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Layer-by-layer analysis of second harmonic generation at a simple surface
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We present a general scheme, based on a a microscopic formulation, to obtain the second harmonic signal produced by each atomic layer of
a semi-infinite crystal. Using the simple Si(111):H(1× 1) surface as an example, we obtain that the nonlinear polarization in the bulk does
not decay to zero due to the lack of centrosymmetry of the individual layers. However, the sum of this polarization follows the physically
correct picture that the second harmonic signal is zero at the centrosymmetric bulk and finite in the selvedge as the surface is approached and
the centrosymmetry is broken. The results show that the selvedge region includes the surface and just a few layers below it.
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Presentamos un procedimiento general, basado en una formulación microsćopica, para obtener la señal del segundo arḿonico producida
por cada capa atómica de un cristal semi-infinito. Usando la superficie sencilla Si(111):H(1 × 1) como un ejemplo, obtenemos que la
polarizacíon no lineal en el bulto no decae a cero debido a la falta de centrosimetrı́a de las capas individuales. Sin embargo, la suma de esta
polarizacíon sigue el comportamiento fı́sicamente correcto, mediante el cual la señal del segundo arḿonico es cero en el bulto centrosimétrico
y finita en la regíon superficial conforme se aproxima la superficie y la centrosimetrı́a se pierde. Los resultados muestran que esta región
superficial incluye la superficie misma y tan sólo unas cuantas capas por debajo.

Descriptores: Optica No-lineal; generacion de segundo armonico; superficies.

PACS: 42.65.Ky; 42.65.An; 78.66.-w

1. Introduction

In recent years, surface nonlinear optical spectroscopies
and in particular, second harmonic generation (SHG) have
evolved as useful non-destructive and non-invasive tool to
study properties of surfaces and interfaces, like atomic struc-
ture, phase transitions and adsorption of atoms [1–10]. The
high sensitivity of SHG spectroscopy is due to the fact that,
within the dipole approximation, the bulk SHG signal of cen-
trosymmetric materials is identically zero, and thus only the
surface, where the inversion symmetry is broken, can radi-
ate [11]. On the experimental side, new tunable laser systems
have made SHG spectroscopy applicable to a wide range
of systems [1–10]. The SHG advances on the experimen-
tal side are being followed by the theoretical development
of the field. In particular, the semi empirical tight-binding
(SETB) approach, with asp3s∗ basis set [12–16], andab-
initio methods (within the density-functional theory (DFT)
in the local-density approximation (LDA)) [15, 17–19], have
been developed in the last few years, to calculate the non-
linear optical properties of semiconductor surfaces, yielding
results in qualitative agreement with experiments and clari-
fying the atomic and electronic structure of different surfaces
and the adsorption of foreign atoms.

In this article we explore, for the first time, a theoretical
scheme through which one can calculate the second harmonic
(SH) contribution of each atomic layer of a semi-infinite sys-
tem that goes from the surface to the bulk of the material. The
scheme permits to understand how the SH is generated when
the centrosymmetry of the bulk is broken as we approach the
surface. For the example chosen, we show that the individual

contribution of each noncentrosymmetric layer to the SH sig-
nal or to the nonlinear polarization (susceptibility), does not
decay as one moves into the bulk of the system. However, the
destructive interference of the nonlinear polarization among
the different planes, is the one responsible for rendering a
null SH signal from the centrosymmetric bulk, and produc-
ing a finite SH signal that comes from the surface layer and a
small region below it known as the selvedge.

