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Velocity autocorrelation function of a dispersion of heavy particles in a turbulent
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The effect of particle-to-particle interactions on the dispersion and on the velocity auto-correlation function of heavy particles in a turbulent
flow, is presented. The inter-particle collision process is based on a direct numerical simulation approach, which requires that all the particles
be simultaneously tracked through the flow field. In the first part of the paper, the turbulent characteristics of the velocity of non-colliding
heavy particles which disperse in a vertical, nearly isotropic, grid generated decaying turbulence air flow, are presented. In the second part
of this investigation, the solid particles are allowed to collide. The numerical predictions confirm the fact that the inter-particle collisions
promote a decrease of the lateral particle dispersion, the particle velocity autocorrelation function and the mean lateral velocity of the
particles.
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Se presentan los efectos de las interacciones entre partı́culas sobre la dispersión y sobre la funcíon de auto-correlación de velocidades de
part́ıculas pesadas en un flujo turbulento. Los procesos de colisión entre partı́culas est́a basado en una simulación nuḿerica directa, que
requiere que todas las partı́culas sean simultáneamente seguidas a través del campo de flujo. En la primera parte del artı́culo se presentan las
caracteŕısticas turbulentas de las velocidades de partı́culas pesadas y sin colisión que se dispersan en un flujo de aire turbulento decayente
vertical, casi iśotropo y generado por una malla. En la segunda parte de esta investigación se les permite a las partı́culas śolidas colisionar.
Las predicciones nuḿericas confirman el hecho de que las colisiones entre partı́culas promueve una disminución de la dispersión lateral de
las part́ıculas, de la funcíon de autocorrelación de velocidad y de la velocidad media lateral de las partı́culas.

Descriptores: Dispersíon de part́ıculas; funcíon de autocorrelación de velocidades; flujos turbulentos

PACS: 47.27.Gs; 47.55.Kf; 45.50.Tn

1. Introduction

The prediction of the dispersion and concentration of heavy
particles in a turbulent flow, is a very important task in some
industrial processes and natural phenomena. Examples are
the atmospheric spread of radioactive or chemical pollutants,
and the atmospheric transport of rain, sand, dust and ash.

When a particle with a diameter much smaller than the
Kolmogorov scale is transported in a turbulent flow, the in-
teraction between it and its surrounding fluid, may be in “one
way”. However as the particle mass loading ratio begins to
increase, the suspended heavy particles may also modify the
turbulent energy of the carrier fluid (“two-way coupling”).
When the particle number density increases further more,
the particles begin to dynamically interact between them. In
this situation, the inter-particle interaction may partially gov-
erns the dispersion and turbulent properties of the particulate
phase. This is the so called “four-way coupling”, which has
been the subject of much effort in the recent years [1–7].

Tanaka and Tsuji [1] used a direct approach (very sim-
ilar to the one presented in this paper) to determine the ef-
fect of inter-particle collisions on the velocity and concen-
tration of particles, in a fully developed vertical gas-particle
pipe flow. Tanaka and Tsuji [1] found that inter-particle col-

lisions, have a large effect on the dispersion of particles even
at small solids volume fraction. They also found that as the
solid loading increases, the particle velocity profiles become
increasingly isotropic.

The solids volume fraction, defined asα = nVp/VT ,
wheren is the total number of particles in the volumeVT ,
andVP is the volume of an individual particle, is a useful
quantity to determine the importance of the inter-particle col-
lisions on the properties of the dispersed particles. For ex-
ample, Tanaka and Tsuji [1] used in their predictions values
of α in the interval 1.0 x 10−4 ≤ α ≤ 1.0 x 10−2. In our
simulations we usedα = 0.0089.

Lavieville et al. [6] have reported that if standard La-
grangian approaches are used to predict the dispersion of
non-settling, colliding, elastic particles in a turbulent flow,
it results (as the collision frequency increses) in:

(i) an appreciable decrease of the effective particle disper-
sion coefficient,

(ii) a decrease of the particle kinetic energy and

(iii) a decrease of the fluid-particle velocity covariance.

