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We describe physical principles of a two-phonon light scattering in crystals and present the feasibility of exploiting such a phenomenon for
the creation of an all-optical logic. Both performing the functionally complete set of logic operations and fulfilling one bit memory have
been algorithmically analyzed and estimated.
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En el presente artı́culo se discuten los principios fı́sicos de la difracción de la luz por dos fotones en cristales y se presenta la posibilidad
de explotar tal feńomeno para la creación de ĺogica todo-́optica. Se presenta tanto un conjunto completo de operaciones lógicas como la
realizacíon de una memoria de un solo bit, que han sido estimadas y analizadas algorı́tmicamente.

Descriptores: Esparcimiento de la luz por dos fonones; lógica todo-́optica
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1. Introduction

One of the avenues in modern optical computing is connected
with performing digital computations, in particular, logic op-
erations using opto-electronic components [1]. As a rule,
up-to-date digital data processing systems exploit the compo-
nents whose individual speed of operation is about of 10−9s.
In the context of increasing the bit-rate essentially the compo-
nents, eliminating any photon-electron conversions and oper-
ating in fact all-optically, have to be developed and poten-
tially exploited in digital data processing. At present, a few
types of all-optical devices, performing the logic operations,
are well known. For instance, the logic gates based on dis-
persive or absorptive nonlinearity in Fabry-Perot cavities [2]
as well as fiber logic gates, using the effect of stimulated Ra-
man scattering [3] or Kerr nonlinearity in Sagnac and Mach-
Zender interferometers [4]. A scheme of all-optical time di-
vision demultiplexing module, combining the technology of
all-optical saturable absorbers and the diffractive optics [5],
as well as the effects of spatial chirp of the built-in low-
power switching in grating on the spectral range and switch-
ing power of all-optical switching in active semiconductors
periodic structures [6] should be pointed out. To realize bi-
nary logic operations in optics a lot of various physical mech-
anisms can be used, but they all lead to input-output func-
tions, which are identical by a large margin. Evidently, per-
forming binary logic operations can be provided by the logic
gates, whose input-output functions manifest local nonlinear-
ity. A generalized schematic arrangement and the principle of
operation for binary logic gates are illustrated in Fig. 1. At
first, two input optical intermediate binary (that is to say

FIGURE 1. Generalized functional scheme of binary logic gate
with two inputs.

two-level) signals, representing 0 or 1, add together to give
a next three-level signal, whose value is equal to the num-
ber of inputs with logic unities. Then, this signal converts by
nonlinear function into output binary (or two-level) signal.

In optics, the zero-level signal is usually represented by
low intensity light beam, while the unity-level signal is rep-
resented by high intensity one. Addition proceeds by the su-
perposition of optical signals. There are 16 feasible binary
logic operations with two input signals and one output sig-
nal, but only 8 of them are commutative in reference to the
input signals,i.e., they have functionally indistinguishable
inputs. Some of nonlinear input-output functions, conform-
ing to commutative binary logic operations, are presented in
Fig. 2. A set of simple logic operations is complete, when
this set gives us a possibility to create an arbitrary logic cir-
cuit. For binary systems, two pairs of logic operations: (NOT,
AND) and (NOT, OR) presents examples of such complete
sets. These pairs of operations can be united into one gate,
performing logic operation NAND or NOR. In both the last
cases the NOT-operation can be obtained by fixing one of the
gate’s inputs at the level 0 or 1.

In an ideal sense, the nonlinear input-output functions
should be step-like threshold functions, whose threshold’s al-
titude corresponds to two different levels in logic operation.
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FIGURE 2. Nonlinear input-output functions with two-inputs, real-
izing some binary logic operations.

We present the results of our investigations in the field of cre-
ating novel opto-electronic components for digital comput-
ing, founded on acousto-optical interaction in bulk crystals.
The case at hand is to present some of the input-output char-
acteristics for the logic operations in optics via the mecha-
nism of a two-phonon light scattering in anisotropic medium.
Such an approach is promising to achieve a high-bit rate, con-
ditioned by an all-optical scheme of governing the light by
light, together with a possibility for designing a matrix ar-
rangement of digital processor because of advanced acousto-
optic technology.