The H-terminated Si(111)(1 × 1) surface, is chosen as
an example, since it is the most simple of all semiconductor
surfaces, in the sense that its equilibrium relaxed geometry is
almost identical to an ideally terminated (111) surface. Also,
as H saturates every Si dangling bond, there are no surface-
related electronic states in the forbidden gap. Therefore, this
surface presents a very good reference system for SHG stud-
ies, since neither the atomic structure nor electronic surface
states in the gap region should be of concern, when compar-
ing theoretical and experimental SHG spectra. To obtain ex-
plicit results we use the semi-empirical tight binding (SETB)
formalism, with asp3s∗ basis set, successfully used in other
SH calculations [12–16]. We show that the SETB calcula-
tion qualitatively reproduces the experimental spectrum, that
covers the E1 and E2 critical points of Si. Also, and more im-
portantly, the SETB approach allows us to apply the scheme
for the layer-by-layer analysis in very simple terms. Thus,
we can explore with detail the physical origin of the surface
SH process.

The article is organized as follows. Section 2 briefly de-
scribes the theoretical procedure to obtain the layer-by-layer
contribution to SHG. In Sec. 3 the results are presented and
conclusions are given in Sec. 4.
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2. Theory

The SHG efficiency is defined as the nonlinear reflection co-
efficient,R = I(2ω)/I2(ω), with I the intensity of the cor-
responding incoming linear (ω) field or outgoing non-linear
(2ω) field. We restrict to ap-polarized incoming (fundamen-
tal) beam and to ap-polarized outgoing (SH) beam, since this
combination of polarization gives the strongest signal and it
also suffices for the purpose of this article. Then, we have
that [19]

Rpp =
32π3

(n0e)2c3

ω2

cos2 θ
|TP (2ω)T 2

p (ω)rpp|2, (1)

with

rpp =sin θ
(
sin2 θχs

⊥⊥⊥ + (c/ω)2k2
⊥(ω)χs

⊥‖‖

− (c/ω)2k⊥(ω)k⊥(2ω)χs
‖‖⊥

)
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1
2
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⊥(ω)χs
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where we have used the fact that for the symmetry groupC3v

of an ideal (111) surface, only the following components of
the surface nonlinear susceptibilityχs

ijk are non-zero

χs
zzz ≡ χs

⊥⊥⊥,

χs
zxx = χs

zyy ≡ χs
⊥‖‖,

χs
xxz = χs

yyz ≡ χs
‖‖⊥, and

χs
xxx = −χs

xyy = −χs
yyx ≡ χs

‖‖‖.

We have chosen thex andy axes along the[112] and [110]
directions, respectively (see Fig. 1). Also, the intrinsic per-
mutation symmetryχs

ijk = χs
ikj is satisfied. Note that the

χs
‖‖‖ component induces a SH response which is anisotropic

with respect to the azimuthal angleφ that the plane of inci-
dence makes with thex axis (see Fig. 1). Also, in Eqs. (1)
and (2),θ is the angle of incidence,c the speed of light,e
is the charge of the electron,n0 the electron density of the
system,Tp the transmission Fresnel factor forp-polarization
and k⊥(ω) = (ω/c)(ε(ω) − sin2 θ)1/2, with ε(ω) being
the bulk dielectric function. These expressions are strictly
valid within the dipole approximation. Nevertheless, even
if quadrupolar corrections are considered, the isotropic and
anisotropic bulk quadrupole terms inR, have shown to yield
negligible contributions as compared to the surface dipole
terms [20]. Notice that we have chosenχs

ijk as dimensionless
functions, in such a way that the prefactor of Eq. (1) gives the
correct units ofRpp, i.e. area/power. To obtainχs

ijk in the
appropriate units we multiply it by1/n0e [21].

