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Order/disorder in brain electrical activity
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Pabelĺon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina.
∗rosso@ic.fcen.uba.ar, rosso@ba.net;

figliola@ic.fcen.uba.ar, afigliol@ungs.edu.ar.

Recibido el 6 de marzo de 03; aceptado el 21 de octubre de 03

The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore,
the concomitant studies require methods capable of describing the quantitative variation of the signal in both time and frequency. Here we
present a quantitative EEG (qEEG) analysis, based on the Orthogonal Discrete Wavelet Transform (ODWT), of generalized epileptic tonic-
clonic EEG signals. Two quantifiers: theRelative Wavelet Energy(RWE) and theNormalized Total Wavelet Entropy(NTWS) have been
used. The RWE gives information about the relative energy associated with the different frequency bands present in the EEG and their
corresponding degree of importance. The NTWS is a measure of the order/disorder degree in the EEG signal. These two quantifiers were
computing in EEG signals as provided by scalp electrodes of epileptic patients. We showed that the epileptic recruitment rhythm observed
for generalized epileptic tonic-clonic seizures is accurately described by the RWE quantifier. In addition, a significant decrease in the NTWS
was observed in the recruitment epoch, indicating a more rhythmic and ordered behavior in the brain electrical activity.
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El procesamiento de la información por el cerebro se refleja en los cambios dinámicos de la actividad eléctrica en tiempo, frecuencia, y
forma espacial. Por consiguiente, para caracterizar la actividad eléctrica se requieren ḿetodos capaces de describir la variación cuantitativa
de estas sẽnales en el tiempo y también en los cambios en sus componentes frecuenciales. En el este trabajo presentamos un análisis EEG
cuantitativo (qEEG), basado en la Trasformada Wavelet Discreta Ortogonal (ODWT), para señales EEG correspondientes a crisis epilepticas
tonico-clinico generalizadas. Dos cuantificadores son usados: la Energı́a Wavelet Relativa (RWE) y la Entropı́a Wavelet Total Normalizada
(NTWS). La RWE provee información sobre la energı́a relativa asociada con las distintas bandas de frecuencia presentes en el EEG y
su correspondiente grado de importancia. La NTWS ofrece una medida del orden/disorden en el señal EEG. Estos dos cuantificadores
fueron evaluados para señales EEG provistas por electrodos de superficie en pacientes epilépticos. Se muestra que el ritmo de reclutamiento
epileptico observado en crisis epilepticas tonico-clonica generalizadas es descripto con presicion mediante el uso del cuantificador RWE.
Además de esto, un decrecimiento significativo en los valores del quantificador NTWS es obsevado durante la etapa de reclutamiento
epiléptico, poniendo en evidencia un comportamiento mas rı́tmico y ordenado de la actividad electrica cerebral.

Descriptores: EEG; crisis epiĺepticas, ańalisis tiempo-frecuencia de señales; ańalisis wevelets; entroı́a de una sẽnal.

PACS: 87.80.Tq; 05.45.Tp; 05.20.-y

1. Introduction

Human brain electrical activity can be measured from the
scalp, in a non-invasive way, by means of electroencephalog-
raphy (EEG). Due to the conductive properties of biological
tissue, this activity reflects the effect of proximal and dis-
tal sources of synchronized neuronal activities [1]. Recently,
oscillatory EEG activity has been discussed in relation with
functional neuronal mechanisms. In this regard, it is of major
interest to investigate how brain electric oscillations get syn-
chronized in pathological or physiological brain states (e.g.,
epileptic seizures, sleep-wake stages, etc.), or by external and
internal stimulation (event related potentials (ERP) or evoked
potentials (EP)). This issue can be addressed by applying
methods of system’s analysis to the EEG signals, because
changes in EEG activity occur in temporal relation to trig-
gering events, and could be thought of as transitions from
disordered to ordered states (or vice versa).