They have mentioned that these effects appear, due to the de-
struction of the fluid-particle velocity correlation that takes
place during the collision process.
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More recently Sommerfeld [7] introduced a Lagrangian
one way model, that takes into account the correlation of the
velocities of colliding particles in a homogeneous isotropic
turbulence. Sommerfeld assumed that the velocities of col-
liding particles are correlated, since they are within the same
turbulent eddy during the collision process.

In this paper the effect of particle-to-particle interactions
on the dispersion and the velocity autocorrelation function
of spherical heavy particles that are transported in a verti-
cal decaying turbulence is presented. The calculation of the
interparticle collision process is based on a “one way”, stan-
dard, direct numerical simulation approach, which requires
that all the particles be simultaneously tracked through the
flow field [1]. In the momentum equations of the particles,
the body force and the drag force are included. The interparti-
cle collision detection model is based on a hierarchical Tree-
algorithm [8], which efficiently performs the search of the
nearest neighbors of each particle (the “pilot” particle). Once
the neighbors of the “pilot” particle are identified, a number
of transcendental equations are solved to predict the possible
collision time between the pair of particles. The fully elas-
tic post-collision position and the velocity components of the
colliding particles, are obtained by solving the impact equa-
tions under the assumptions of an instantaneous binary col-
lision and a very small contact surface [9]. The successive
velocity fluctuations of the fluid elements seen by a heavy
particle are generated (by using a Monte Carlo procedure) as
Gaussian random numbers with standard deviation given by
the local turbulent characteristics of the flow field [10,11].

The model is used to predict the dispersion of heavy par-
ticles, which are released, as an instantaneous “puff” into a
vertical, grid generated decaying turbulence air flow. In the
first part of the paper, the trajectory of each particle is calcu-
lated by assuming that the particles in the cluster do not col-
lide. The non-interacting particle results (obtained in a ver-
tical rectangular parallelepiped domain with lateral periodic
boundaries) compare successfully with the experimental data
published in the literature [12]. In the second part of the paper
the particles in the instantaneous “puff” are allowed to col-
lide. In order to promote a great number of inter-particle col-
lisions and to quantify the real influence of this phenomenon
on the particle dispersion and on the particle velocity autocor-
relation function, the computational domain was also defined
as a vertical rectangular parallelepiped with lateral periodic
boundaries. The numerical predictions confirm the fact that
the inter-particle collisions promote a decrease of the follow-
ing:

(i) the lateral particle dispersion,

(ii) the particle velocity autocorrelation function and

(iii) the mean lateral velocity of the particles.

2. Lagrangian Approach

In the numerical predictions, it is assumed that the drag and
the gravity are the only forces acting on the spherical parti-

cles. Hence, in order to know the trajectory of each individual
particle, we solve the following set of Lagrangian equations:

duip

dt
=

ui − uip

τp
− δi2g

(
1− ρ

ρp

)
, (1)

whereui are the instantaneous velocities of the fluid anduip

are the instantaneous velocities of the particles (i=1,2,3). The
instantaneous velocity of the fluid is defined asui = U i +u

′
i.

The dynamic characteristic time of the particle is defined as
τp = mp/(3πµfdp), whereµ and ρ are the dynamic vis-
cosity and density of the fluid respectively,g is the gravity
acceleration, andρp, mp anddp, are the density, mass and
diameter of the particle respectively. The non-linear drag co-
efficient is given byf = 1 + 0.15Re0.687

p , where the par-
ticle Reynolds number is Rep = ρdpUrel/µ, and Urel is
the relative velocity between the particle and its surrounding
eddy [10].

The fluid velocity fluctuations (u
′
i) seen by the parti-

cles along their trajectory, are generated as Gaussian ran-
dom numbers with standard deviation given by the local
variancesu′2i [11]. A standard Monte-Carlo process, with-
out memory between two succesive fluid velocity fluctua-
tions seen by a particle, has been used. The interacting time
(particle-eddy), also known as eddy-life time, and the length
scale of the eddy surrounding each particle, are determined as
functions of the local turbulent characteristics of the flow,i.e.,
TI = 0.3κ/ε andLI = (2κ/3)1/2

TI , whereκ and ε are
the turbulent kinetic energy and its dissipation rate respec-
tively [10].