We mention that in the calculation ofχs
ijk [22], one uses

the long wavelength approximation, by which the fundamen-
tal electric field oscillating atω, ~E(ω), which induces the
non-linear response, is taken inside the surface. In particular,
these fields are simply given by the external fields properly

FIGURE 1. Top view of a Si(111)(1 × 1) surface (left panel) and
the zx projection into the bulk (right panel). The front and back
surfaces saturated with H, are equivalent from a symmetry point
of view, rendering the whole slab centrosymmetric. The first few
layers are shown for reference, starting with layer 1 as the H layer.
The fundamental beam is incident along thezx′ plane.

multiplied by the corresponding Fresnel factors. A more de-
tailed description of the fields, which incorporates the spatial
variation of the dielectric function near the surface within the
three-layer model, shows for this surface, no change in the
SHG peaks positions, and only a slight difference in their
intensity [19]. This screening was thought to affectχs

⊥⊥⊥
more than any other component, however Ref. [19] shows
that this is not the case. In this respect, the nonlocal nature
of χs

ijk is integrated out, leaving a susceptibility that depends
only on the position where we evaluate the response. The full
treatment of the surface screening is still lacking, and further
improvement of the present formulation can be made along
this line. Also, at the present state of the calculations of non-
linear optical properties of semiconducting surfaces, like the
one presented here, local-field and excitonic effects are be-
yond current capabilities and are thus neglected throughout.
Again, these effects along with the surface screening may
prove to be crucial for a quantitative comparison of theory
and experiment.

Now, we present the most relevant points taken to calcu-
late the SH of every atomic layer throughχijk, that is the
main theoretical goal of the article. The semi-infinite crystal
is simulated by a slab ofN atomic layers, extending from
z = 0 to z = Nd, d being the interlayer distance. Since the
slab is intrinsically centrosymmetric, the non-linear second-
order dipolar susceptibility,χijk = 0 [11]. This fact stems
from the destructive interference between the first and sec-
ond halves of the slab. Therefore, to circumvent this fact, one
has to introduce acut function associated with the quantum
mechanical operator that gives the second-order non-linear
polarization. Following Ref. [12] we write the modified mo-
mentum operator as

~P =
1
2
(~pS(z) + S(z)~p), (3)

where~p = −i~~∇ is the standard momentum operator, and
S(z) is the function that uncouples the slab to render a finite
χijk representative of the surface in question. The typical
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choice forS(z) is a step function that is one on one half of
the slab and zero on the other [12]. However, we find that this
function can be taken in such a way that one can isolate the
contribution of every atomic layer toχijk, and thus one can
study the SH process layer by layer. Indeed, takingzn as the
z-position of then-th layer we write

S(z) = Θ(z − zn + d/2)Θ(zn + d/2− z), (4)

where this function will include the contribution of the neigh-
borhood that goes from above to below then-th layer by half
the interlayer spacing (d/2). Using Eq. (4) in Eq. (3), and
this in the corresponding relations forχijk [12], it can be
easily shown that one can define the nonlinear susceptibility
of n-th layer, that we simply denote asχijk(n). Through,
χijk(n) we obtain the surface nonlinear susceptibility as

χs
ijk =

N/2∑
n=1

χijk(n), (5)

which is identical to that of Ref. [12], whereS(z) is taken
a step function centered in the middle of the slab. Other
choices forS(z) have been explored in Ref. [22], where us-
ing smoother functions yields the same SHG line shape with
only some changes inRpp.

To obtain explicit relations for the the matrix elements of
S(z) between any two quantum statesr ands, which are re-
quired for the evaluation ofχijk(n) [12], the SETB method
is particular suitable in the present context, because it allows
for a natural assignment of the electronic states to specific
atomic layers. Indeed, we can show easily that if the elec-
tronic wave functions are expanded into (or projected onto)
atomic orbitals, then the matrix elements ofS(z) are simply
given by(S(z))r,s = S(zn)δr,s whereS(zn) = 1 if the po-
sition zn corresponds to the atom described by the quantum
stater = s, and is zero otherwise. We mention that our ap-
proach of separating the atomic layer contributions toχijk is
not restricted to a tight-binding description of the slab elec-
tronic structure, but may also be combined with plane-wave
or finite-difference schemes, as outlined in Ref. [18].