A natural approach to quantify the degree of order of a
complex signal is to consider its spectral entropy, as defined
from the Fourier power spectrum [2]. The spectral entropy

is a measure of how concentrated or widespread the Fourier
power spectrum of a signal is. An ordered activity, like a sinu-
soidal signal, is manifested as a narrow peak in the frequency
domain. This concentration of the frequency spectrum in one
single peak corresponds to a low entropy value. On the other
extreme, a disordered activity (e.g., the one generated by pure
noise or by a deterministic chaotic system) will have a wide
band response in the frequency domain that is reflected in
higher entropies. However, the Fourier transform (FT) re-
quires stationarity of the signal as well, and EEGs are highly
non stationary. Furthermore, the FT does not yield the time
evolution of the pertinent frequency patterns. Consequently,
the spectral entropy does not get defined as a function of time.

The disadvantages of the spectral entropy defined from
the FT can be partially overcome by using a short-time
Fourier transform (STFT). Powell and Percival [2] defined
a time evolving entropy from the STFT by using a Han-
ning window. With this approach, the FT is applied to
time-evolving windows of a few seconds of data refined
with an appropriate function, so that the time-evolution of
the frequencies can be followed. The stationarity require-
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ment is partially satisfied by considering the signals as quasi-
stationary for a few seconds. Due to the uncertainty prin-
ciple [3, 4], one critical limitation appears when windowing
data: if the window is too narrow, the frequency resolution
will be poor. Conversely, if the window is too wide, the time
localization will be less precise.

All the above mentioned difficulties can be overcome
by appeal to the wavelet transform [3, 4], an efficient time-
frequency decomposition method. In particular, the orthogo-
nal discrete wavelet transform (ODWT) makes no assump-
tions about a record’s stationarity. The only input needed
is the time series itself. If the entropy is computed via
the wavelet transform, the time evolution of frequency pat-
terns can be followed with an optimal time-frequency resolu-
tion [5, 6]. The ensuing entropy-form, based on the wavelet
transform, is called the “wavelet entropy”. It reflects the de-
gree of order/disorder of the signal. The wavelet entropy ap-
pears thus as a natural measure of order for EEG signals,
more specifically of the synchrony of the group of cells in-
volved in the different neural responses [5,6].

2. Clinical data and experimental setup

A scalp EEG signal is essentially a nonstationary time series
that presents artifacts due to electrooculogram (EOG), elec-
tromyogram (EMG) and electrocardiogram (ECG), among
others [1]. Artifacts related to muscle contractions are
specially troublesome in the case of tonic-clonic epileptic
seizures, where they reach very high amplitudes that contam-
inate the whole seizure recording. Sometimes artifacts are
presented during a few seconds and can be obviated because
they obscure only a small portion of the EEG. In other cases,
almost the total signal appears obscured by them, and very lit-
tle information about the underlying brain activity can be ex-
tracted. An example of this kind of scalp EEG signals are the
ones corresponding to an epileptic tonic-clonic seizures [1].

A tonic-clonic (TC) seizure is characterized by violent
muscle contractions. Initial massive tonic spasms are re-
placed seconds later by the clonic phase with violent flexor
movements and characteristic rhythmic spasms towards the
ending of the seizure. In these seizures, artifacts related to
muscle contractions are especially troublesome because they
reach very high amplitudes [1]. In fact, not only do they limit
the traditional visual analysis to the pre- and post-ictal peri-
ods, but they also restrict the application of some mathemat-
ical methods.

