + J · ϕ

)]
, (59)

whereJ · ϕ = Jaφa + Jµ
αAα

µ are the source terms. In our case, the determinant appearing in the measure of the generating
functional can be written as

Det[{χα(x),Φβ(y)}] = Det[{χ(1)
α (x), Φ(2)

β (y)}]Det[{χ(2)
α (x), Φ(1)

β (y)}] = (−1)N(1−N)/2Det2[{χ(1)
α (x), Φ(2)

β (y)}], (60)

where the last expression arises after using the identity

{χ(1)
α (x),Φ(2)

β (y)} = (−1)N(N−1)/2{χ(2)
α (x),Φ(1)

β (y)}, (61)

as it can be verified from the expressions given in Eqs.( 51). This determinant can be decomposed as a product of two
determinants as follows [17]:

Det[{χ(1)
α (x),Φ(2)

β (y)}] = Det[{χ(1)
a′ (x), Φ(2)

b′ (y)}]Det[{χ(1)
α′ (x), Φ(2)

β′ (y)}]
= Det2[g2vδa′b′φ

Nδ(x−y)]Det2[∂iDi
α′β′δ(x−y)], (62)

where the last expression was obtained by using the results given by Eqs.( 51). According to our notation, the indicesα′, · · ·
anda′, · · · are used to denote unbroken and broken generators ofO(N), respectively [ see Eqs.( 6) ]. Then, the generating
functional takes the form

Z[J ] =
∫

DφaDAα
µDπaDπi

αδ(Φ(2)
α )δ(χ(1)

a′ )δ(χ(1)
α′ )δ(χ(2)

a′ )δ(χ(2)
α′ )Det2[g2vδa′b′φ

Nδ(x− y)]Det2[∂iDi
α′β′δ(x− y)]

× exp
[
i

∫
d4x

(
πaφ̇a + πi

αȦα
i −Hc + J · ϕ

)]
. (63)

In this expression, a trivial integration on the momentaπα
0 was carried out. Also, a constant factor independent of fields was

ignored, since it not contributes to physical amplitudes. The Dirac deltas can be transformed using the identity

δ(F (ϕm)) = Det−1

[
δF (x)
δϕm(y)

]
δ(ϕm − ϕ̂m), (64)

whereϕ̂m is a solution ofF (ϕm) = 0. We have found convenient to transform the following Dirac deltas:

δ(χ(2)
a′ ) = Det−1[g2vδa′b′φ

Nδ(x− y)]δ(Ab′
0 − Âb′

0 ), (65)

δ(χ(2)
α′ ) = Det−1[∂iDi

α′β′δ(x− y)]δ(Aβ′
0 − Âβ′

0 ). (66)

Notice that these expressions cancel the squared in the determinants that appear in the generating functional. After integrating
on theAα

0 = (Aa′
0 , Aα′

0 ) fields, we obtain

Z[J ] =
∫

DφaDAα
i DπaDπi

αDet
[
g2vδa′b′φ

Nδ(x− y)
]
Det

[
∂iDi

α′β′δ(x− y)
]
δ(Φ(2)

α )δ(χ(1)
a′ )δ(χ(1)

α′ )

× exp
{

i

∫
d4x

[
−1

2
πaπa−1

2
πi

απi
α+πaφ̇a+πi

αȦi
α+Âα

0 Φ(2)
α +

1
2
(Dab

i φb)(Di
acφ

c)−V (φa)−1
4
Fα

ijF
ij
α +J · ϕ

]}
. (67)
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The fieldsAα
0 can be introduced newly in the generating functional by using the following integral representation ofδ(Φ(2)

α ):

δ(Φ(2)
α ) =

∫
DQα exp

{
i

∫
d4xQβΦ(2)

β

}
, (68)

where theQα are arbitrary scalar fields. After doing this, we make the change of variablesAα
0 =Qα+Âα

0⇒DQα=DAα
0 . The

result is

Z[J ] =
∫

DφaDAα
µDπaDπi

αDet
[
g2vδa′b′φ

Nδ(x− y)
]
Det

[
∂iDi

α′β′δ(x− y)
]
δ(χ(1)

a′ )δ(χ(1)
α′ )

× exp
{

i

∫
d4x

[
−1

2
πaπa−1

2
πi

απi
α+πaDab

0 φb+πi
αFα

0i+
1
2
(Dab

i φb)(Di
acφ

c)−V (φa)−1
4
Fα

ijF
ij
α +J · ϕ

]}
, (69)

where we have used the identity

πaφ̇a + πi
αȦi

α + Aα
0 Φ(2)

α = πaDab
0 φb + πi

αFα
0i. (70)