2. General consideration

Now, there is a good reason to take an advantage of the quan-
tum approach to the phenomenon under consideration, which
can be interpreted as scattering the light quanta-photons by
the quanta of acoustic field-phonons. When the length of
interaction is large enough, it is reasonable to believe that
the phonons are passing through infinite medium and, con-
sequently, they have well-determined magnitude of the mo-
mentum. Thus, one may use the conservation laws for both
the energy and the momentum

ω1 = ω0 ± Ω,
−→
k1 =

−→
k0 ±−→K, (1)

where ω1, ω0 and
−→
k0,

−→
k1, are the angular frequencies and

wave vectors of interacting light waves, respectively; whileΩ
and

−→
K are the angular frequency and wave vectors of phonon.

In Eqs. (1), the plus sign corresponds to originating an anti-
Stokes photon, whereas the minus sign meets a Stokes pho-
ton. By this it means that there are two processes, man-
ifesting the annihilation of a phonon (anti-Stokes process)
or origination of a Stokes phonon. Under conventional ex-
perimental conditions, when intensities of light and acoustic
beams are approximately equal to each other, the number of
phonons is105 times more than the number of photons, and
up to 100% of photons can be scattered due to three-particle
processes without appreciable effect on a stream of acoustic
phonons. Consequently, the process of light scattering by co-
herent acoustic phonons can be considered in approximation
of a prescribed phonon field.

Over the long run, the linkage between wave vectors of
interacting particles can be expressed in the form of wave
vector diagrams on cross-sections of the wave vector surfaces
inherent in a crystal. Similar diagrams represent a graphic
version of the conservation laws, see Eqs. (1), and they may
be exploited for the analysis of scattering. For example,
Fig. 3a illustrates an opportunity for one-fold scattering of
the incident photon by one acoustic phonon in a single-axis
crystal, when the initial and ultimate states of polarization for
these photons are different.

Then, under certain conditions,i.e., at set angles of light
incidence on the phonon beam and at fixed angular frequen-
cies of phonons, one can observe the phenomenon of two-
fold scattering of light caused by participating two acoustic
phonons.

The main peculiarity of this phenomenon lies in conserv-
ing both the energy and the momentum for two transitions
simultaneously. In their own turn, these laws determine the
angular frequencies and wave vectors of all three interacting
waves:

ω1 = ω0 ± Ω,
−→
k1 =

−→
k0 ±−→K,

ω2 = ω0 ± 2Ω,
−→
k2 =

−→
k0 ± 2

−→
K, (2)

whereωp and
−→
kp(p = 0, 1, 2, ) the angular frequencies and

wave vectors of interacting photons. This fact leads to origi-
nating two orders of scattering, apart the zero-th one, each by
itself satisfies the conservation laws, described by Eqs. (2).
Figure 3b presents the diagram of wave vectors, dealing with
a two-phonon scattering of light quanta in a uniaxial crystal.
Such a diagram offers rather small angles of deflection and
occurs at the specific angular frequency of acoustic phonons,
peculiar to just a two-phonon scattering, which can be deter-
mined as

Ω = 2πλ−1v
√
|n2

0 − n2
1|, (3)

here np is the corresponding refractive index, so
n0 ≈ n2 6= n1.The polarization of light in the zero-th and
the second orders is orthogonal to the polarization of light
in the first order, whereas the carrier frequencies of light
beams in the first and the second orders are shiftedΩ and2Ω,
respectively, with reference to the zero-th order.