Analysis of the brain activity during this seizure has been
previously performed only in special circumstances, such as
in patients treated with curare (an inhibitor of the muscle re-
sponses) [7, 8] or by eliminating the high frequency muscle
activity with the use of traditional filters [9]. Gastaut and
Broughton [7] described a frequency pattern during a tonic-
clonic epileptic seizure from patients with muscle relaxation
from curarization and artificial respiration. After a short pe-
riod (which may be as short as1 − 3 s) characterized by
phase desynchronization they found an “epileptic recruiting

rhythm” at about10 Hz [8] with a rapidly increasing ampli-
tude dominating the EEG; later, as the seizure ends, there is a
progressive increase of the lower frequencies associated with
the clonic phase. About10 s after the seizure onset, lower
frequencies delta and theta (0.5 − 3.5 Hz) are observed that
gradually diminish their activity. The clonic activity corre-
sponds with generalized polyspike bursts at each myoclonic
jerk. Very slow irregular delta activity dominates then the
EEG, accompanied with a gradual frequency increase of the
theta (3.5− 7.5 Hz) and alpha bands (7.5− 12.5 Hz), indica-
tive of the end of the seizure.

Twenty tonic-clonic epileptic seizures from 8 epilep-
tic patients admitted for video-EEG monitoring were ana-
lyzed. The subjects consisted of 4 males and 4 females, age
30.87±15.27 (mean±SD; range6–51) with a diagnosis of
pharmaco-resistant epilepsy and no other accompanying dis-
orders. Scalp bimastoideal reference were applied following
the 10-20 international system. Each signal was digitized at
409.6 Hz through a 12 bit A/D converter and filtered with an
“antialiasing” 8 pole low pass Bessel filter, with a cutoff fre-
quency of50 Hz. Then, the signal was digitally filtered with
a 1–50 Hz bandwidth filter and stored, after decimation, at
ωs = 102.4 Hz (sample frequency) in a PC hard drive.

Recordings were done under video control to have an ac-
curate determination of the different stages of the seizure.
The different stages of EEG signals were determined by the
physician team. Off-line analysis was performed with char-
acterization of semiological features, timing of the onset and
definition, when possible, of the anatomical focus for each
event. Analysis for each event included60 s of EEG before
the seizure onset and120 s of ictal and post-ictal phases. All
180 s were analyzed at theC4 derivation, this electrode cho-
sen after visual inspection of the EEG (by the physician team)
as the one with the least number of artifacts. In all the cases,
the time intervals with artifact for pre-ictal stage were marked
by the physician team.

As an example, in Fig. 1 we present a scalp EEG sig-
nal corresponding to a tonic-clonic epileptic seizure recorded
over the right central region (C4 channel). In this record,
pre-ictal phase is characterized by a signal of50 µV . The
seizure starts at74 s, with a discharge of slow waves super-
imposed with low voltage fast activity. This discharge lasted
approximately11 s and with a mean amplitude of100 µV .
Afterwards the seizure spreads, making the analysis of the
EEG more complicated due to muscle artifacts. It is possible,
however to establish the beginning of the clonic phase at ap-
proximately120 s and the end of the seizure at158 s where
there is an abrupt decay of the signal amplitude.

3. Wavelet analysis

Wavelet analysis is a method which relies on the introduction
of an appropriate basis and a characterization of the signal by
the distribution of amplitude in this basis. If the basis is re-
quired to be a proper orthogonal basis, any arbitrary function
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FIGURE 1. Scalp EEG signal for an epileptic tonic-clonic seizure,
recorded at central right location (C4). The seizure starts at74 s
and the clonic phase at117 s. The seizure ends at158 s.

can be uniquely decomposed and the decomposition can be
inverted [3,4].

The correlated decimated discrete wavelet transform pro-
vides a nonredundant representation of the signal and its val-
ues constitute the coefficients in a wavelet series. These
wavelet coefficients provide full information on the signal in
a simple way and a direct estimation of local energies at dif-
ferent scales. Moreover, the information can be organized in
a hierarchical scheme of nested subspaces called multireso-
lution analysis. In the present work we employ orthogonal
cubic spline functions as mother wavelet,ψ. Among several
alternatives, cubic spline functions are symmetric and com-
bine in a suitable proportion smoothness with numerical ad-
vantages.