The integrals on the momentaπa andπi
α are of gaussian type

and can immediately be solved. Let

I[ϕ] =
1
2

∫
d4xd4yϕ(x)A(x, y)ϕ(y)

+
∫

d4xB(x)ϕ(x) + C

be a quadratic functional. Then, the solution of the corre-
sponding gaussian functional integral is given by

∫
Dϕ exp{−I[ϕ]} = exp{−I[ϕ̄]}(DetA)−1/2, (71)

whereI[ϕ̄] is the stationary value ofI, beingϕ̄ the stationary
point, which is solution of(δI/δϕ)|ϕ̄ = 0. In our case, we
have

∫
Dπa exp{−I[πa]}

= exp
{

i

∫
d4x

1
2
(Dab

0 φb)(D0
acφ

c)
}

, (72)

∫
Dπi

α exp{−I[πi
α]} = exp

{
i

∫
d4x

1
2
Fα

0iF
α
0i

}
, (73)

where we have dropped the determinants since they are inde-
pendent of the fields. After using these results, we have

Z[J ] =
∫

DφaDAα
µDet[g2vδa′b′φ

Nδ(x− y)]

×Det[∂iDi
α′β′δ(x− y)]δ(gvφa′)δ(∂iA

i
α′)

× exp
{

i

∫
d4x[L+ J · ϕ]

}
, (74)

whereL is the gauge invariant Lagrangian given by Eq.( 8).
Notice, however, that the generating functional is not covari-
ant due to the presence in the measure of integration of the
term Det[∂iDi

α′β′δ(x − y)]δ(∂iA
i
α′). However, our result

is a special case of a more general one due to Faddeev and
Popov [4], which states that the LPI for a Yang–Mills theory

can be written as

Z[J ] =
∫

DAα
µDet

(
δfα

δθβ

)
δ(fα(Aβ

µ))

exp
[
i

∫
d4x(L+ Jµ

α ·Aα
µ)

]
, (75)

where thefα are the gauge–fixing functions, which can be
covariant. We can see that our result can be reproduced when
fα′ = ∂iA

α′
i . As was mentioned in the introduction, the

Faddeev–Popov method is adequate only in Yang–Mills the-
ories, it fails in more general gauge systems. On the ba-
sis of this result, we can replace our noncovariant term by
its 4–dimensional versionDet[∂µDµ

α′β′δ(x − y)]δ(∂µAµ
α′),

i.e, we can rewrite our generating functional in terms of the
Lorentz gauge as follows:

Z[J ] =
∫

DφaDAα
µDet[g2vδa′b′φ

Nδ(x− y)]

×Det[∂µDµ
α′β′δ(x− y)]δ(gvφa′)δ(∂µAµ

α′)

× exp
{

i

∫
d4x[L+ J · ϕ]

}
, (76)

which is covariant, since the unitarity gauge is Lorentz invari-
ant. The determinant on the gauge fields can be expressed in
terms of a gaussian integral on anticommuting real fields as
follows:

Det[∂µDµ
α′β′δ(x− y)] =

∫
Dcα′Dc̄α′

× exp
{

i

∫
d4xcα′∂µDµ

α′β′ c̄
β′

}
. (77)

The Lorentz gauge can be generalized by introducing an aux-
iliary field Rα′ in the form∂µAµ

α′ − Rα′ = 0. Then, we
average overRα′ with a gaussian weight

∫
DRα′ exp

{
−i

∫
d4x

1
2ξ

Rβ′Rβ′
}

δ(∂µAµ
α′ −Rα′)

= exp
{
−i

∫
d4x

1
2
(∂µAα′µ)2

}
, (78)

whereξ is the so–called gauge parameter. After doing this,
we obtain

Rev. Mex. F́ıs. 50 (2) (2004) 107–119
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Z[J ] =
∫

DφaDAα
µDcα′Dc̄α′δ(gvφa′)Det[g2vδa′b′φ

Nδ(x− y)]

× exp
{

i

∫
d4x

[
L − 1

2ξ
(∂µAµ

α′)
2 + cα′∂µDµ

α′β′ c̄
β′ + J · ϕ

]}
, (79)

where nowJ includes sources for the ghost (cα′) and anti-ghost (̄cα′) fields. We now implement the unitarity gauge. Instead
of proceeding as the Coulomb gauge case, we eliminate the PGB by using explicitly the supplementary condition, that is, we
integrate out the PGB, which is trivial due to the presence of the Dirac delta. The result is

Z[J ] =
∫

DhDAα
µDcα′Dc̄α′Det

[
Ma′b′

(
1 +

h

v

)
δ(x− y)

]

