INVESTIGACION REVISTA MEXICANA DE FISICA 50(2) 107-119 ABRIL 2004

Some comments on unitarity gauge

M.A. L6pez—Osorio, E. Maimez—Pascual, and J.J. Toscano
Facultad de Cienciasisico Matenaticas,
Benenrérita Universidad Autnoma de Puebla,
Apartado Postal 1152, Puebla Pue.gkdco

Recibido el 21 de junio de 2002; aceptado el 25 de julio de 2003

A pedagogical discussion on the unitarity gauge within the context of Hamiltonian path integral formalism is presented. A model ba:
on the groupO(N), spontaneously broken down to the subgrau@V — 1), is used to illustrate the main aspects of this gauge—fixing
procedure. Among the issues, discussed with some extent, are: (1) the structure of model’s constraints following the Dirac’s method.
the gauge—fixing procedure, using the unitarity gauge for the massive gauge fields and the Coulomb one for the massless gauge fielc
the absence of BRST symmetry in this gauge—fixing procedure and its implications on the renormalizability of the theory, and (4) the st
role of the ghost and anti—ghost fields associated with the massive gauge fields and how their contributions can be eliminated by usini
dimensional regularization scheme.
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Se presenta una discasipedaggica de la norma unitaria en el contexto de integral de trayectoria hamiltoniana. Un modelo basado en
grupoO(N), roto esporéineamente al subgrupd(N — 1), es usado para ilustrar los aspectos principales de este procedimiento da fijaci
de la norma. Entre los temas, discutidos con cierta exianssan: (1) la estructura de las constricciones del modelo siguiendételdm

de Dirac; (2) el procedimiento de fijari de la norma, usando la norma unitaria para los campos de norma masivos y la norma de Coulor
para los campos de norma sin masa, (3) la ausencia de laisiB&SBT en este procedimiento de fijatide la norma y sus implicaciones
sobre la renormalizabilidad de la tea y (4) el papel eético de los campos fantasma asociados con los campos de norma magiias y ¢
sus contribuciones pueden ser canceladas usando el esquema de regulatinzensional

Descriptores: Norma unitaria; integral de trayectoria hamiltoniana.

PACS: 11.10.Ef; 11.15.-g; 11.30.Qc

1. Introduction needs to recur to the Faddeev—Popov method [4]. Though this
method works well in Yang—Mills theories for a wide class
Gauge theories play a central role in the formulation of mOd-of gauge_ﬁxing procedures, it fails in more genera| gauge
ern physics theories. The known fundamental interactiongystems. For example, reducible gauge systems, in which
of the nature are all governed by this class of theories. Thene gauge generators are not all independent [5]. There are
main feature of a gauge system is that it is formulated usa|so gauge systems in which the structure constants depend
ing more degrees of freedom than those indeed necessary @ the fields [6] or open systems, in which the commuta-
describes it. The gauge degrees of freedom, the redundagdr of two gauge transformations give rise to a trivial gauge
ones, arise as a consequence of local transformations, call@énsformation which is proportional to the equations of mo-
gauge transformations. In the Lagrangian framework, thigion [5]. In the least years, a powerful tool based in the an-
redundancy leads to the well-known Noether identities [1]tifields Batalin—Fradkin—Vilkovisky formalism [7] has been
while in the Hamiltonian framework, it appears as constraintsjeveloped to quantize in a covariant way this class of sys-
on the phase space [2, 3]. As a consequence of this gaugems. In this formalism, the generalized BRST transforma-
freedom, there are many solutions of the equations of motions play a central role. This formalism has been developed
tion consistent with the initial data, the system is degeneratg both the Lagrangian [5] and Hamiltonian [8] framework
in this sense. Though it is possible in principle to eliminateand their equivalence was proved perturbatively [9]. Yang—
the gauge degrees of freedom, it is not convenient, mainly tdfills theories can be quantized using this general scheme,
preserve manifest covariance and also by calculational comut since they are of the irreducible type, closed and their
venience. Therefore, it is convenient to keep the gauge d%‘[ructure constants do not depend on fields, their gauge
grees of freedom as true dynamical variables and introducgigebra is a Lie algebra, the Faddeev—Popov method is valid.
anticommuting fields to cancel their effects in physical ob-|n order to maintain our discussion as simple as possible, we

servables. will use this method in studying the unitarity gauge.
The quantization of gauge systems is not always straight-