3. A two-phonon scattering of light

Now we can use this approach to Bragg regime, and propose
a new regime when the direct transitions are allowed between

FIGURE 3. Wave vector surfaces and wave vector diagrams inher-
ent in one-fold (a) and two-fold (b) scattering of photon by acoustic
phonons in a single-axis crystal.
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all optical modes in a bulk crystal. When the perfectly polar-
ized plane light wave propagates through in a crystal, wherein
two plane elastic waves with the angular frequenciesΩ and
2Ω as well as with wave numbersK and2K, respectively, are
passing along the z-axis, whose perturbed refractive index is
(See Fig. 4).

n = n0 + ∆n1 sin (Kz − Ωt)

+∆n2 sin (2Kz − 2Ωt) . (4)

Here n0 is a non-perturbed refractive index in the approx-
imation of n0 ≈ n1; ∆n1 and∆n2 are the amplitudes of
perturbations. Let us assume that the area of propagation for
the elastic wave is bounded by two planesx = 0 andx = L,
so it is arranged in acoustic beam, and that the plane electro-
magnetic wave

E = E0 exp [i (k0x cos (θ0) + k0z sin (θ0)− ω0t)] , (5)

strikes the planex = 0 at the angleθ0 to thex-axis. HereE0

is the amplitude of incident wave,ω0 andk0 = 2πλ−1n0 are
the angular frequency and the wave number,λ is the wave-
length of incident light. Without the loss in generality, one
may put that all the fields are independent of the coordinate
y, so a scalar wave equation, governing the electric compo-
nentE(x, y, z, t) of electromagnetic wave inx ∈ [0, L] the
area of interaction, has the following formCp(x)

∂2E

∂x2
+

∂2E

∂z2
− 1

c2

∂2(εE)
∂t2

= 0, (6)

hereε = n2(z, t) is the dielectric constant in the medium
with acoustic beam present. Since∆np ¿ n0 werep = 1, 2
in Eq. (4), one can write

ε(z, t) ≈ n2
0 + n0∆n1 sin (Kz − Ωt + Φ1)

+n0∆n2 sin (2Kz − 2Ωt + Φ2) . (7)

Only two, the first and the fourth summands, belonging to
the expansion of dielectric constant into a series in terms of a
small external perturbation, are taken into account in Eq. (7).
Let us represent the project of solution to Eq. (6) in the area
as a sum of partial waves with the amplitudes

E = E0

2∑
p=0

Cp(x) exp [i (kp,xx + kp,zz − ωpt)] , (8)

where

ωp = ω0 + pΩ, kp = |−→kp| = ωp
√

ε0c
−1,

kp,x =
√

k2
p − k2

p,x.

The equation (8) does not contain any reflected waves. This
may be tolerated, because a comprehensive analysis shows
that usually the length for coherent interaction between co-
directional waves far exceeds the same length for oppositely

directed waves. The reflected waves become to be essential
when the scattering angles are close to90◦. A total number
of summands in Eq. (8) is already finite, and it increases as
the ratioK/k0 decreases. In the chosen approximation, we
obtain the following set of ordinary differential equations

dCp

dx
= qp

{
Cp−1 exp [i (ηp−1x + Φ)]

− Cp+1 exp [−i (ηpx + Φ)]
}

+ rp

{
Cp−2 exp [i (ξp−2x + Φ)]

− Cp+2 exp [i (ξpx + Φ)]
}
, (9)

where

qp = ∆n1kp(2n0)−1, ηp = kp,x − kp+1,x,

rp = ∆n2kp(2n0)−1, and ξp = kp,x − kp+2,x.

It follows from Eq. (9), that the redistribution of energy in
eachp-th order of scattering is governed by the only neigh-
boring orders with numbersp ± 1 and .p ± 2 The second
derivativesd

2
Cp/dx

2
were discarded, which is directly cor-

related with ignoring the waves reflected.

To extend the obtained equations rigorously to
anisotropic media, broadly speaking, proper allowance must
be made for the tensor description of dielectric properties
inherent in such media. This is intimately related to the fact
that Bragg scattering with changing the polarization of light
is feasible in anisotropic media. Nonetheless, Eq. (9) may be
applied to analyzing the light scattering in anisotropic media
under certain refinements. Because usually some concrete
process is of chief interest, we need only to reinterpret the
parametersq andr entering into Eq. (9) and describing the
efficiency of interaction. With due regard for this procedure
Eq. (9) have the ability of governing the taken alone process
in anisotropic media wholly adequately. First, one can disre-
gard all the amplitudesCp(x) in Eq. (9) with the exception of
the amplitudesC0, C1, andC2. Second, when a two-phonon
light scattering is realized, it is seen from the wave vector
diagram in Fig. 4a thatηp = ξp = 0. Consequently, in the
case of stationary scattering we obtain the following set of