× exp
{

i

∫
d4x

[
L|φa′=0 −

1
2ξ

(∂µAµ
α′)

2 + cα′∂µDµ
α′β′ c̄

β′ + J · ϕ
]}

, (80)

whereMa′b′ = g2v2δa′b′ is the mass matrix of theN − 1 gauge fields. It is important to mention that, as consequence of
the integration of the PGB fields, an important property of gauge theories has been lost, namely the BRST [18] symmetry
underling to any gauge system. We will turn on this later on. For the moment, note that one can express the determinant on the
Higgs field in terms of a gaussian integral on anticommuting fields as follows:

Z[J ] =
∫

DhDAα
µDca′Dc̄a′Dcα′Dc̄α′

× exp
{

i

∫
d4x

[
L|φa′=0 −

1
2ξ

(∂µAµ
α′)

2 + ca′Ma′b′

(
1 +

h

v

)
c̄b′ + cα′∂µDµ

α′β′ c̄
β′ + J · ϕ

]}
. (81)

Notice that there are no derivative terms for the anticommut-
ing fieldsca′ and c̄a′ , which means that they do not propa-
gate. This is a peculiarity of the unitarity gauge, which will
be analyzed in connection with the dimensional regulariza-
tion scheme in the next subsection.

To conclude this section, let us present some comments
concerning the BRST symmetry [18] that remain after lift-
ing the degeneration of a gauge system (the action which is
invariant under generalized BRST transformations is a func-
tional on fields and antifields and it is degenerate. The nonde-
generate gauge–fixed BRST action, which is invariant under
the usual BRST [18] transformations, define the quantum

theory and it is obtained from the extended classical action
after eliminating the antifields by means of some gauge–
fixing procedure [5]). Since gauge–fixed BRST transforma-
tions coincide essentially with the infinitesimal gauge trans-
formations, it is clear that the action defining the generating
functional in Eq.( 81) is not invariant under this symmetry
because the PGB have explicitly been removed of the theory.
However, if in the generating functional given in Eq.( 79) we
treat the Dirac deltaδ(gvφa′) in the same way that it was
made for the case of the Coulomb gauge, we arrive at the
following generating functional

Z[J ] =
∫

DφaDAα
µDca′Dc̄a′Dcα′Dc̄α′

× exp
{

i

∫
d4x

[
L − 1

2ξ
M2φa′φa′ − 1

2ξ
(∂µAµ

α′)
2 + ca′Ma′b′

(
1 +

h

v

)
c̄b′ + cα′∂µDµ

α′β′ c̄
β′

]}
. (82)

Using now the identity

exp
{
− i

∫
d4x

1
2ξ

fafa

}

=
∫

DBa exp
{

i

∫
d4x

[
ξ

2
BaBa + faBa

]}
, (83)

we can finally write the generating functional as

Z[J ] =
∫

DφaDAα
µDca′Dc̄a′Dcα′Dc̄α′DBa′DBα′

× exp{iSBRST }, (84)

whereSBRST is the gauge-fixed BRST action, which is given
by

SBRST =
∫

d4x

[
L+ (Mφa′)Ba′ +

ξ

2
Ba′Ba′

+ca′Ma′b′

(
1 +

h

v

)
c̄b′ + (∂µAα′µ)Bα′

+
ξ

2
Bα′Bα′ + cα′∂µDµ

α′β′ c̄
β′

]
. (85)
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HereBa′ andBα′ are BRST invariant auxiliary scalar fields
of dimension two. Since this theory is invariant under BRST
transformations, their Green’s functions must satisfy Slanov–
Taylor identities. Though this theory would be renormaliz-
able, its behaviour at one–loop would be quite problematic
since it contains bilinear terms that mix massive gauge fields
with their PGB. On the other hand, since BRST symmetry
is essential to probe renormalizability at the level of Green’s
functions, it would be clear now why off–shell renormaliz-
abilty does not works with the theory given by Eq.( 81). How-
ever, it should be emphasized that renormalizability exists at
the level ofS matrix. Unitarity gauge, as defining the gen-
erating functional in Eq.( 81), is not manifestly renormaliz-
able in the sense that it is not renormalizable off–shell. The
Green’s functions generated by the functionals ( 81) and ( 84)
are quite different.