For small time intervalst (less than the eddy-life time and
less than the collision time with another particle), the solution
of the Eqs. (1) is as follows:

uip = ui − (ui − uipo) exp (−t/τp)

−δi2g

(
1− ρ

ρp

)
[1− exp (−t/τp)] τp, (2)

whereuipo are the initial velocities of the particles (att = 0).

3. Collision Detection Algorithm

The collision detection algorithm is based on the solution of a
transcendental equation which is a function of the relative po-
sition between two particles (a “pilot” particle and its neigh-
bor). If one zero (collision time) of the transcendental equa-
tion is found, it means that the pair of particles will collide af-
ter this time. A hierarchical Tree algorithm (Tree-structured
data) is used to efficiently search the particles that are located
in the near neighborhood of the “pilot” particle [8]. In the
detection collision algorithm it is assumed that after a small
time incrementt, the “pilot” particle is at the new position
c = xo +up t, wherexo is the particle initial position vector
andup is the particle velocity vector. It is also assumed that
after the same small time incrementt, the neighbor particle is
at the new positionc = xo +up t, where the overbar refers to
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the neighbor particle. In the numerical procedure a collision
occurs whenc+d = c, where the magnitude of the vectord
is the sum of the radii of the particles| d |= rp + rp. Using

the trajectory equations, the collision condition equation and
the velocity Eqs. (2), the following transcendental equation
is formulated:

[
t (u− (u− upo) exp (−t/τp)− u + (u− upo) exp (−t/τp)) + (xo − xo)

]2

+

[
t

(
v − (v − vpo) exp (−t/τp)− g

(
1− ρ

ρp

) [
1− exp (−t/τp)

]
τp

−v + (v − vpo) exp (−t/τp) + g

(
1− ρ

ρp

) [
1− exp (−t/τp)

]
τp

)
+ (yo − yo)

]2

+

[
t (w − (w − wpo) exp (−t/τp)− w + (w − wpo) exp (−t/τp)) + (zo − zo)

]2

= (rp + rp)2. (3)

Here,xo, yo, andzo are the components ofxo; upo, vpo, and
wpo are the components ofup; andu, v, andw are the compo-
nents ofu the velocity of the neighbor fluid. Similar notation
is used for the neighbor particle. The solution of the Eq. (3)
provides the collision time between the “pilot” particle and
the neighbor particle.

4. Collision Model

Once the minimum collision time has been found (between
all the collision times detected), the new position of all the
particles in the flow field is calculated by using, as time in-
crement, the minimum collision time. After this time, two
particles are in contact, so the collision model is applied. In
the collision model it is assumed the following:

(i) the impact has a short duration time,

(ii) sudden changes occur in the velocities of the particles,

(iii) two ideal elastic, rough spherical particles collide (bi-
nary collision assumption) with velocitiesv1 andv2

(the subindex 1 is for the “pilot” particle and the
subindex 2 is for the neighbor particle) and

(iv) the kinetic energy and the linear and angular momen-
tum are conserved.

After the collision, the velocities of the particles arev′1 and
v′2. The state of the particles after the collision is obtained by
solving the following equations of impulsive motion [1,9]

m1v′1 =m1v1 + δp,

m2v′2 =m2v2 − δp,

~ω′1 =~ω1 +
r1

r1 + r2
r12 × δp/I1,

~ω′2 =~ω2 +
r2

r1 + r2
r12 × δp/I2, (4)

wherem1, m2, r1, r2, I1 andI2 are the masses, radii and mo-
ments of inertia of the particles 1 and 2. The vectorr12 cor-
responds to the vectord of the previous section, hence when
the particles are in contact, this vector joins the centre of the
particle 1 with the centre of the particle 2. The vectorδp is
the collision impulsive force. This force has two components

(i) the normal component (parallel to the vectorr12) and

(ii) the tangential component (perpendicular to the vector
r12).