forward, since it is necessary to lift the degeneration through Gauge systems can possesses a finite number of degrees
some gauge—fixing procedure. It results that in the Hamiltoof freedom, but those with infinitely many ones (a field
nian framework it is not possible to define a covariant gauge-theory) are the most interesting from the physical point of
fixing procedure, so one ends up with a noncovariant generiew. Doubtless, the simplest and best known field the-
ating functional. In order to recover manifest covariance, onery, which represents a gauge system, is quantum electro-
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dynamics (QED). This theory is described by the Abeliantheory, it provides an appropriate scheme to probe unitarity
gauge grou/.(1). At energies higher than the Fermi scale of the S matrix.
(v = 246 GeV), the weak and electromagnetic interactions  Our presentation is organized as follows. In Sec. 2. we
are unified by means of the Yang—Mills grofi/;,(2) x discuss the Goldstone theorem and the Higgs mechanism in
Uy (1), known as the electroweak group, whéfg(1) isthe  the context of the) (V) group spontaneously broken down
so—called hypercharge group. The standard model (SM) ab the O(N — 1) subgroup. We will take advantage of this
the strong and electroweak interactions is based in the grougiscussion to present the notation and conventions that will
SUc(3) x SUL(2) x Uy (1), beingSUc(3) the group of the  be used through the paper. Section 3. is dedicated to study
strong interactions. with some detail the structure of the constraints of the model,
One peculiarity of the weak interaction is to be mediatedincluding the definition of a gauge—fixing procedure. We will
by massive gauge bosons. As it is known, a mass term fdift the degeneration in the massive gauge sector by using the
a gauge boson can not be introduced explicitly in the theunitarity gauge, while in the massless gauge sector we will in-
ory otherwise gauge symmetry is lost. In order to generaté&roduce the Coulomb gauge. Our main contribution is given
masses for these fields, it is necessary to break this symmi Sec. 4., where the quantization of the theory is presented
try, not explicitly, but spontaneously. This means that thestarting out from the fundamental Hamiltonian path integral.
action remains invariant under the gauge group but not thdhe process of integrating out the generalized momenta as
minimal energy state. To do this, it is necessary to introducavell as the implementation of the gauge—fixing procedure are
scalar fields, in some appropriate representation of the gaugtiscussed with some extent. Several aspects arising from the
group, that leads to an infinitely degenerate vacuum (the mindnitarity gauge are discussed. Among other, we show how
imal energy state). In this situation, when one choose onghe unitarity gauge leads to a generating functional which is
specific vacuum, the phenomenon known as spontaneoushot invariant under the BRST symmetry. This fact has non-
symmetry breaking (SSB) arises, which means that the vadrivial implications on the renormalizability of the theory. We
uum is not invariant under the group. In most physical inter-discuss also the role played by the ghost fields associated with
est cases, the vacuum is invariant only under a subgroup ¢he massive gauge fields. In particular, it is show that their
the original groupj.e. only certain generators of the group contribution can be eliminated if it is used the dimensional
do not leave invariant the vacuum, they are broken generaegularization scheme [13]. Finally, in Sec. 5. we present our
tors in this sense. When a global invariant theory is consideonclusions.
ered, there arise massless scalar fields, one for each broken
symmefcry, knqwn as Goldstone bosons [10].. Though _interzl The model
esting, it is unlikely that massless scalar particles exist in the
nature. However, when SSB is combined with local gaugerhe model that will be used to discuss the unitarity gauge
invariance, a new phenomenon arises: the gauge boson fieldsbased in the orthogonal group M dimensions,O(N).
associated with the broken generators acquire masses. Tlfsstly, we discuss the SSB of this group. Letbe an

phenomenon is known as the Higgs mechanism [11]. In thev—component real field, with Lagrangian given by
local gauge invariant scheme, the massless scalars do not rep-

resent physical degrees of freedom, but they can be removed L= 1(3 M) (8 6%) — V(¢%), (1)
of the theory in a specific gauge, called the unitarity gauge. 2"
The main goal of this work is to study this gauge—fixing pro-where
cedure both at the classical and quantum levels. 1 1

In this paper we present a pedagogical study of the main V(e®) = 57712<;5“<;5“ + ZA(¢(L¢G)2' (2)
properties of the unitarity gauge. For this purpose we will use
a toy model defined by the orthogonal gra0pN), sponta- £ is invariant under global transformations of this group. In
neously broken down to the subgro@gN — 1). Though we this representation, the elements4fV) are N x NV orthogo-
first will present a brief study on the Goldstone theorem [10]nal matrices given by)= exp{if*T}=1+i6*T*+O(6?).
and the Higgs mechanism [11] in the context of this model So, the infinitesimal transformations are given by
our main purpose is to discuss some peculiarities that aris&® = i0*(T*) ¢, WhereT™ are the matrices represent-
when one quantize the theory using a gauge—fixing proceduiigg to the N (NN — 1) generators of the group. Since the
based in the unitarity gauge. In contrast with renormalizablgepresentation is real]’™ must be a real matrix, s& is
gauge—fixing proceduresk¢{—gauges) [12], defined by us- imaginary, and because it is Hermitean, it is antisymmetric.
ing gauge—fixing functions that depend on gauge and scalafdccasionally, we will need to make explicit use of these ma-
fields, the unitarity gauge is defined using supplementaryrices. To this end, it is convenient to label these matrices
conditions depending only on the pseudo-Goldstone bosonwith two indices, as followg7"*),;, with » # s denoting
(PGB). The unitarity gauge is widely used to evaluate tree-the rotation plane and, b the element of the corresponding
level S matrix elements, though it is not necessarily the mosimatrix. Then, in general, we can write
appropriate for practical loop calculations. Perhaps, its most
important property is that, due to the absence of PGB in the (T7)ap = —i(6565 — 6505).- 3)
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We now turn to analyze the classical configuration ofunder the subgrou@ (N — 1). WhatO(N — 1) leaves in-
minimal energy of the system. This configuration corre-variant¢, means that it is annihilated by the generafbfs.
sponds to a fieldb = ¢y, which minimize the potential In fact, using Egs.( 3, 5), we obtain

V(o%), i.e. ¢g is solution of the equation ) o ' e , ar ;o
(6%), 1.8 g0 g (TF o)a = v(T ) on = —iv(52" 65 — 6%68") =0,

v
oo = [m® + A(¢"¢")]¢* = 0. (4) asitis evident from the fact that # 3’ and from Eq.( 6).
¢ Making the shift¢ = ¢ + ¢, the Lagrangian ( 1) takes
There are two cases. (i) #h2 > 0, the potential has a min- the form
imum at¢y = 0. In this case, the parameter can be inter- 1

1 1
_ a A\ N - oa aN2 4
preted (in the context of the quantum theory) as the masses~ 2(6“¢ )(07%) = Ave™ + 2¥ ¥ ) 4/\U - ()

of the fieldsg®. (ii) If m? < 0, the potential has a local max- Evidently, o is the field of a particle with mas@v?)!/2

. .. 2
imum atgo = 0 and a minimum abgos = —*- = v°.  \yhile the N — 1 fields ¢ are massless. Notice that the