4.2. Static ghosts and dimensional regularization

Previously, we found that the unitarity gauge leads to the
presence of an action for the anticommuting fields associated

with the massive gauge fields given by

Ssgh =
∫

d4x
[
ca′Ma′b′

(
1 +

h

v

)
c̄b′

]
. (86)

By definition, the propagator of a particle is the inverse of
the operator defining the quadratic term of the corresponding
field. From Eq.( 86) we can see that in this case such operator
is given by

∆(x, y) = M2δ(x− y),

with M = gv. So, the propagator of the anticommuting fields
is simply

∆−1(x, y) ≡ G(x, y) =
1

M2
δ(x− y),

which shows that these fields do not propagate. In order to in-
vestigate the implications of this term in perturbation theory,
we proceed to analyze it starting from the determinant that
appears in Eq.( 81). This determinant leads to the following
effective action

exp
{

iSeff
sgh

}
=

∫
Dca′Dc̄a′ exp

{
i

∫
d4x

[
ca′Ma′b′

(
1 +

h

v

)
c̄b′

]}

= Det

[
M2

(
1 +

gMh

M2

)]
= DetO = exp {i[−iT r log O]} , (87)

hence

Seff
sgh = −iT r log O = −iT r log[∆(1 + ∆−1(gMh))]

= −iT r log ∆− iT r log[1 + ∆−1(gMh)]. (88)

HereTr means trace over discrete and continuous indices.
The first term in the above expression is irrelevant since it
does not depend on the fields. On the other hand, the last
term can be expanded in powers of the coupling constantg as
follows

Seff
sgh = −iT r log[1 + ∆−1(gMh)]

= iT r

∞∑

k=1

(−gM)k

k
[Gh]. (89)

Taking into account thatTr → δa′a′
∫

d4x = (N−1)
∫

d4x,
we can write

Seff
sgh = i(N − 1)

{
(−gM)

∫
d4xG(x, x)h(x) +

(−gM)2

2

∫
d4xd4yG(x, y)h(y)G(y, x)h(x) + · · ·

}

= i(N − 1)

{(
− g

M

)∫
d4xδ(x− x)h(x) +

1
2

(
− g

M

)2
∫

dxd4yδ(x− y)h(y)δ(y − x)h(x) + · · ·
}

= i(N − 1)δ(0)
∫

d4x

{(
− g

M

)
h(x) +

1
2

(
− g

M

)2

h2(x) + · · ·
}

= −i(N − 1)δ(0)
∫

d4x log
(
1 +

h

v

)
. (90)
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This nonpolinomial quartically divergent term was firstly de-
rived using the operator canonical formalism in Ref. 14.
More recently, it was derived in Ref. 19 from the standard
Feynman diagramatic framework. Of course, our functional
derivation of this term is equivalent to the diagramatic ap-
proach, since each term of the series can be identified with a
Feynman diagram (see Fig.2). This term is necessary in order
to remove divergencies that arise at one–loop in processes in-
volving an arbitrary number of external Higgs bosons. This
fact was verified explicitly in Ref. 20. Nevertheless, this term
can be eliminated if one regularize the theory using the di-
mensional scheme [13]. One important result of this scheme
is the following:
∫

dDk

(2π)D

(k2)n

(k2 −R2)m
= i

(−1)n−m

(4π)D/2

×Γ(n + D/2)Γ(m− n−D/2)(R2)D/2+n−m

Γ(D/2)Γ(m)
. (91)

Using this formula we can see thatSeff
sgh disappears since

δ(0) = δ(x− x) =
∫

dDk/(2π)D = 0.

5. Summary

In this paper we have presented a study of the unitarity gauge
within the context of the Hamiltonian path integral formal-
ism. The main features of this gauge–fixing procedure were
studied using a toy model based in the groupO(N) spon-
taneously broken to the subgroupO(N − 1). At the classi-
cal level, the structure of the constraints following the Dirac
method, as well as, the definition of a gauge–fixing procedure
based in the unitarity and Coulomb gauges were discussed
with some detail. At the quantum level, the structure of the

FIGURE 2. Feynman diagrams for the static ghosts contribution to
the nonpolinomial term. Dashed and dotted lines represent Higgs
bosons and ghosts, respectively.

generating functional in this gauge–fixing procedure was dis-
cussed. It was shown that unitarity gauge leads to a La-
grangian path integral which is not invariant under BRST
transformations. It was shown that a BRST invariant generat-
ing functional can be constructed, but it involves the PGB in a
complicated way, not appropriate to perform practical calcu-
lations. Due to the absence of the BRST symmetry, the the-
ory is not renormalizable at the level of Green’s functions. It
was shown that in this gauge the ghost fields associated with
massive gauge bosons do not propagate and that they lead
to a quartically divergent nonpolinomial term in the Higgs
fields. This term was explicitly calculated using functional
techniques and it was shown that it vanishes if the theory is
regularized using the dimensional scheme.