In the following the signal is assumed to be given by the
sampled valuesS = {s0(n), n = 1, · · · ,M}, correspond-
ing to a uniform time grid with sampling time (frequency)
ts(ωs). If the decomposition is carried out over all resolution
levelsN = log2(M), the wavelet expansion will read

S(t) =
−1∑

j=−N

∑

k

Cj(k)ψj,k(t) =
−1∑

j=−N

rj(t) , (1)

where the wavelet coefficientsCj(k) can be interpreted as
the local residual errors between successive signal approxi-
mations at scalesj andj + 1, andrj(t) is theresidual signal
at scalej. It contains the information of the signalS(t) cor-
responding to the frequencies2j−1ωs ≤ |ω| ≤ 2jωs.

Since the family{ψj,k(t)} is an orthonormalbasis for
L2(R), the concept of energy is linked with the usual notions
derived from Fourier’s theory. The wavelet coefficients are
given byCj(k) = 〈S, ψj,k〉 and the energy, at each resolu-
tion levelj = −1, · · · ,−N , will be the energy of the detail
signal

Ej = ‖rj‖2 =
∑

k

|Cj(k)|2. (2)

The total energy can be obtained in the fashion

Etot = ‖S‖2 =
−1∑

j=−N

∑

k

|Cj(k)|2 =
−1∑

j=−N

Ej . (3)

Finally, we define the normalizedpj-values, which represent
therelative wavelet energy

pj = Ej/Etot (4)

for the resolution levelsj = −1,−2, · · · ,−N . The pj ’s
yield, at different scales, the probability distribution for the
energy. Clearly,

−1∑

j=−N

pj = 1 (5)

and the distribution{pj} can be considered as a time-scale
density that constitutes a suitable tool for detecting and char-
acterizing specific phenomena in both the time and the fre-
quency planes.

The Shannon entropy [10] gives a useful criterion for an-
alyzing and comparing probability distribution. It provides a
measure of the information contained in any distribution. We
define theNormalized Total Wavelet Entropy(NTWS) [5, 6]
as

SWT = −
−1∑

j=−N

pj · ln[pj ]/Smax , (6)

with Smax = ln[N ] the normalization constant. The NTWS
appears as a measure of the degree of order/disorder of the
signal, so it can provide useful information about the under-
lying dynamical process associated with the signal. Indeed, a
very ordered process can be represented by a periodic mono-
frequency signal (signal with a narrow band spectrum). A
wavelet representation of such a signal will be resolved at
one unique wavelet resolution level, i.e., all relative wavelet
energies will be (almost) zero except at the wavelet resolution
level which includes the representative signal frequency. For
this special level the relative wavelet energy will (in our cho-
sen energy units) almost equal unity. As a consequence, the
NTWS will acquire a very small, vanishing value. A signal
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generated by a random process can be taken as representa-
tive of a very disordered behavior. This kind of signal will
have a wavelet representation with significant contributions
coming from all frequency bands. Moreover, one could ex-
pect that all contributions will be of the same level. Conse-
quently, the relative wavelet energy will be almost equal at all
resolutions levels, and the NTWS will acquire its maximum
possible value.

In order to follow the temporal evolution of the above
defined quantifiers (RWE and NTWS) the analyzed signal is
divided into non-overlapping temporal windows of lengthL
and, for each intervali (i = 1, · · · , NT , with NT = M/L).
Appropriate signal-values are assigned to the central point of
the time window. In the case of a diadic wavelet decomposi-
tion, the number of wavelet coefficients at resolution levelj
is two times smaller than at the previous,j+1, one. The min-
imum length of the temporal window will therefore include
at least one wavelet coefficient in each scale.