For ideal rough spheres, the tangential component is given by

δp⊥ =
(

4
7

) |Vimp⊥
12 |

1/m1 + 1/m2
. (5)

In the Eq. (5) it has been assumed that the magnitude of the
slip velocity vector after the collisionVimp⊥′

12 is equal to the
negative of the magnitude of the slip velocity vector before
the collision (rough spheres),i.e.,

|Vimp⊥′|
12 = −|Vimp⊥

12 |. (6)

5. Results

The Lagrangian approach is used to predict the dispersion
of heavy particles (without and with collisions) in a vertical,
nearly isotropic, grid generated, homogeneous, decaying tur-
bulent air flow [12]. In the experiment of Snyder and Lum-
ley (1971), particles of different size and material (ranged
from light to heavy particles, see Table I) were injected at the
positiony/M=20, wherey is the distance from the grid and
M=2.54 cm is the grid spacing. The experimental air flow
turbulence data are the following:

(1) the mean vertical upward (streamwise direction) air ve-
locity V = 6.55 m/s,
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(2) the mean lateral and transverse velocities
U = W = 0 m/s,

(3) the energy decay in the streamwise direction(
V

)2
/v′2,

(4) the energy decay in the lateral and transverse direction(
V

)2
/u′2 =

(
V

)2
/w′2,

(5) the turbulent kinetic energyκ and

(6) the turbulent dissipation rateε.

In order to predict the dispersion, the lateral velocity de-
cay and the autocorrelation function of the particles, 12,800
heavy particles were instantaneously released (with an ini-
tial separation between them of one particle diameter) at the
position y/M=20 (y=0.508 m). The particles are simulta-
neously tracked along the vertical streamwise direction from
y/M=20 toy/M=171. In the numerical predictions, the air
density and the kinematic viscosity areρ=1.205 Kg/m3 and
ν=14.93 x 10−6 m2/s respectively. The density and the diam-
eters of the solid particles are shown in Table I.

Figure 1 shows the lateral particle dispersion and the fluc-
tuating lateral particle velocity decay for non-colliding parti-
cles. It may be observed that the lateral dispersion is in agree-
ment with the experimental data. It is shown that the lateral
fluctuating velocity of the heavier particles (cooper and glass)

FIGURE 1. (a) Lateral particle dispersionX2. (b) Fluctuating lat-
eral u2

p particle velocity. Both figures without collisions. Com-
parison between experimental data (symbols), and numerical pre-
dictions (lines). Copper: dotted line and (x), Glass: dashed line
and (o), Corn pollen: dashed-dotted line and (+), Hollow glass:
solid line and (*).

is well predicted after 400 ms. It means that at short distances
from the grid, the energy of the heavier particles in the exper-
iment was higher than in the simulations. It may be argued
that in the experiment, the particles at the point of injection
probably had an initial lateral movement. It is observed that
for the lighter particles (hollow glass), the computations pro-
vide higher lateral fluctuating velocity A reason of this be-
haviour probably is due to the Monte Carlo model used to
generate the fluid velocity fluctuations of the fluid elements
seen by the particles.

Figure 2 shows the numerical simulations of the lateral
particle dispersion and the fluctuating lateral particle veloc-
ity for non-colliding and colliding particles. It is clearly ob-
served that, due to the effect of the collisions, the dispersion
of all the particles is reduced. It is also observed that (when
the collisions are included) the lateral fluctuating velocity is

TABLE I. Diameter and density of the particles used in the experi-
ment of Snyder and Lumley (1971)

Hollow glass Corn pollen Glass Copper

Diameter (µm) 46.5 87.0 87.0 46.5

Density (Kg/m3) 260 1000 2500 8900

FIGURE 2. (a) Lateral particle dispersionX2. (b) Fluctuating
lateralu2

p particle velocity. Both figures without and with colli-
sions. Numerical predictions without collisions (lines), with colli-
sions (symbols). Copper: dotted line and (x), Glass: dashed line
and (o), Corn pollen: dashed-dotted line and (+), Hollow glass:
solid line and (*).
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FIGURE 3. Particle velocity autocorrelation coefficientR11 (see Eq.(7)) at three positions along the longitudinal direction (y/M=41, 73
and 171). Corn pollen particles without collisions (dashed-dotted line) and with collisions (+). Total number of binary collisions 49,769.