The most interesting situation is the last one. In this case, thg | ber of massless bosons is the same as the number of
minimal energy state (the vacuum state) is infinitely degenerg .\ an generatord®. This is a special case of a gen-

ateZ all configuration of fields lying on t.he hypersphere Withgral result known as Goldstone theorem [10], which es-
radiusv satisfy Eq. (4). But these configurations are not arapish that for each broken generator there is a massless
bitrary at all, since all points on this surface are related ong5i5r field, called Goldstone boson. In our example, the
to the other through an orthogonal transformatiorDgfV). roup O(N) has LN (N — 1) symmetries, while the sub-
SSB occurs when one choose only one of this vacuums. L roup O(N — 1),2WhiCh leaves invariant the vacuum, has

us choose thévth component ofy to be the one which de- 1(N—1)(N—2) symmetries. The number of broken symme-
velops a vacuum expectation value. We denote the vacuu ies is ther%N(N— 1)— 3(N—1)(N—2) = N —1, which

by the following vector: 42

2
coincides with the number of Goldstone bosons. To conclude

0 this part, let us to emphasize that the Lagrangian ( 7) is still

0 invariant under the) (V) group. It must be so since noth-
bo = ], (5)  ing violating this symmetry has been introduced. However, it

: is important to stress that the vacuuis not invariant un-

v der the complete grou@ (), but only under the subgroup

_ _ . O(N —1). The groupO(N) is spontaneously broken to the
(in quantum theory, where the fields* are operators, it O(N — 1) subgroup in this sense.

is said that the field)™ develops the vacuum expectation " \ve now proceed to discus the same theory analyzed
N . ) .

value (0[¢™[0) = w). Itis clear that this vacuum is not gpqye byt when it is invariant under local gauge transforma-
invariant under the complete group(), since there ex-  iong of theO/(IV) group. Itis unlikely that Goldstone bosons
ISt m?t”CGSO € O(N) which do not leave invarianbo,  exist in the nature. However, when SSB and gauge invariance
L.e. dp = Odo # ¢o. However, there exist a subgroup of 46 compined, there is an exception to Goldstone theorem.
O(N) which leaves invarianbo, namely the subset of rota- s compination is known as the Higgs mechanism [11],
tions about theVth axes, which form the subgro@i(N —1).  hich play a fundamental role in the description of the SM
Let O’ be an element oD(N — 1), thengy = O'¢o = do,  gndits extensions.

. _ . nal ol . o 1
with O" = exp{i6™ T }, being thel* the 5 (N—1)(N -2) The gauge invariant version of the Lagrangian ( 1) is
generators oD(N —1). Before showing the invariance o}

X ) , Fg]iven by
under this subgroup, let us to establish our notation. Throug ) )
the paper we will use the following conventions: L= §(Dzb¢b)(pgc = V(g®) — ZF:LXVF&W’ (8)
a,b,¢,---=1,--- N where D> = 609, — igTyg, A% is the covariant derivative
1 in the N—dimensional representation of(N), Af are the
o, By, =1, 7§N(N —-1) gauge fields, and is the coupling constant. The Yang—Mills
tensorF7, is given b
a‘/?b/aclf":l?"'?(Nil) * 9 Y
1 Fp, = 0,A7 — 0, A5 + g [PV AR AL, 9)
o By, =N, (N —=1)(N —2). (6)

2 where f*#7 are the structure constants of the group. Un-
In addition. we will reserve the middle letters of the Greekder infinitesimal local transformations, the matter and gauge
alphabety, v, - - to denote Lorentz indices. As usual, spa- fI€lds transform respectively as

tial indices will be denoted by the letteisj,---. With §56%(x) = i0%(x)(T) ¢ (2), (10)
this notation, we can conveniently separate the generators

of O(N — 1) from the remaining ones @P(V) in the way SAY(z) = lpaﬁ(x)gﬁ(x% (11)
T = (T%,T*"). We now show that the vacuum is invariant . g "
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whereD3? = 5990, — g f*#7 A is the covariant derivative elements of the matrices® ™, we recover the linear rep-

in the adjoint representation 6f(N). resentationp = (n*,n%,--- ,nV~1,v + h). Since the La-
Since the potential’ (¢) in this Lagrangian is the same grangian (12) is invariant undé}(V), we can make the fol-

that the one appearing in the globally invariant Lagrangiadowing special gauge transformation:

(1), itis clear that the gauge invariant theory presents SSB ,

whenm? < 0. We now investigate the consequences of con- ¢ =09, (15)

sidering SSB and gauge invariance together. After $8B, o g’ ypa gdl b L t
after making the shif) = ¢ + ¢, the Lagrangian ( 8) takes " Ay =0T A0 —;(E)MO)O, (16)
the form
where
1 ’ ’
L==(D,@)a(D"0)g + (Do) (D" o) e
5 (Du)a(D"@)a + (Dyo)a(D") ozexp{_va” } an

1 1
+=(D aD“ 0= -\2 N _  _a, a\2 ' .
2( n®0)a(D" o) 4 (2ve e Since¢’ = (0,0,--- ,v + h), the PGB disappear when the

Lagrangian is written in the new gauge. This is known as the
unitarity gauge. In that gauge, the new Lagrangian ( 12) is
obtained by putting all PGB equal to zerby;¢ = £\¢a/:0.
h§ was shown by Weinberg that unitarity gauge always exists
[14]. This gauge—fixing procedure will be discussed in the
next section within the context of the Hamiltonian framework
'E?y using the Dirac’s method for constrained systems.

1
— FaF, (12)
where an irrelevant constant term has been ignored. Asin t
globally invariant casep” is the field of a particle of mass
(2\v2)1/2 while the remainingV — 1 components of are
massless. There is, however, a new ingredient, the third ter
of this Lagrangian. Taking into account tH&t' ¢, = 0, this