FIGURE 4. The wave vector diagram and schematic arrangement
for a two-phonon light scattering in a uniaxial crystal, allowing di-
rect transitions between all the light modes.
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simplified ordinary differential equations for the amplitudes
of light modes

dC0

dx
= −qC1 − rC2,

dC1

dx
= q(C0 − C2),

dC2

dx
= qC1 + rC0. (10)

Here the approximate relationsq0 ≈ q1 ≈ q2 ≈ q and
r0 ≈ r2 ≈ r are substituted, into Eq. (10). It may be toler-
ated on above-mentioned assumption that the shifts in carrier
angular frequencies of light waves, included in the amplitude
coefficients for different orders, can be neglected. All the
parametersqp with p = 0, 1, 2 describe the efficiency of in-
teraction, changing the polarization state of light, as well as

the parametersrp with p = 0, 2 are intrinsic to the interac-
tion with no changing the polarization. In the general case
qp 6= rp, because these two types of scatterings are provided
by different photo-elastic constants. The exact and closed
analytical solutions to Eq. (10) with the stationary boundary
conditions

C0(x = 0) = A0 exp(iϕ0), C1(x = 0) = A1 exp(iϕ1),

and C2(x = 0) = A2 exp(iϕ2),

whereA0, A1, A2 andϕ0, ϕ1, ϕ2 are the amplitudes and
phases of incident light waves on the planex = 0, have the
form

C0(x) =
(
2q2 + r2

)−1
{

2
[
q2A2 exp(iϕ2)− qrA1 exp(iϕ1)

]
sin2

(x

2

√
2q2 + r2

)
−

√
2q2 + r2 [qA1 exp(iϕ1)

+rA2 exp(iϕ2)] sin
(
x
√

2q2 + r2
)

+
[
2q2 cos2

(x

2

√
2q2 + r2

)
+ r2 cos

(
x
√

2q2 + r2
)]

A0 exp(iϕ0)
}

, (11)

C1(x) =
(
2q2 + r2

)−1
{

A1 exp(iϕ1)
[
r2 + 2q2 cos

(
x
√

2q2 + r2
)]
− 2qr [A0 exp(iϕ0)

+A2 exp(iϕ2)] sin2
(x

2

√
2q2 + r2

)
+ q

(√
2q2 + r2

)
[A0 exp(iϕ0)−A2 exp(iϕ2)] sin

(
x
√

2q2 + r2
) }

, (12)

C2(x) =
(
2q2 + r2

)−1
{

2
[
q2A0 exp(iϕ0)− qrA2 exp(iϕ2)

]
sin2

(x

2

√
2q2 + r2

)
+

(√
2q2 + r2

)
[qA1 exp(iϕ1)

+rA0 exp(iϕ0)] sin
(
x
√

2q2 + r2
)

+
[
2q2 cos2

(x

2

√
2q2 + r2

)
+ r2 cos

(
x
√

2q2 + r2
)]

A2 exp(iϕ2)
}

. (13)

Equations (11-13) make it possible to analyze a three-order
acousto-optical interaction, having regard to direct transi-
tions between all the light modes. The transition probabil-
ities are electronically controllable and they may be varied
within wide limits according to the level of incoming power
density in elastic waves. For further analysis Eqs. (11-13)
can be rewritten in terms of the intensities,i.e., we shall con-
sider the intensities|Cp(x)|2 as functions of the coordinate
x and exploit the valuer as a parameter, with the incoming
light intensitiesA2

p and the initial phasesϕp chosen in a spe-
cific way. For simplicity sake the cases are chosen, when
the only one incoming light intensity has a non-zero magni-
tude. If A2

i = 1, q = 1, andϕi = 0, while A2
j = A2

k = 0
(i 6= j 6= k, i, j, k = 0, 1, 2), we arrive at a set of diagrams
shown in Fig. 5. The value ofr = 0 corresponds to the con-
ventional approach to a three-order acousto-optical interac-
tion [7,8], wherein the only two-phonon scattering provides
the coupling between the zero-th and the second orders, and
the intensity|C1(x)|2 does not exceed 50% of the incom-
ing light intensityA2