We hope this elementary discussion clarifies the study of
gauge systems quantization, and the student be motived to at-
tack further problems, real ones, like the standard model or
more complicated theories.
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1. B. De Witt, “Dynamical Theory of Groups and Fields” inRel-
ativity, Groups and TopologyLes Houches Summer School,
Session XIII, edited by C. De Witt and B. De Witt, (Gordon
Breach, 1964).

2. P.A.M. Dirac,Lectures on Quantum Mechanics, (Yeshiva Uni-
versity, New York, 1964).

3. K. Sundermeyer,Constrained Dynamics, (Springer, Berlin
1982); D.M. Gitman and V.I. Tyutin,Quantization of Fields
with Constraints, (Springer, Berlin, 1990); M. Henneaux and
C. Teitelboim,Quantization of Gauge Systems, (Princeton Uni-
versity Press, Princeton, New Jersey, 1991).

4. L.D. Faddeev and V.N. Popov,Phys. Lett. B25 (1967) 29; B.S.
De Witt, Phys. Rev.162(1967) 1195;162(1967) 1239.

5. J. Gomis, J. Paris, S. Samuel,Phys. Rep.259(1995) 1. See also,
S. Weinberg,The Quantum Theory of Fields, Vol. II, Cambridge
University Press (1996).

6. I.A. Batalin, J. Math. Phys.22 (1981) 1837; M.F. Sohnius,Z.

Phys. C18 (1983) 229; I.A. Batalin and G.A. Vilkovisky,Phys.
Lett. B102(1981) 27.

7. E.S. Fradkin and G.A. Vilkovisky,Phys. Lett. B55 (1975) 224;
I.A. Batalin and G.A. Vilkovisky,Phys. Lett. B69 (1977) 309;
I.S. Fradkin and T.E. Fradkina,Phys. Lett. B72 (1977) 334.

8. M. Henneaux,Phys. Rep.126(1995) 1.

9. I.A. Batalin and I.V. Tyutin,Phys. Lett. B356(1995) 373.

10. J. Goldstone,Nuovo Cimento19 (1961) 154; J. Goldstone, A.
Salam, S. Weinberg,Phys. Rev.127 (1962) 965. See also, E.S.
Abers and B.W. Lee,Phys. Rep.9 (1973) 1; L.H. Ryder,Quan-
tum Field Theory(Cambridge University Press 1984).

11. P.W. Higgs,Phys. Lett.12 (1964) 132; Phys. Rev. Lett.13
(1964) 508;Phys. Rev.145 (1966) 1156. For a good review
of both the Goldstone theorem and the Higgs mechanism, see
S. Coleman,Aspects of symmetry(Cambridge University Press
1990).

12. G. t’Hooft and M.J.G. Veltman,Nucl. Phys. B50 (1972) 318;
K. Fujikawa, B.W. Lee, A.I. Sanda,Phys. Rev. D6 (1972) 2923;

Rev. Mex. F́ıs. 50 (2) (2004) 107–119



SOME COMMENTS ON UNITARITY GAUGE 119

B.W. Lee and J. Zinn–Justin,Phys. Rev. D5 (1972) 3121, 3137,
3155; D7 (1973) 1049.

13. C.G. Bollini, Nuovo Cimento B12 (1972) 20; J.F. Ashmore,
Nuovo Cimento Lettere4 (1972) 289; G. t’Hooft and M.J.G.
Veltman,Nucl. Phys. B44 (1972) 189.

14. S. Weinberg,Phys. Rev. D7 (1973) 1068.

15. V.N. Gribov, Nucl. Phys. B139 (1978) 1; R. Jackiw, I.
Muzinich, C. Rebbi,Phys. Rev. D17 (1978) 1576; I.M. Singer,
Commun. Math. Phys.60 (1978) 7.

16. L.D. Faddev,Theor. Mat. Fiz.1 (1969) 3 [Theor. Math. Phys.1
(1970) 1].

17. S. Weinberg,Phys. Lett. B91(1980) 51.

18. C. Becchi, A. Rout, A. Stora,Commun. Math. Phys.42 (1975)
127; Ann. Phys.(NY) 98 (1976) 287; I.V. Tyutin: Preprint
FIAN (P.N.: Lebedev Physical Institute of the USSR Academy
of Sciences)39 (1975); T. Kugo and S. Uehara,Nucl. Phys. B
197(1982) 378. L. Baulieu,Phys. Rep.129(1985) 1.

19. C. Grosse–Knetter and R. Kogerler,Phys. Rev. D48 (1993)
2865.

20. T. Appelquist, J. Carazzone, T. Goldman, H.R. Quinn,Phys.
Rev. D6 (1973) 1747.

Rev. Mex. F́ıs. 50 (2) (2004) 107–119