term can be written as . .
3. The Hamiltonian of the theory

1 1 2 1a’ Ab a’ v
§(D"¢O)“(DM¢O)“ — 99 A AT 00)a(T7 P0)a According to Dirac, to quantize a given system it is necessary
22 ga ga's to put the theory in the Hamiltonian form. However, the stan-
o9 Ay ATE, (13)  dard method used for regular (not constrained) systems does
not works for the case of singular (constrained) systems due
where use of Eq.( 3) was made. This shows that-1  tg the presence of constraints.
of the gauge fields are massive, while the remaining The Hamiltonian formalism for constrained systems was
3(N—1)(N—2) ones are massless. Notice that the numbegeveloped by Dirac [2]. The method allows us determine all
of massive gauge fields are the same as the number of brgystem's constraints, which define a surface in the complete
ken symmetries ob(V) and the number of massless gaugephase space. The state of the system evolves on this surface,
fields coincides with the number of symmetries of the subfyt its evolution may be not unique due to the absence of
groupO(N—1). Notice also that the vector formed by the g well-defined Hamiltonian. When an unique Hamiltonian
PGB,¢' = (¢*,¢%---,¢" "), transform as theV—1-di-  exists, it is said that the system is subject to second—class
mensional representation of the gralpN — 1). constraints. If it is not the case, the system possesses first—
It is a well known fact that a massive gauge field pos-class constraints. Gauge systems are subject to first—class
sesses three polarization states, instead of the two ones thgnstraints, which are intimately related with the gauge sym-
characterize the massless gauge fields. Seemingly it seemfetry of the theory. In this case, the Dirac’s algorithm does
that we have end up with more degrees of freedom that thosgot leads to an unique Hamiltonian, it depends on arbitrary
of the original theory. This is not the case because of the agrange multipliers. This Hamiltonian describes a degen-
N — 1 Goldstone bosons represent spurious degrees of fregrate system in the sense that given a state at an initial time,
dom, they can be removed of the theory in a specific gauget evolves following many histories on the constraint surface.
To do this, one writes the fields in a nonlinear way as fol- These histories must be recognized as physically equivalent

lows: because they are consequence of arbitrary Lagrange multi-
0 pliers in the Hamiltonian. At a later time, the correspond-

oo 0 ing physically equivalent states on the histories form an orbit

6 = exp {Z "l } ’ (14) (see Fig.1). The states on the orbit are related one to an-

other through a gauge transformation, the generators being

v+h the first—class constraints. Itis clear that only one set of coor-

dinates, corresponding to a representative point of the orbit,

where the fieldg)® are the pseudo—Goldstone bosons (PGB)s necessary to specify the state of the system at a given time.
and we have renamed the massive scalar fieltl as ©”, In order to specify a representative set of variables it is nec-
which is known as the Higgs field. Expanding the above ex-essary to introduce supplementary conditions, known in the
pression at first order in the fields and using Eq.( 3) for thditerature as gauge fixing—conditions, which lift the degener-
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v'(®) » (Through the paper, we will write weak equations using the
X0 symbol=).

The time evolution of the system is governed by the pri-
mary Hamiltonian, which is given by

-~ o

_ gm = /dgx’H(l)
(9:,p1)

o = /d?’x(Hch)\”‘@g})), (24)
(445P0)
FIGURE 1. Time evolution of a gauge systeri. is the constraint  \yhere A\ are Lagrange multipliers ant(. is the canoni-

surface defined by all first—class constraints. Continue and dashegal Hamiltonian. Using the expressible velocities given by
lines represent histories and orbits, respectively. Egs.(21), we Ot;tain

ation of the system. For this aim, the number of gauge— 1 1., . b aB i
s - ) ) — _ - AOt TOt a _ D 2
fixing functions must be equal to the number of the first— He 5 ea F 5Maa + 20 [ig(T*)avm"9 0 sl
class constraints. These functions can not be arbitrary at all, 1

_ 1 N
they must have nonvanishing Poisson brackets with the first— *§(D;ﬁ1b¢b)(wa¢c) + V(o) + JFGEY . (29)
class constraints, which implies that first—class constraints

and gauge—fixing functions together form a set of second— The primary Hamiltonian depends on the Lagrange mul-
class constraints. Since we can lift the degeneration in manfpliers A, which in principle can be determined by demand-
different ways, it is clear that there exist many physicallying consistency conditions on the primary constraints. A ba-

equivalent classical theories, each determined once a specifii¢ consistency requirement is the preservation of the con-

gauge—fixing procedure has been chosen [3]. straints in time. So, we demand that
We now proceed to illustrate the main aspects of a gauge L 1) Q) )
system by studying thé@(N) gauge invariant theory dis- e, ={®,),H"} =0, (26)

cussed previously. In particular, we have interested in study- ]

ing those aspects that result of using the unitary gauge to lift?here the symbo{, } stands for Poisson brackets (PB). In
the degeneration in the massive gauge sector. Our goal coHliS stage, three different situations can arise. In one them,
sist in deriving the Hamiltonian for the theory characterizedOn€ can simply obtain the identity = 0. In this case, the

by the Lagrangian given by Eq.(8). The generalized momentRrOCeSS terminates and the Lagrange multipliers remain un-

associated with the matter and gauge fields are defined by deter'mined. Another'situation arises when one enq up with
functions of the coordinates and momenta which are indepen-
oL

dent of both the primary constraints and the Lagrange multi-

ab b
Ta = 37>“ = Dg'o"s (18) pliers. Such functions must be recognized as new constraints
or and are called secondary constraints. A third situation can
1= —-=0, (19) occurs when one obtains relations involving the Lagrangian
0AG multipliers. In this case, some or all Lagrange multipliers are
) oL determined. In our case, we have
e, = —— = Fg, (20)
OAY .
B0(@) = [ (a0 (@), Helo)}
(the shift introduced after SSB is not relevant for the present .
discussion since the definition of the generalized momenta B (1) (1) ~
are not affected by it). From the first and third equations we A2 (@), s Wi ~0
gqa;megrifzz ]'Egltlao\\:veslf)cmagl and A$ in terms of fields and _ /d?’y{CI)S)(:L'),HC(y)}, 27)
A% = o + ig(T*)ap AG ¢, (21)  Where it is understood that the PB are calculated at equal
. times. The last expression arises from the fact that the pri-
AY =& + DM A (22)  mary constraints only depend on the mometftaThen, the