0. Nevertheless, withr 6= 0 one can
increase the portion of light, scattered into the first order, so
it is clearly seen from Fig. 5a that up to 100% of the incom-
ing light intensity can be deflected into the first order when
the optimal magnitude ofr = 1 is taken. Besides that, the

spatial shifts of the intensity maxima in both another orders
are observed. Thus, we have obtained exact and closed an-
alytical description for a three-order acousto-optical interac-
tion, having regard to direct transitions between all the light
modes. In this case the physical scheme of light scattering
can be easily realized using the scheme of conventional a
two-phonon acousto-optical interaction and inserting the sec-
ond elastic wave, whose frequency has to be twice as high as
the main one, see Fig. 3b. The relative contribution of a di-
rect coupling between two extreme orders is revealed and it
can be optimized from the viewpoint of increasing the light
intensity in previously decayed orders of scattering.

4. Performing the logic operations

The elementary components of digital circuits are usually
made up of combinational elements such as NAND and NOR
logic gates and memory elements, which might be single bit
memory elements such as discrete flip-flops. They are com-
posed of transistors as electrically active elements. The two
most frequently used kinds of transistors are the bipolar and
the field effect transistors [9]. In this chapter we are applying
the phenomenon of scattering the light by ultrasound to de-

Rev. Mex. F́ıs. 50 (2) (2004) 140–148



144 A.S. SHCHERBAKOV, E. TEPICHIN RODŔIGUEZ, A. AGUIRRE LÓPEZ.

FIGURE 5. The intensities of scattered light waves versus the coordinate x:

a) C0(x = 0) = 1; C1(x = 0) = 0; C2(x = 0) = 0,

b) C0(x = 0) = 0; C1(x = 0) = 1; C2(x = 0) = 0;

c) C0(x = 0) = 0; C1(x = 0) = 0; C2(x = 0) = 1.

The dotted lines are for r = 0; the dashed lines are for r = 0.7; the dot-dashed lines are for r = 1.0; the solid lines are for r = 1.5.

sign all-optical logic gates. The approach to creating similar
components can be demonstrated by the example of a two-
phonon light scattering, the analysis of Eqs. (11-13) permits
realizing such a lot of logic operations with or without optical
pump. It is convenient to denote the corresponding acousto-
optical processes asi

m−→ j, i + j −→ k or i + j
m−→ k,

where the orders of input and output light beams appear on
the left and right, while the order of pump beam is indicated
above the arrows.

First we discuss the technique of creating the logic gate,
having only one input and one output. Such a gate exists
and it realizes the logic operation NOT. In the case of a two-
phonon light scattering a few optical schemes can be ex-
ploited for designing such a gate. For instance, we can take
the process0 1−→ 0. In this case, so one can obtain from
Eqs. (11)

|C0(L)|2 = A2
0 cos4

(
qL

2
√

2

)
+

A2
1

2
sin2

(
qL√

2

)

−
√

2A0A1 cos2
(

qL

2
√

2

)
sin

(
qL√

2

)
cos (ϕ0−ϕ1) . (14)

Here the beamA0 corresponds to a signal channel, while
the beamA1 represents a pump. It follows from the truth
table for the NOT-gate that|C0(L)|2 = 1 with A0 = 0,
so (A2

1/2) sin2(qL/
√

2) = 1. Then, |C0(L)|2 = 0 with
A0 = 1, and we arrive at the formula

cos4
(

qL

2
√

2

)
+ 1− 2 cos2

(
qL

2
√

2

)
cos(ϕ0 − ϕ1).