FIGURE 4. Particle velocity autocorrelation coefficientR11 (see Eq.(7)) at three positions along the longitudinal direction (y/M=41, 73
and 171). Copper particles, comparison between numerical predictions (without collisions dotted line, with collisions (x)) and the analytical
solution without collisions (solid line) [13]. Total number of binary collisions 42,307.

remarkably reduced for the heavier particles (inertia effects).
It is interesting to observe that for the hollow glass particles,
the lateral velocities with and without collisions are almost
the same, it means that after the collisions, the hollow glass
particles immediately respond to the velocity fluctuations of
the surrounding fluid, so the reduction of the lateral disper-
sion is mainly due to the restriction of the lateral movement
imposed by the presence of the neighbours (collisions).

The lateral particle velocity autocorrelation coeffi-
cientR11, for non-colliding and colliding particles has been
calculated at three positions along the longitudinal direc-
tion y/M=41, 73 and 171. The autocorrelation coefficient
defined as

R11 =
up (∆t)up (0)

u2
p (0)

(7)

is shown in Figs. 3 and 4 for corn pollen particles and copper
particles respectively. Both figures show that the correlation
functions are not self similar along the vertical streamwise
direction. It is observed that as the turbulence kinetic en-
ergy decays (larger distance from the grid) the computations
predict an increase in the characteristic correlation time. A
comparison of both figures shows that as the dynamic charac-

teristic time of the particles is increased a higher correlation
is obtained. It is interesting to observe that the effect of the
collisions is to reduce the autocorrelation function. Figure 4
also shows the analytical results which were obtained by in-
tegrating the equations describing the local particle velocity
correlations (without collisions). These equations were de-
veloped by Nir and Pismen [13] under the assumption that
the characteristic turbulent fluid velocity is much lower than
the deterministic particle velocity relative to the fluid owing
to the gravity force. The analytical results for copper particles
without collisions, were obtained by using a modified particle
time constantγ=22.22 s−1. In order to calculate the three-
dimensional spectrumE(κ) that appears in the local particle
velocity correlations equations [13], the following empirical
constants,a1 = 270, a2 = 1700 anda3 = 10 were used. It is
observed in Fig. 4 that the analytical results also confirm the
fact that the correlation functions are not self similar.

6. Conclusions

A direct numerical simulation model for the prediction of
particle dispersion has been used to study the effect of inter-
particle collisions on the dispersion, fluctuating velocity and
correlation velocity of particles that are transported in a verti-

Rev. Mex. F́ıs. 50 (2) (2004) 156–161



VELOCITY AUTOCORRELATION FUNCTION OF A DISPERSION OF HEAVY PARTICLES IN A. . . 161

cal decaying turbulent flow. The results confirm the fact that
when a standard Lagrangian approach is used to predict the
dispersion of colliding, elastic, rough particles it results in an
appreciable decrease of the effective particle dispersion co-
efficient, a decrease of the particle velocity fluctuations and
a decrease in the characteristic correlation time. We should

conclude that the numerical model developed during this in-
vestigation, may be used to verify the analytical models (of
non-colliding and colliding particles) aimed to obtain the La-
grangian particle velocity correlation tensor, the fluid velocity
correlation tensor at the points lying on a particle trajectory
and the relative fluid-particle velocity correlation tensor.
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sis, Divisíon de Estudios de Posgrado Facultad de Ingenierı́a
Universidad Nacional Autónoma de Ḿexico (1997).
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