The wavelet energy at resolution levelj for the time win-
dow i is given by

E
(i)
j =

i·L∑

k=(i−1)·L+1

|Cj(k)|2 with i = 1, · · · , NT , (7)

while the total energy in this time window will be

E
(i)
tot =

−1∑

j=−N

E
(i)
j . (8)

The time evolution of the relative wavelet energy (RWE)
and the normalized total wavelet entropy (NTWS) will given
by

p
(i)
j = E

(i)
j /E

(i)
tot , (9)

S(i)
WT = −

−1∑

j=−N

p
(i)
j · ln[p(i)

j ]/Smax . (10)

4. Results and discussion

Wavelet analysis is a suitable tool for detecting and charac-
terizing specific phenomena in time and frequency planes.
Then, neuroelectrical activity (EEG time series) was trans-
formed to the time-frequency domain by means of the or-
thogonal discrete wavelet transform (ODWT) [5]. EEG spec-
tral analysis is traditionally performed by studying different
frequency bands with well defined boundaries. Some small
variations can be found, according to the particular experi-
ment under consideration. Absolute and relative intensities of
these bands are usually analyzed and correlated with differ-
ent pathologies. In this work we define six frequency bands
for an appropriate wavelet analysis within the multiresolu-
tion scheme to be used. We denoted these band-resolution
levels byBj (|j| = 1, · · · , 6). Their frequency limits, time
resolution, as well as their correspondence with traditional

EEG frequency bands, are given in Table I. Note that the co-
efficients were non-overlapping for each scale or frequency
band.

Electrical muscular activity can be associated with fre-
quencies in the range frequency bandsB1 andB2, at wavelet
resolution levelsj = −1 and−2, respectively [1]. Then the
contributions corresponding toB1 andB2, containing high
frequency artifacts related to muscular activity that blurred
the EEG, were not take into account for the evaluation of the
wavelet based quantifiers. Although high frequency brain ac-
tivity is thereby also eliminated, its contributions during the
ictal stage is not as strong as it is for middle and low frequen-
cies. This has been conclusively demonstrated in [11,12]. In
order to make a behavior “quantification” we divided the to-
tal signal in time-window intervals. In the present study the
time-window width employed was of256 data = 2.5 s.

Figure 2 displays the RWE without electromyographic
contributions (bandsB3 to B6 are displayed). We see that
the pre-ictal phase is characterized by a dominance of low
rhythmsB5 andB6. The seizure starts at74 s with a dis-
charge of slow waves superimposed to low voltage fast activ-
ity. This discharge lasts approximately 11 s and produces

TABLE I. Frequency boundaries (inHz) associated with the dif-
ferent resolution wavelet levelsj, and associated time resolution
∆T (in s) according with a sample frequency ofωs = 102.4 Hz.
The traditional EEG frequency bands correspond to the following
frequencies:∆ (0.5–3.5 Hz);θ (3.5–7.5 Hz)α (7.5–12.5 Hz)β
(12.5–30 Hz);γ (greater than 30 Hz).

Notation Wavelet Band EEG Band

ωmin ωmax j ∆T

B1 25.6 51.2 -1 0.0195 β, γ

B2 12.8 25.6 -2 0.0391 β

B3 6.4 12.8 -3 0.0781 θ, α

B4 3.2 6.4 -4 0.1562 θ

B5 1.6 3.2 -5 0.3125 δ

B6 0.8 1.6 -6 0.6250 δ

FIGURE 2. Relative wavelet energy’s time evolution for the fre-
quency bandsB3 (solid line), B4 (dotted line),B5 (dot-dashed
line), andB6 (dashed line). The vertical lines represent the start
and ending of the epileptic seizure.
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a marked “activity-rise” in the frequency bandsB5 andB6

(delta band), which reaches85% of the RWE. Starting at85 s,
the low frequency activity, represented in our analysis byB5

andB6, decreases abruptly to relative values lower than10%
and5% respectively, while the other frequency bands (theta
and alpha bands) become more important. We also observe
in Fig. 2 that the start of the clonic phase is correlated with
increased activity in theB4 andB5 frequency bands. After
140 s, when clonic discharges become less frequent, theB5

activity rises up again till the end of the seizure, when theB6

frequency activity also increases in very rapid fashion and
both frequency bands become clearly dominant. TheB5 and
B6 (delta band) frequency bands maintain this predominance
throughout the post-ictal phase.