Settingϕ0 = ϕ1, we yieldcos2(qL/2
√

2) = 1 and
(

qL

2
√

2

)
= {0± π,±2π, . . .}.

This means that
(

qL√
2

)
= {0± π,±2π,±4π, . . .},

sosin2(qL/
√

2) −→ 0 andA1 −→∞, when
(

qL√
2

)
−→ {0± π,±2π,±4π, . . .}.
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This theoretical requirement needs practical interpretation,
because the product(A2

1/2) sin2(qL/
√

2) = 1 is determined
not quite well. Of course, the valueqL = 0 is not ac-
ceptable due to decreasing the thickness of crystal or the
level of acoustic power, or both. While, for instance, with
qL → 2

√
2π we arrive at the conclusion that the more will

be the pumpA1 the closer will be the boundary states of NOT
logic gate to 0 or 1, respectively. The dependence of the out-
put intensity|C0(L)|2 on the signal beam intensityA2

0 in the
form |C0(L)|2 = (1 − A0)2, representing in fact the input-
output characteristic of the NOT-gate under consideration, is
shown in Fig. 6. The same kind of consideration can be per-
formed in connection with performing the NOT-logic opera-
tion for another process of thei

m−→ j type as well. Thus,
the mechanism of a two-phonon light scattering can be suc-
cessfully exploited for designing the NOT logic gate with a
pump, whose intensity transmission coefficient is practically
equal to 100%.

Now, we are coming to the question of applying the
scheme of a two-phonon light scattering to the performing
of logic operations with two inputs and two outputs under
requirement for the input beams to be functionally indistin-
guishable. When the pump is absent, the processes of the
i + j −→ k type can be realized, so one can take, for exam-
ple, the process0 + 2 −→ 1. In this caseA1 = 0; the beams
A0 andA2 correspond to two input signal channels, while
the beamC1 represents the output channel. Consequently, it
follows from Eqs. (11) that

|C1(L)|2 =
1
2

sin2

(
qL√

2

)

× [
A2

0 + A2
2 − 2A0A2 cos (ϕ0 − ϕ2)

]
. (15)

Here, we may putsin2(qL/
√

2) = 1 and meet two possibili-
ties. The first one lies in the conditionϕ0 = ϕ2, so we arrive
at the XOR-logic gate whose input-output characteristic has
the form|C1(L)|2 = (1/2)(A0−A2)2. The second possibil-
ity complies withϕ0 − ϕ2 = π/3 andcos(ϕ0 − ϕ2) = 1/2.
In this case we yield the OR-logic gate with the following

FIGURE 6. The input-output characteristic for the NOT-logic gate
with a pump.

input-output characteristic:|C1(L)|2= 1
2 (A2

0+A2
2−A0A2).

Both these characteristics are presented in Fig. 7. It is seen
from the last-mentioned formulae and Fig. 7 that the inten-
sity transmission coefficients in these logic gates are equal to
50% due to the absence of a pump.

Finally, we have to consider the application of a two-
phonon light scattering to performing logic operations via
various processes of thei + j

m−→ k type with a pump. For
this purpose the process0+2 1−→ 1 will be used. In this case
the beamsA0 andA2 correspond to two input signal chan-
nels, the beamC1 represents the output channel andA1 6= 0.
We may putϕ1 = 0 and rewrite from Eqs. (12)

|C1(L)|2 =
1
2

sin2

(
qL√

2

) (
A2

0 + A2
2

)
+ A1 cos2

(
qL√

2

)

−A0A2 sin2

(
qL√

2

)
cos (ϕ0 − ϕ2)

−
√

2A1 sin
(

qL√
2

)
cos (A0ϕ0 −A2ϕ2) . (16)

The same sort of analysis as before shows that the process
0+2 1−→ 1 allows performing, in particular, the XNOR-logic