] consistency condition does not determines the Lagrange mul-
On the other hand, from the second equation we can see thﬁéliers but leads to secondary contraints given by
the A§ velocities can not be expressed in terms of coordi-

nates and momenta. Instead of this, we have the primary @&2) — D?ﬂﬂé _ Z‘g(Ta)abﬂa(bb ~ 0. (28)
constraints
(1) — 0 Following with the Dirac’s algorithm, the secondary con-
¢, =7, =0, (23 straints must also satisfy consistency conditions similar to the
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primary ones: wheree® = §t(A* — \'@). This means that the primary first—
_ class constraints are the generators of the gauge transforma-
2 (z) = /dgy[{ég@(x),?-lc(y)} tions. According to Dirac’s conjecture, also the secondary
first—class constraints might be considered as gauge genera-
+ M) {2P (2), égl)(y)}] ~0 tors. Though it has been found counterexamples where this
conjecture fails [3], it is indeed not the case for Yang—Mills
_ /dgy{fbff) (z), Ho(y)}, (29) theorles, in wh|ch. is necessary to consider the sepondgry
first—class constraints in order to make the connection with

where the last expression arises as a consequence from ¢ local gauge transformations introduced at the level of the
fact that the PB among the primary and secondary constrain@drangian. To take into account these constraints as genera-
vanish trivially. The calculation of the last PB is not trivial t0rs of gauge transformations, it is necessary to include them
and some work has to be done. After using the basic propi-” the theory by defining an extended Hamiltonian as follows:

erties of the PB together with the equations of motion, we ) . )
obtain Hg=HWY + /d T (2)®;7, (36)
Q) = gASf“ﬁ”fbﬁ? ~ 0. (30)  wheres = 2,3--- stands for secondary, thirdary,- first—

We h the situatioh — 0 on th traint surf Th class constraints. Usually, secondary, thirdary, con-
¢ have the situatiol = b on the constraint surtace. TNeTe oy qints are all called simply as secondary, since there is no

are no new constraints and the Lagrangian multipliers rema'Bhysical reasons to distinguish among them. In our case, the

undetermlned. . . . extended Hamiltonian can be written as
According to Dirac, a functio¥’ on the phase space is

a first—class quantity if it has, at least weakly, vanishing PB Hp =HDY + Ua(bff)
with all the constraints. On the contrary, a function is called a ) .
second—class quantity if it has nonvanishing PB with, at least, =H+ AP + A"@l), (37)

one of the constraints. This definition allows us to classify @ )
the constraints in first— and second—class ones. In our caswhere = H. — A§®. ", since the secondary constraints

all are first—class constraints because are already present in the canonical Hamiltonian. Besides,
) AS = Af + u® and\* = Af, which are completely un-
{01 (), ‘I’(g )(y)} =0, (31) known. TakingHg as the generator of time evolution, we

have for the variation of thé' function

{2l @), 25 )} =0, (32)
5F = [y 0P .00 (v 0} @8)

{82 (2),05) (y)} = gf**10P (y)d(x —y) ~ 0. (33)

In order to define an unique Hamiltonian, it is necessaryVhereér = 1,2. From this expression, we can see thak'if
to introduce supplementary conditions. Before doing this!S @ flrs.t—cla.ss quantity, thejF =0, i.e. F'is constanton
let us present some brief comments about the role played BY/€ OrPit. Itis a gauge invariant quantity in this sense. This
the first— class constraints in the dynamics of the theory. A&llows us to define a classical observable as those quantity
it was mentioned previously, the primary Hamiltonian is theWhich is a first=class quantity. In partmulaﬁi( ) and Hp
generator of time evolution. Then, consider the time evoly-2'€ first-class quantities. We now apply this equation to the
tion of a functionF: ¢* and A, fields. The corresponding infinitesimal changes

are given by

Fxt) = [ dyl{P0x ), Hely.0) 568 —ige (1) )
Ay, ){F(x,1), @ (v, 1)}]. (34) SAY = ¢ —DPPef. (40)

Let Fy be the initial value off” att = to. Ata later time |f we compare these expressions with the local gauge trans-

t > to, we end up with different values far, depending of  formations given in Egs.( 10, 11), we see that they can be
the values chooses for the Lagrange multipligts In other  yeproduced if

words, F' takes different values on the different histories on

which evolves the state of the system. The transformation €& = lpgﬂgﬁ’ (41)
connecting the values of the function on two different histo-

ries, Fx» andF\ ., is given by a gauge transformation . The N 1.

infinitesimal variation off’ between two near points on the e =——0% (42)

same orbit is given by g
It is clear now that both primary and secondary constraints

SF = /d3y€a(y7 D{F(x,1), ‘I’S)(ya O}, (35) ae needed as gauge _generators in order to reproduce the lo-
cal gauge transformations.
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3.1. The gauge—fixing procedure: the unitarity gauge the arbitrary velocitiesAg/. Notice also that, unlike the
) o i Coulomb gauge, the unitarity gauge is manifestly covariant.
As it was seen, the Hamiltonian defined above fordHev) As in the case of genuine constraints, we demand that the

model represents a degenerate theory since it depends on 8lipplementary conditions satisfy consistency conditions
bitrary Lagrange multipliers. This means that one has in-

deed many .equwalent classical theories, each deflne(_j once XS) = {XS)7 Hg)} ~0, (45)
a gauge—fixing procedure has been chosen to determine the
Lagrange multipliers. According to canonical quantization, a/ = {xa, ,Hg} =~ 0. (46)

there is a quantum theory corresponding to each classical - o

Hamiltonian and since all of them are physically equivalent,These conditions lead not to the determination of the La-
one may believe that the quantum versions of these classiclange multipliers, but to new constraints given by

theories must also be physically equivalent. It is, therefore, @ o e N

reasonable to quantize only one of the physically equivalent X = 9T +ig vAG(T")an¢™ =0,  (47)
classical theories. The gauge—fixing procedure that we will (2 _  a.i _ gpalaa

choose is the following. We will lift the degeneration in the Xar = =0ima = D7 " Ag ~ 0. (48)
massive gauge sector by using the unitarity gauge, which 'ﬁ\galn we demand that

defined by means of the PGB. In the massless gauge sector,

we will use the Coulomb gauge. Then, our gauge-fixing pro- =00 ey = 0, (49)
cedure is defined by

X = guo™ ~0, (43)

(1/) — 9A", ~ 0, (44) It can be shown that these_ co_nditions do not lead to new con-