We conclude from this example that the seizure was dom-
inated by the middle frequency bandsB3 andB4 (alpha and
theta rhythms,12.8 − 3.2 Hz), with a corresponding abrupt
activity decrease in the low frequency bandsB5 andB6 (delta
rhythm, 3.2 − 0.8 Hz) [11, 12]. Clearly, this behavior can
be associated with the putative “epileptic recruiting rhythm”
of [7, 8]. One important point to note is that our results were
obtained with scalp recordings and without the use of cu-
rare or any filtering method. Since intracranial recordings
are nearly free of artifacts, the fact that the same pattern [13]
was seen in both situations reinforces the idea that the results
obtained with scalp electrodes were not a spurious effect of
muscle activity.

For the data presented above, the ensuing NTWS, as a
function of time, is depicted in Fig. 3. The dotted line rep-
resents the time evolution of the NTWS (all frequency bands
are included), while the continuous line corresponds to re-
sults which ignore contributions due to high frequency bands
(B1 andB2). It is interesting to observe the behavior of the
NTWS during the first11 s following the seizure onset. We
see that in this time interval the NTWS exhibits increasing
values if all wavelet frequency bands are included. Compari-
son is to be made with NTWS values in the pre-ictal stage.

FIGURE 3. Normalized total wavelet entropy’s time evolution. The
dotted and the solid lines represent, respectively, the NTWS time
evolution with and without the contribution of the frequency bands
B1 andB2. The vertical lines represent the start and ending of the
epileptic seizure.

If the wavelet frequency bandsB1 andB2 (bands that mainly
reflect muscular activity) arenot included, the largest NTWS
value is lower than that for the ictal onset. Thus, the behav-
ior of the NTWS following the seizure onset is compatible
with an increase in the degree of disorder of the system in-
duced by a high frequency activity. Superimposed low and
medium frequency activities, however, are responsible for the
“remaining-signal’s” more ordered behavior.

The NTWS behavior after85 s (in both cases, with and
without inclusion of high frequency bands) is indicative of
the fact that the system exhibits a tendency to be more “or-
dered”. This tendency is better appreciated without muscle
activity. Moreover, note that the NTWS in the last case adopts
a minimum value around120 s, in coincidence with the be-
ginning of the clonic phase. The peak observed in the NTWS
at ∼ 140 s could be associated with the disappearance of
the epileptic recruitment rhythm. After this point, the NTWS
displays increasing values until158 s, which is defined as the
seizure ending time. We see that the NTWS for the post-ictal
stage displays almost constant values, comparable to those
obtained for the pre-ictal stage.

Similar analysis were performed in the other 19 EEG time
series taken in the channelC4, corresponding to 8 different
patients. In Figs. 4 and 5 time averages values (mean±SD)

FIGURE 4. RWE temporal average values (mean ± SD) over all
time windows forB5 andB6 (delta activity) corresponding to pre-
ictal and ictal stages, for the 20 tonic-clonic epileptic seizures ana-
lyzed. Electrical muscular activity have not taken into account by
seting to zero the contribution of frequency bandsB1 andB2 in
the evaluation of total wavelet energy. For the pre-ictal stage, time
intervals that present artifacts have been excluded.
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FIGURE 5. NTWS temporal average values (mean±SD) over all
time windows corresponding to pre-ictal and ictal stages, for the 20
tonic-clonic epileptic seizures analyzed. Electrical muscular activ-
ity have not taken into account by seting to zero the contribution
of frequency bandsB1 andB2 in the evaluation of total wavelet
energy. For the pre-ictal stage, time intervals that present artifacts
have been excluded.

over pre-ictal stage (excluding the intervals with artifacts)
and ictal stage corresponding to RWE for frequency bands
B5 andB6, and NTWS respectively, are shown. Electrical
muscular activity has been not taken into account by setting
to zero the contribution of frequency bandsB1 and B2 in
the evaluation of total wavelet energy. Epileptic recruitment
rhythm characterized by significant decrease in the RWE
corresponding to frequency bandB5 andB6 is observed in
all 20 tonic-clonic epileptic seizures analyzed (see Fig. 4).
Moreover, one can associate a more robust degree of order
to the EEG activity during the ictal than during the pre-ictal
stages (see Fig. 4), compatible with a dynamic process of
synchronization in the brain activity. This behavior may be
thought as induced by an hypothetical epileptic focus which
generates the observed epileptic recruitment rhythm.