FIGURE 7. The input-output characteristics of the logic gates:
a) XOR and b) OR.
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operation. To make the input beams functionally indistin-
guishable, we have to symmetrize Eq. (12) relative to the
contributions of the input amplitudesA0 andA2 and ought
to putϕ0 = ϕ2 + π. WhenA0 = A2 = 0, Eq. (16) gives

|C1(L, A0 = 0, A2 = 0)|2 = A2
1 cos2

(
qL√

2

)
= η2, (17)

whereη2 is the intensity transmission coefficient. It should be
noted that the presence of optical pump withA1 6= 0 makes it
possible to generate the output signal even when both the in-
put signals are equal to zero, and to perform the XNOR-logic
operation. From the truth table for the XNOR-logic gate we
know that

|C1(L,A0=0, A2 = 0)|2 = |C1(L,A0=0, A2 = 1)|2 = 0

and

|C1(L,A0 = 1, A2 = 1)|2 = η2,

using Eq.(17), we calculate

1
2

sin2

(
qL√

2

)
+η2−

√
2η sin

(
qL√

2

)
cos (ϕ0)=0, (18)

2 sin2

(
qL√

2

)
+η2−2

√
2η sin

(
qL√

2

)
cos (ϕ0)=η2, (19)

The solution: sin2(qL/
√

2) −→ 1, η −→ (1/
√

2),
cos(ϕ0) = ±1 leads to:A1−→∞ with cos2(qL/

√
2)−→0.

The input-output characteristic of the XNOR-logic gate can
be written as|C1(L)|2 = (1/2)(1 − A0 − A2)2, see Fig. 8,
so the intensity transmission coefficient of this logic gate is
equal to 50%. The last value is conditioned by the proper-
ties of a two-phonon light scattering and can be, probably,
improved with changing the regime of acousto-optical inter-
action. All these logic gates are interferometric in behavior;
that is why they have the ability to control over faint light
streams and the level of the order of 10−15 J/bit may estimate
this restriction.

FIGURE 8. The input-output characteristic for the XNOR-logic
gate with an optical pump.

5. All-optical implementation of key compo-
nent for the J-K flip-flop

In addition to logic gates, a digital system uses many other
functional modules built on gates, these include the bistable
multivibrator or one-shot, and the astable multivibrator or
free running clock. The multivibrator circuit can be repre-
sented by using MIL-STD-806B symbols as shown in Fig. 9.
The flip-flop is simply a digital memory device that can store
only one “bit” at a time [10]. To explain this we use the
SR flip-flop shown symbolically in Fig. 9, the set and reset
inputs being labeled S and R respectively, and the comple-
mentary outputs are labeledQ andQ. The state table for the
flip-flop is shown in the Table I. in the first three columns
of this table all combinations of the presented states of S, R
andQ are shown,i.e., their states at timet, the fourth col-
umn contains a tabulation of the next state of the flip-flop,
i.e., its state at timet + ∆t. The examination of this table
shows that a change of flip-flop state occurs in the rows 4 and
5 only, in the row 4 the flip-flop is being reset or turned off,
i.e., its state is changing from 1 to 0 as a consequence of the
of the application of a reset inputR = 1. In the row 5 the
flip-flop is being set or turned on,i.e., its state is changing
from 0 to 1 as a result of the application of a set inputS = 1.
For the rows 1 and 2,S = 0 andR = 0, and consequently
there is no change in the state of the flip-flop and the entries
in the last column are 0 and 1 respectively. On the row 3,
R = 1 and the signal in normal circumstances would turn the
flip-flop off, however the flip-flop is already turned off since
Qt = 0 and consequently the signalR = 1 leaves the flip-
flop state unchanged. Similarly in the row 6,S = 1, and this
signal would normally turn the flip-flop on, but whenQt = 1,
i.e., the flip-flop is already turned on and consequently there
will be no change the state of the flip-flop, Finally with this
type of flip-flop it is forbidden for S and R to be logical ’1’
simultaneously, this restriction being expresses algebraically
by SR = 0. In the other hand the Fig. 10 shows the symbolic
representation of the JK flip-flop and the table 2 describe the
logical operation. The operation of this flip-flop differs in one
respect from that of the SR flip-flop in that is allowable for J
and K to be simultaneously equal to logical ’1’. For exam-
ple, if J = K = 1, the flip-flop ’toggles’, that is, in the row
7 the flip-flop changes the state from 0 to 1 while in the row
8 the converse action takes place. In the rows 4 and 5 normal
reset and set operations take place as described for the SR
flip-flop [10].