Xo straints, but to the determination of the Lagrange multipliers.
where we have introduced the group constarity conve- Instead of presenting this explicitly, we will show that the
nience and the vacuum expectation valuby dimensional primary and secondary constraints together with the supple-
considerations. The first equation define the unitarity gaugenentary conditions given by Eqs.( 43, 44, 47, 48) form a set
while the second one is called the Coulomb gauge. It is imof second—class constraints. This guarantees the determina-
portant to notice that it is not possible to introduce at thistion of the Lagrange multipliers. We need to probe that the
stage the covariant (Lorenz) gaL@eAfj' because itinvolves matrix formed with all the PB among the constraints is non-
| singular. After some algebra, we obtain

X =0 oy~ 0. (50)

0 0 0 0 {2 X8 {2l X0

0 0 et (@0 (ot (ol )

0 0, o) 0 0 ! 0

0 0, ey 0 0 0 oA |
(el {xy,ﬁﬂ} 00y 0 0 0
Db et Gler 0 gt o 0

where the nonvanishing elements are given by

{X(l)( ), D (y)} = —ig(T) s (y)d(x — y) (51) ISince neither the rows nor the columns are null, this matrix
) @ ; 7 is nonsingular, though it is important to mention that this is
{Xor (%), 257 (y)} = 0D (¥)0(x — y), (52)  holds only locally since for large values of the fields the Gri-

Xor (%), )
{X(Q)(X) <I>(1 ()} = ig®0(T%)w N o™ (x)5(x — y), (53) bov phenomenon arises and no gauge—fixing is possible [15].
{ﬁ%méﬂwn—mw@>wmm
(T%waﬂuwA&w¢wmax—w,6® 4. Quantization

{X (X) be (Y)} = —g*0%0ayd(x —y), (55) Having defined a gauge—fixing procedure in the previous sec-
{ 2 (x), W (y)} = 9;D%,, (y)3(x — y), (56)  fion, we now turn to quantize the theory. We will use the path

@) @) o integral method, which is the appropriate for Yang—Mills the-
o' (%), 257 (¥)} = 9f ( )0id(x —y) ories. We will start from the Hamiltonian path integral (HPI),

+ gf* P8, ABx) DM (y)6(x — y)], (57) which is the fundamental one. Next, we will integrate out the
@ 1) ; ’ generalized momenta in order to recover an expression de-
{Xo' (%), x5} = 00" 0(x — y). (58)  fined in the configuration space [the Lagrangian path integral
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(LPD]. In this intermediate stage, some additional terms will arise. We will see that the Coulomb gauge leads to a noncovariant
term, while the unitarity gauge is responsible for the presence of a nonpolinomial divergent term in the Higgs field. Manifest
covariance is recovered by recurring to the Faddeev—Popov method [4], whereas the divergent term can be eliminated using
the dimensional regularization scheme.

4.1. The Hamiltonian path integral

According to Faddeev's theorem [16], the HPI for a system subject to first—class constraints only is given by
= / D¢ DA Drg Dt Det {[xa (%), ®5(y)] (w0 —10)} 6(@)3(@ )5 (x o (xI)a (x)o (x2)
X exp {z / dia (Wéa + AT — Ho 4 T - w)} . (59)

whereJ - ¢ = J,¢" + J4 Aj, are the source terms. In our case, the determinant appearing in the measure of the generating
functional can be written as

Detl{xa(x), 25(y)}] = Det[{xP(2), 27 (1) HDet[{[x? (z), 2 (1)}] = (~1)NE=N/2Det?[{[x (D (x), 2 ()}, (60)

where the last expression arises after using the identity

K@), 8P ()} = (~DYE D2 @), 2 W)}, (o1

as it can be verified from the expressions given in Egs.( 51). This determinant can be decomposed as a product of two
determinants as follows [17]:

Det[{x"(2), 2 (y)}] = Det[{x})) (z), @5 (1)} Det[{x) (x), 5 (1)}]
= Det?[g*v8ay ¢ 5(x—y)]| Det* (0D}, 5,6 (x—y)], (62)

where the last expression was obtained by using the results given by Egs.( 51). According to our notation, the’indices
andd’, - - - are used to denote unbroken and broken generatatg &), respectively [ see Egs.( 6) ]. Then, the generating
functional takes the form

a

/ D¢* DA% D, Dt 5(2)3(x )5 ()6 ()8 (x ) Det* (g2 08y 6™ 6 (x — )| Det*[9;D% 58 ( — y)]

X exp [i/d%: (ﬂaéa +ml AY —H. A+ T @)} . (63)
In this expression, a trivial integration on the momemngawas carried out. Also, a constant factor independent of fields was

ignored, since it not contributes to physical amplitudes. The Dirac deltas can be transformed using the identity

0F (x)
5™ (y)

where®™ is a solution ofF'(¢™) = 0. We have found convenient to transform the following Dirac deltas:

5(F(™)) = Det™! [ ] 5™ — ™), (64)

5(x2) = Det ™ [g*v6uy ¢ 5(2 — y)]5 (AL — AY), (65)
5(x2)) = Det 1 [0,D% 5, 8(x — y)]6(A5 — AT). (66)

Notice that these expressions cancel the squared in the determinants that appear in the generating functional. After integrating
ontheA§ = (A%, A3 ) fields, we obtain

_ / D¢ DA D, D, Det [g%08ay 6™ 6(z — y)] Det [0,Dls5,6(x — )] 5(@)5(x)5(x V)

1 )
X exp {i/d4m |:—27Ta71'a 27Ta7ra+7ra<b“+7r AZ +A <I>(2)—|— (D“bgbb)( b ) — ((ba) F FiqJ- ]} (67)
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The fieldsA§ can be introduced newly in the generating functional by using the following integral representai(@f&ﬁ:

5(dP) = / DQ* exp {z / d%Q%g?)}, (68)

where theQ® are arbitrary scalar fields. After doing this, we make the change of varidijleg)*+ A3=DQ*=DAg. The
result is