To calculate the contribution of any given layern toRpp

we simply substituteχijk(n), instead ofχs
ijk, into rpp of

Eq. (2) to obtainrpp(n). Therefore we can define

Rpp(`, `′)

=
32π3

(n0e)2c3

ω2

cos2 θ

∣∣∣∣TP (2ω)T 2
p (ω)

`′∑

n=`

rpp(n)
∣∣∣∣
2

, (6)

as the contribution to SH coming from the` till the `′ layer.
Then,Rpp(`, `) is the contribution to SH coming from layer
`. Likewise,

χijk(`, `′) =
`′∑

n=`

χijk(n), (7)

gives the contribution toχijk from layer ` up to layer`′,
and the non-linear polarization could be obtained for a given

layer or a sum of them, by using the well known relationship
pi = (1/n0e)

∑
jk χijkEjEk.

Notice that whileχijk(`, `′) is additive, Rpp(`, `) is
not, i.e., χijk(1, 2) = χijk(1, 1) + χijk(2, 2), etc., but
Rpp(1, 2) 6= Rpp(1, 1) + Rpp(2, 2), etc. Then, in princi-
ple one can analyzeχijk(`, `′), however, its difficult to re-
late structures inRpp(`, `′) with those ofχijk(`, `′), since
χijk(`, `′) is complex, and its different components are added
in a non-trivial way inrpp (see Eq. (2)). Then, even though
Rpp(`, `′) is not additive, as we will see in the results, it still
allow us to analyze the SH process.

3. Results

We take the equilibrium atomic positions of the
Si(111):H(1 × 1) surface from Ref. [19], that were obtained
from DFT-LDA. Then, we follow Ref. [12] to obtain, within
the SETB scheme, the energies and the momentum matrix
elements required to evaluateχijk(n). As in the experiment,
we takeθ = 65◦, andφ = 30◦, with which χ‖‖‖(n) drops
from rpp(n).

To asses the validity of the SETB electronic states, in
Fig. 2 we compareRpp for the SETB model along with the
ab-initio and experimental spectra from Ref. [19]. In both
theoretical schemesN = 38 layers gives well converged re-
sults. The spectra show well defined E1 and E2 SH peaks in
agreement with the experiment, that sows E1 ∼ 3.3 eV and
E2 ∼ 4.3 eV. We notice that theab-initio spectrum is blue
shifted, whereas the SETB spectrum is red shifted with re-
spect to the experimental results. However, the energy sepa-
ration between E1 and E2 is well reproduced by both theoret-

FIGURE 2. Rpp vs the two photon energy forφ = 30◦ and
θ = 65◦. The solid and dotted lines are the SETB andab-initio
results of Ref. [19], respectively (left vertical scale). The experi-
mental spectrum, [19] is shown with pluses (right vertical scale).
The inset shows the SETB results (solid line) divided by 5 and blue
shifted by 0.3 eV, to have the E1 and E2 resonances coinciding with
the experiment (dotted line).
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ical approaches. On one hand, the quasi particle corrections
required in LDA to get the experimental energy gap, over-
estimate the correct positions of each critical point E1 and
E2 by ∼ 0.5 eV, and on the other hand, the deficiency of
SETB to account for the surface effects on the electron self-
energies [23], underestimates them by∼ 0.4 eV. Below E1

the spectra is zero as there are no surface related states. The
overall SETBRpp is a factor of∼ 5 larger than the experi-
ment (see inset in Fig. 2), that may be related to the approx-
imation involved in the method. However, according to Ref.
[19], the use of a three-layer model for surface screening will
close this difference. We also note thatRpp(E1) > Rpp(E2),
as opposed to the experimental result that reveals a largerRpp

for E2 (see inset in Fig. 2), which is a SETB limitation for
producing the correct weights of the electronic transitions in-
volved in the E2 resonance. Even though these deficiencies,
the SETB approach still gives a good qualitative description
of SH for this surface.