TABLE I. Simplified truth table for the S-R flip-flop.

Actual state Next state Actual state Next state

S R Qt Qt + ∆t S R Qt Qt + ∆t

0 0 0 0 1 0 0 1

0 0 1 1 1 0 1 1

0 1 1 0 1 1 0 Forbidden

0 1 0 0 1 1 1 Combination
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FIGURE 9. The cross-coupled flip-flop based on tow NOR gates.

This circuit actually contains two cross-connected resis-
tor NOR-gates, where one NOR gate has asQ output, andR
andQ̄ as inputs, while the other NOR gate hasS andQ as
inputs, andQ̄ as output. Due to its configuration, this circuit
is also called a cross-coupled flip-flop [10].

Of course, to manifest optical bistability any digital de-
vice should include a feedback. However, for the sake of
simplicity we will consider here the only key component of
the J-K flip-flop leaving aside the problem of arranging an
all-optical feedback. Let us consider the implementation of
key component for an all-optical J-K flip-flop, whose switch-
ing properties are reflected in Table II.

TABLE II. Simplified truth table for the J-K flip-flop.

Actual state Next state Actual state Next state

J K Qt Qt + ∆t J K Qt Qt + ∆t

0 0 0 0 1 0 0 1

0 0 1 1 1 0 1 1

0 1 0 0 1 1 0 1

0 1 1 0 1 1 1 0

FIGURE 10. Representation of the J-K flip-flop.

We present the exact analytical description for such an in-
novated regime and then, using computer simulation, analyze
the feasibilities of its application to performing binary logic-
based operations for all-optical switching. In order to imple-
ment the key component for an all-optical J-K flip-flop, we
have to search for optical scheme of device and to optimize
the normalized lengthL of scattering. We have proposed two
schematic arrangements of the key component for the J-K
flip-flops (see Fig. 11). Analysis has shown that one can se-
lect the beamA1 = 1 for the optical pump and the beamsA0

andA2 for all-optical inputs, while the beamsC0(L), C1(L),
andC2(L) represent the output beams, as the case requires.
In so doing, we arrive at the desired truth tables for the key
components conditioned by the lengthsL selected, see Ta-
ble III.

TABLE III. Truth tables for two implementations of the J-K flip-
flop’s key components, associated with Fig.11.

Input Input Optical outputs at Input Input Optical outputs at
J K L = 2π/3

√
3 K J L = 4π/3

√
3

A0 A2 Qt Qt+∆t Q A0 A2 Qt Qt+∆t Q

0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 1 0

1 1 0 1 1 1 1 0 1 1

1 0 0 1 0 1 0 0 0 1

FIGURE 11. All-optical implementations of key components for
the J-K flip-flops with: a)L = 2π/3

√
3, b) L = 4π/3

√
3.
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6. Conclusion

We have covered some peculiarities inherent in a two-phonon
scattering of light in anisotropic media. For this purpose, the
approach based on analyzing the conservation laws and de-
scribing the evolution of light waves has been exploited. The
possibility of applying a two-phonon light scattering to de-
signing some input-output characteristics for the logic opera-
tions in optics has been considered.

We can see the behavior of the input-output characteris-
tics shown in the Fig. 2, and compare directly with our ana-
lytic result in connection with the 3D-plots for the NOT, OR,
XOR and XNOR. The simulation for the NOT input-output
characteristic shown that we can obtain up to 100% of effi-
ciency of the scattered light, but for the next three 3D-plots

we can obtain only the 50% of efficiency in comparison with
the input-output characteristics shown in the Fig. 2. This
problem is attached to the properties of the acousto-optical
interaction.

The obtained results involve a few all-optical arrange-
ments for designing the key component of the J-K flip-flop,
which have been algorithmically estimated. The direct transi-
tions make it possible to provide an all-optical switching with
the efficiency of about 100%.
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