/D(;S‘IDAO‘DWQDW Det [g*v3ay 9™ 8(z — y)] Det [&-Dg,ﬁ/é(:ﬂ —y)] 5()((9))50(2,))
coxp {i [ dta | S~ prbnictm DO AT FS 5 (D100 (D) -V (00) - 1P FE+T ¢ | (69)

where we have used the identity

. ) ICan be written as
Tad? + 1t Al + AYDP) = 1, D¢t + 7' FS. (70)

| | | 5= [ Dagper (33 ) atrean)
The integrals on the momentg and~!, are of gaussian type o0
and can immediately be solved. Let
exp [ / (L+ JH- A“)] (75)
1
Ilp] = = [ d*zd* A
1] 2 / rd yp(@) Az, y)e(y) where thef® are the gauge—fixing functions, which can be
. covariant. We can see that our result can be reproduced when
/d zB z)+C f* = 9;A¢". As was mentioned in the introduction, the

Faddeev—Popov method is adequate only in Yang—Mills the-
be a quadratic functional. Then, the solution of the corre-ories, it fails in more general gauge systems. On the ba-
sponding gaussian functional integral is given by sis of this result, we can replace our noncovariant term by

its 4—dimensional versioWet[d, D%, ;,6(x — y)|6(9, AL,

/Dgo exp{—I[p]} = exp{—I[@]}(DetA)~/2 ~ (71) i.e, we can rewrite our generating functional in terms of the
Lorentz gauge as follows:

wherel[@] is the stationary value df, being@ the stationary o e N
point, which is solution o{éI/d¢)|; = 0. In our case, we /D¢ DA 1 Detlg®véay ¢ 8(x — y)]
have

x Det[9, DL, 5,8(x — )]0 (gue™ )3(8,A%,)

X exp {i/d%[ﬂ—&—J-ap]}, (76)

which is covariant, since the unitarity gauge is Lorentz invari-

1 ant. The determinant on the gauge fields can be expressed in

/Dﬁjl exp{—I[r’]} = exp {i/d4x2Fg§F5§} . (73) terms of a gaussian integral on anticommuting real fields as
follows:

/ Dy exp{—I|ma]}

= exp {/d4 (D5 ") (D gc¢c)}a (72)

where we have dropped the determinants since they are inde- 7
pendent of the fields. After using these results, we have Det[8, Dy, ’ﬁ/ (@ De? Dt
= /D¢G’DAZ‘Det[gz1)5a,b/¢N5(m —9)] X exp {Z / d4ajca,aH'DZ,ﬁ/5’6/} . (77
x Det[0; D" 50 (x — y)](g(gwa’)(g(@m ) The Lorentz gauge can be generalized by introducing an aux-

iliary field R*" in the formd, A*, — R, = 0. Then, we
X exp {i/d4x[£+‘].¢]}7 (74) average oveR® with a gaussian weight

o’ : a1 g g I
where/ is the gauge invariant Lagrangian given by Eq.( 8). /DR P {_Z/d xngﬁ R’ }6(8“A"’ ~ Ru)
Notice, however, that the generating functional is not covari- 1
ant due to the presence in the measure of integration of the = exp {—z‘/d“x(aﬂA”"“)?} , (78)
term Det[0; D}, 5,0(x — y)]6(9;AL,,). However, our result 2
is a special case of a more general one due to Faddeev amdheref is the so—called gauge parameter. After doing this,
Popov [4], which states that the LPI for a Yang—Mills theory we obtain
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Z[J] = / D¢*DA%Dc® D™ §(gugp® ) Det|g?v0ay 6™ 6(z — y)]

1 / /
X exp {i/d4a: {c - i(aﬂAg,)2 +¢* 0Dy g’ +J- 4 } , (79)
where now.J includes sources for the ghost'() and anti-ghosta*’) fields. We now implement the unitarity gauge. Instead
of proceeding as the Coulomb gauge case, we eliminate the PGB by using explicitly the supplementary condition, that is, we
integrate out the PGB, which is trivial due to the presence of the Dirac delta. The result is

Z[J] = /DhDAgDca’Daa’Det [Ma,b, (1 + :j) Sz — y)}

1 / /
X exp {i/d4z [£|¢a1_0 - i(auAg/)Q + 8,,,Dg,ﬁ,éﬁ +J- @] } , (80)
where My, = g*v%8, is the mass matrix of th& — 1 gauge fields. It is important to mention that, as consequence of

the integration of the PGB fields, an important property of gauge theories has been lost, namely the BRST [18] symmetry
underling to any gauge system. We will turn on this later on. For the moment, note that one can express the determinant on the
Higgs field in terms of a gaussian integral on anticommuting fields as follows:

Z[J) = / DhDAS D" D& D D’
. 4 1 B2 a h\ o’ wo =B
xexpqi [ dx| L]z — 2—5(8,4140/) +c My |1+ o )e +c* O DLgc” +J | p. (81)

Notice that there are no derivative terms for the anticommut-

ing fieldsc* ande®, which means that they do not propa- theory and it is obtained from the extended classical action
gate. This is a peculiarity of the unitarity gauge, which will after eliminating the antifields by means of some gauge—
be analyzed in connection with the dimensional regularizaﬁxing procedure [5]). Since gauge—fixed BRST transforma-
tion scheme in the next subsection. tions coincide essentially with the infinitesimal gauge trans-
To conclude this section, let us present some commenig,ymations, it is clear that the action defining the generating
concerning the BRST symmetry [18] that remain after lift- fynctional in Eq.( 81) is not invariant under this symmetry
ing the degeneration of a gauge system (the action which igecause the PGB have explicitly been removed of the theory.
invariant under generalized BRST transformations is a funcyjowever, if in the generating functional given in Eq.( 79) we
tional on fields and antifields and itis degenerate. The nondgreat the Dirac delta(gvg® ) in the same way that it was

generate gauge—fixed BRST action, which is invariant undegyade for the case of the Coulomb gauge, we arrive at the

Z[J] = / D¢*DA%Dc® D& De® D’

X exp {z / d*z [,c - %M%a’w’ - %(@AQ)Z + ¢ My <1 + Z) &+ ca’apg,ﬁ,aﬁ'} } (82)
Using now the identity
a1l k/vhereSBRST is the gauge-fixed BRST action, which is given
expy —i [ dag f'f by