One critical point is the possible distortion due to spa-
tial propagation of the seizure, since data from theC4 elec-
trode was analyzed and the sources of the seizures were
mostly in temporal locations (number of patients and source
of seizures: 1 right temporal; 3 left temporal; 2 bitemporal;
2 non localized - see Table I of our previous work [11]). In
order to overcome this, quantifiers based on ODWT were also
applied toT3 andT4 electrodes, obtaining similar results to
the ones reported withC4 electrode. That is even though
these electrodes present more artifact, compared withC4, the
“recruitment epileptic rhythm” was observed, as well as de-
creased WS values for the ictal stage compared with pre-ictal
one.

5. Conclusions

The present work describes the use of quantitative parame-
ters derived from the orthogonal discrete wavelet transform

as applied to the analysis of brain electrical signals. The rel-
ative wavelet energy provides information about the relative
energy associated with different frequency bands present in
the EEG and enables one to ascertain their corresponding de-
gree of importance. The normalized total wavelet entropy
carries information about the degree of order/disorder associ-
ated with a multi-frequency signal response. In addition, the
time evolution of these quantifiers gives information about
the dynamics associated with the EEG records.

In particular we have shown that the epileptic recruitment
rhythm behavior reported by Gastaut and Broughton [8] for
generalized epileptic tonic-clinic seizures is accurately de-
scribed by the relative wavelet energy concept. Moreover, the
present studies do not require the use of curare or of digital
filtering. In addition, a significant decrease in the normalized
total wavelet entropy was observed in the recruitment epoch,
indicating a more rhythmic and ordered behavior of the EEG
signal, compatible with a dynamical process of synchroniza-
tion in the brain activity.

One interesting point to note is that although the group-
ing in frequency bands implies a loss of frequency resolu-
tion, this procedure can be more useful than a study of single
frequencies or peaks, due to the relation between frequency
bands and functions or sources in the brain. In this context,
the relative wavelet energy allows for an easy interpretation
of several minutes of frequency variations in a single display,
something that is sometimes difficult to achieve with tradi-
tional scalp EEGs.

Being independent of the amplitude or the energy of the
signal, the wavelet entropy yields new information about
EEG signals in comparison with that obtained by using fre-
quency analysis or other standard methods. The normalized
total wavelet entropy has the following advantages: (i) In
contrast to the spectral entropy, the normalized total wavelet
entropy is capable of detecting changes in a non-stationary
signal due to the localization characteristics of the wavelet
transform; (ii ) In comparison with dimensional analysis and
Lyapunov exponents (which are only defined for stationary
behaviors), or with dimensionality and chaoticity measures
(stationary constraints removed), the computational time re-
quired for normalized total wavelet entropy studies is signifi-
cantly shorter. The algorithm for normalized total wavelet en-
tropy evaluation involves just the use of the wavelet transform
in a multiresolution framework; (iii ) Contaminating noises’
contributions (if they are basically concentrated in some fre-
quency bands) can be easily eliminated; and last but not least,
(iv) the normalized total wavelet entropy is parameter-free.

The use of the quantifiers based on time-frequency meth-
ods (like ODWT) can contribute to the analysis of brain elec-
trical responses and may also lead to a better understanding of
their dynamics. Certainly, the use of these quantifiers is not
intended to replace conventional EEG analyzes, but to pro-
vide further insights into the underlying brain mechanisms.
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