We now analyzeRpp by using the atomic layer decom-
position given in Eq. (6). In Fig. 3, we showRpp(`, `′) for
the following cases of̀, `′. In the top panel,̀=`′=1, 2, · · ·, 7,

FIGURE 3. Rpp(`, `′) for (`, `′) = (Top panel) (1,1), (2,2), till
(7,7), equivalent to layer 1 (H) through layer 7 (Si); (Middle panel)
(2,4), (5,7), till (17,19), equivalent to add every three Si layers start-
ing with the top-most Si (layer 2 of Fig. 1); (Bottom panel) (2,3),
(4,5), till (12,13), equivalent to add every two Si layers starting
again with the top-most Si. The SETB red shifted SH E1 and E2
are shown for reference.

that represents the SHG coming from each individual layer.
In the middle panel, we have taken(`, `′)=(2, 4), (5, 7) till
(17,19) (i.e., middle of the slab), which is equivalent to the
radiation of every three consecutive Si layers. On the other
hand, in the bottom panel, we have taken(`, `′)=(2, 3), (4, 5)
till (12,13), which is now equivalent to the radiation of every
two consecutive Si layers. From the top panel is clear that
the radiation coming from the H layer (=1) is zero, due to the
fact that H saturates the Si dangling bond, and the response
of it is quenched. Therefore, in the next panels the different
Rpp(`, `′) do not need to consider the first layer, and we can
start with the first Si layer (=2, see Fig. 1). At first sight it
may seem from the top panel that the radiation coming from
the inner Si layers is larger than from the layers closer to the
surface, in contrast with the argument that SH must be null
due to the centrosymmetry of the bulk. However, the SH pro-
cess is not the addition of the different SH contributions of
every layer, but rather, as in Eq. (6), is the addition of the
susceptibilities (or polarization) of every layer, and thus in-
terference effects play a dominant role. Indeed, in the middle
and bottom panels of Fig. 3, we can see how this interference
works. In the middle panel we have added every 3 consecu-
tive Si layers, and although the signal is smaller for the inner
layers, still no conclusive null signal is seen as we approach
the bulk (or the middle of the slab). On the other hand, in the
bottom panel, we add every two consecutive Si layers, and
indeed a very clear picture is now apparent. The first four Si
layers or surface layers dominate the signal, whereas the rest
of them, give a diminishing signal that is already negligible
for (`, `′) = (12, 13), that is, before we even reach the middle
of the slab.

The results reached by analyzing the bottom panel of
Fig. 3 can be understood from the intrinsic symmetry of the
atomic structure seen in Fig. 1. Adding every two consecu-
tive layers, starting with the top-most Si layer, gives a basic
unit from which the slab can be constructed just by piling up
these units bellow each other, in such a way that the bottom-
most Si can be H saturated with the same surface symme-
try as the top-most Si. In other words, the irreducible slab
along thez direction consists exactly of 2 Si layers, and the
correct centrosymmetry derived by the repetition of this unit
is evident in the SH signal. One or three Si layers are just
not the correctz-unit cell. To complement on this idea, we
show in Fig. 4Rpp(`, `′) for (`, `′) =(2,3), (2,5), till (2,15)
which consists of adding the SH signal from the surface till
the`′ = 15 layer in steps of two layers, and for(`, `′) =(2,4),
(2,7), till (2,16) which consists of adding the SH signal from
the surface till thè ′ = 16 layer but in steps of three lay-
ers. AlthoughRpp(1, 15) (for the case of summing every two
layers), andRpp(1, 16) (for the case of summing every three
layers), are now very similar to the full spectrum (Fig. 2), is
very clear that the SH signal builds up systematically for the
first case and erratically for the second. Therefore, once more
is clear that the centrosymmetry is constructed byz-units of
two Si layers. As we move toward the surface the centrosym-
metry is broken thus allowing the SH generation in the sel-