= / DB exp {z / dz EB”B” + f“'Ba} } (83) SprsT = / d4x{£+ (M¢™ B + gBa’ BY

we can finally write the generating functional as / hY / /
+e* Mg |1+ — | + (8#Aa M)Ba
Z[J] = / D¢*DA%Dc" De* De* De* DB” DB® v
§

S pa’ pa’ o PR—CT
x exp{iSprsr}, (84) +3BY BY +¢" 9, D5 | (85)
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Here B and B~ are BRST invariant auxiliary scalar fields with the massive gauge fields given by

of dimension two. Since this theory is invariant under BRST L
transformatpns, theerreen’_s functions must satisfy Slanpv— Segh = /d4x [Ca/Ma’b' (1 n 7)65/] (86)
Taylor identities. Though this theory would be renormaliz- v

a_ble, |_ts beha_1V|0u_r_at one—loop W°“'9' be qu_lte problematltBy definition, the propagator of a particle is the inverse of
since it contains bilinear terms that mix massive gauge f|eldﬁqe operator defining the quadratic term of the corresponding

W'th thelr. PGB. On the other.han.d-, since BRST symmetr,yﬁeld. From Eqg.( 86) we can see that in this case such operator
is essential to probe renormalizability at the level of Green’s

functions, it would be clear now why off-shell renormaliz- 's given by

abilty does not works with the theory given by Eq.(81). How- Az, y) = M28(z —y),

ever, it should be emphasized that renormalizability exists at

the level of S matrix. Unitarity gauge, as defining the gen- \ith A7 = gv. So, the propagator of the anticommuting fields
erating functional in Eq.( 81), is not manifestly renormaliz- ;g simply
able in the sense that it is not renormalizable off-shell. The
Green'’s functions generated by the functionals (81) and ( 84)

1
1 _ . .
are quite different. AT (z,y) = Gla,y) 5(z —y),

T M2
which shows that these fields do not propagate. In order to in-
vestigate the implications of this term in perturbation theory,
Previously, we found that the unitarity gauge leads to theve proceed to analyze it starting from the determinant that
presence of an action for the anticommuting fields associate@ppears in Eq.( 81). This determinant leads to the following
|  effective action

’ ’ ’ h /
exp {ZS:‘(J;}{} = /Dca De® exp {Z/d41’ |:Ca Ma’b/ <]. + ’U)Eb :| }

4.2. Static ghosts and dimensional regularization

= Det [M2 (1 + g]\]\th ] = DetO = exp {i[—iTrlog O]}, (87)
hence |
SeHl = —iTrlog O = —iTrlog[A(1 + A~ (gMh))]
eff _ . —1
= —iTrlog A — iTrlog[l + A~*(gMh)].  (88) Sigir = —iTT logl1 + A7 (gMh)
Here Tr means trace over discrete and continuous indices. _ z’Tri %[Gh]. (89)

The first term in the above expression is irrelevant since it
does not depend on the fields. On the other hand, the last
term can be expanded in powers of the coupling congtast  Taking into account thafr — 0,/ [ d*x = (N —1) [ d*x,
follows we can write

k=1

(—gM)?

sgh 9

ST — (N — 1){(—9M) / d*aG(z, z)h(z) + / d'zd'yG(z, y)h(y)G(y, z)h(z) + - -- }

= i(N ~ 1>{ (- 2) [ atwste—op) + 5 (= &) [ @atuite - oty - 2)hto) + - }

— (N — 1)5(0)/d4x{(— L) (@) + %( - %)Q}ﬁ(m) . }

= —i(N —1)6(0) /d4xlog (1 + %) (90)
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This nonpolinomial quartically divergent term was firstly de- NU
rived using the operator canonical formalism in Ref. 14. = .- IRy S + IR +
More recently, it was derived in Ref. 19 from the standard RN
Feynman diagramatic framework. Of course, our functional oo

derivation of this term is equivalent to the diagramatic aP g6 yRe 2. Feynman diagrams for the static ghosts contribution to

proach, singe each term 9f the se.ries Car_] be identifie(_j with fhe nonpolinomial term. Dashed and dotted lines represent Higgs
Feynman diagram (see Fig.2). This term is necessary in ordgfysons and ghosts, respectively.

to remove divergencies that arise at one—loop in processes in-
volving an arbitrary number of external Higgs bosons. This

fact was verified explicitly in Ref. 20. Nevertheless, this termgenerating functional in this gauge—fixing procedure was dis-
A : cussed. It was shown that unitarity gauge leads to a La-

can be eliminated if one regularize the theory using the di- . . Co . )
. . . rangian path integral which is not invariant under BRST
mensional scheme [13]. One important result of this schem : : .
is the following: ransformations. It was shown that a BRST invariant generat-
' ing functional can be constructed, but it involves the PGB in a
/ dPk  (k*)" (=1)nm complicated way, not appropriate to perform practical calcu-
(

2m)P (k? — R2)m - (4m)D/2 lations. Due to the absence of the BRST symmetry, the the-

ory is not renormalizable at the level of Green’s functions. It
_ _ 2\D/24+n—m A ) K . .
% L'(n+ D/2)T(m —n — D/2)(R") . (91)  was shown that in this gauge the ghost fields associated with

I(D/2)T'(m) massive gauge bosons do not propagate and that they lead
Using this formula we can see thaf’/ disappears since !0 & quartically divergent nonpolinomial term in the Higgs
5(0) = 6(x — ) = [ dPk/(2m)P = 0. g fields. This term was explicitly calculated using functional

techniques and it was shown that it vanishes if the theory is
regularized using the dimensional scheme.
We hope this elementary discussion clarifies the study of
5. Summary gauge systems quantization, and the student be motived to at-

In this paper we have presented a study of the unitarity gaug@Ck further .problems, rgal ones, like the standard model or
more complicated theories.

within the context of the Hamiltonian path integral formal-
ism. The main features of this gauge—fixing procedure were

studied using a toy model based in the gradV) spon-  Acknowledgment
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