Rev. Mex. F́ıs. 50 (2) (2004) 134–139



138 J.E. MEJ́IA, C. SALAZAR, AND B.S. MENDOZA

FIGURE 4. Rpp(`, `′) for (`, `′) = (Top panel) (1,3), (1,5), till
(1,15), equivalent to add from layer 1 (H) through layer 15 (Si) in
steps of two; (Bottom panel) (1,4), (1,7), till (1,16), equivalent to
add from layer 1 (H) through layer 16 (Si) in steps of three. Full
line in both panels SETBRpp of Fig. 2. The SETB red shifted SH
E1 and E2 are shown for reference.

vedge, which includes the surface Si layer and a small sub-
surface region of 3∼4 atomic layers. A striking feature of
this surface though, is the fact that it takes a large number of
layers,N ∼ 16, to get the full SH signal.

Finally, we study the non-linear susceptibility, how-
ever, instead of simply analyzingχijk(`, `′), it is bet-
ter to plot them properly multiplied by the prefactors
that appear inrpp, since this sets the correct scale with
which each component ofχijk(`, `′) contributes to the
Rpp(`, `′). Then, in Fig. 5 we show the imaginary
part of sin2 θχ⊥⊥⊥(`, `′), (c/ω)2k2

⊥(ω)χ⊥‖‖(`, `′), and
(c/ω)2k⊥(ω)k⊥(2ω)χ‖‖⊥(`, `′) [24], multiplied by the cor-
responding value of1/n0e and expressed in esu·cm. In the
top panel(`, `′) = (2, 2) and (13,13), in the middle panel
(`, `′) = (2, 4) and (11, 13) (i.e., three consecutive layers
added), and in the bottom panel(`, `′) = (2, 3) and(12, 13)
(i.e., two consecutive layers added). First, we notice that the
contribution ofχ⊥⊥⊥(`, `′) is negligible, and that in conse-
quence, the other two components ofχijk(`, `′) dominate
the spectra. Second, the interference ofχ⊥‖‖(`, `′), and
χ‖‖⊥(`, `′), gives the correspondingRpp(`, `′). Third, and
last, the analysis carried forRpp(`, `′), just follows the be-
havior also seen inχijk(`, `′), but is after we add their com-

FIGURE 5. Plot of the imaginary part of(c/ω)2k⊥(ω)k⊥(2ω)χ‖‖⊥
(`, `′) (solid-line), (c/ω)2k2

⊥(ω)χ⊥‖‖(`, `
′) (dashed-line), and

sin2 θχ⊥⊥⊥(`, `′) (dotted-line), for(`, `′) = (2,2) (thick line), and
(13,13) (thin line) in the top panel; (2,4) (thick line), and (11,13)
(thin line) in the middle panel; (2,3) (thick line), and (12,13) (thin
line) in the bottom panel. The SETB red shifted SH E1 and E2 are
shown for reference, and the vertical scale is in10−9 esu·cm.

ponents as prescribed in Eq. (2) and take the absolute value
squared of Eq. (6), that we can see the E1 and E2 resonances
emerging from their sources.

4. Conclusions

We present for the first time, a method for analyzing the
layer-by-layer contribution to the SH signal of a semi-
infinite system. As an example, we studied the SHG of the
Si(111):H(1 × 1) surface. To obtain the electronic structure
of this surface, we used the SETB method, that has the ad-
vantage of being computationally less intensive that theab-
initio methods, and gives just as good qualitative results. Us-
ing our method for the layer-by-layer analysis, we concluded
that the SH takes place in a few atomic layers in the selvedge
region and that for this particular surface the structural cen-
trosymmetry lies well bellow the surface. The contribution
of the individual layers to the SH signal do not decay as one
moves into the bulk of the system, however the susceptibility
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of the different layers interferes destructively giving the sur-
face originated SH signal and the cancellation of it in the cen-
trosymmetric environment of the bulk. The atomic geometry
along the perpendicular direction to the surface is responsi-
ble for the behavior found in the SH signal, thus showing the
sensitivity of this non-linear optical probe to study surfaces
and interfaces.
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