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Natural time series usually show either a combination of periodic phenomena with stochastic components or chaotic behavior. In many ¢
when nonlinear characteristics are computed, they will essentially indicate the most remarkable effects and the results will underestima
overestimate the real complexity of the system. For that reason signal separation of the frequency bands representing well known phenor
like periodic or almost periodic behaviors, allows comprehension of the hidden nonlinear or stochastic phenomena involved. In this w
a signal separation method based on trigonometric wavelet packets is described. The method has been applied, as an example, to
series of daily mean discharges of the Atuel river in Argentina, that presents strong annual and semiannual oscillations due to meteorolo
effects. The correlation dimension and the maximum Lyapunov exponent of the residual time series were obtained taking away its kni
almost periodic components.

Keywords: Time-frequency signal analysis; wavelet analysis; signal separation; meteorological time series.

Las series de tiempo representan una comhimage fetdbmenos petidicos y componentes estmticas 0 comportamiento@#co. En mu-
chos casos, cuando se computan cuantificadores no lineales para dichas series temporales, es dead¢seaespleen las caradsticas

mas notables de las mismas y que sus resultados no subvaloren o sobrestimen la complejidad real del sistema.oRpleesepaaon

de bandas de frecuencia que representabniemos bien conocidos, tales como el caso de comportamientésipes o cuasi-pebdicos,
permite la comprenén de fedmenos no-lineales y/o fémenos estdisticos ocultos involucrados en la ge/-nebadie dichas series tem-
porales. En este trabajo uréindo de separam de s@ales basado en paquetes wavelet trigogtoicos es descrito. El @odo ha sido
aplicado, como un ejemplo, a una serie temporal de descargas media diariagddeAtuel en Argentina. Esta serie temporal presenta una
fuerte osciladdn anual y semestral debido a efectos met@giobs. La dimens$in de la correladin y el maximo exponente de Lyapunov
correspondientes a la serie de tiempo residual fueron obtenidos luego de eliminar las componentesadiaasmenmocidas.

Descriptores:Analisis de sBales en tiempo-frecuencia;aisis de wavelets; separaai de s@ales; series temporales meteégitas.

PACS: 05.45.Tp; 02.70.Hm; 92.40.Fb

1. Introduction be masked by them. In the evaluation of nonlinear metric pa-
rameters this situation is reflected, for instance, in a decreas-

Time series corresponding to observable data of natural syd?9 Value of the correlation dimension and Lyapunov expo-
tems are frequently analyzed by a combination of linear andents- The§e facts are re!ated to th? algorithms employed for
nonlinear dynamics. As Kantz and Schreiber emphasize ine evaluation of the non_llnear metrlc_ p_arameters a_lnd arein-
the introduction of their book [1], linear methods interpret dependent of the Intrinsic char_acterlstlcs of the signals. It
all regular structures in a data set as a set of pure frequeﬁrJuSt be remarked that, in practice, many nophn_ear phenom-
cies. That means that the intrinsic dynamics of the system iEN@ are incorrectly evaluated when the periodic effects are

governed by the linear paradigm: small causes lead to sma?ltIII present.
effects. Since linear equations with constant coefficients can
only lead to exponentially growing (or decreasing) or peri-  The yse of traditional filtering methods, such as signal
odically oscillating functions, all the irregular behaviors of separation methods, is specially difficult when we are trying
the system are usually attributed to some random external i_% clean processes associated with low and medium frequen-
put. Now, chaos theory has taught us that random input igjes pecause the traditional filtering methods usually drag in
not the only possible source of irregularity in the system'sy,q hrocesses unwanted portions of the signal. In particular,
output: nqnlmear chaotic SYSFeT“S can produce VEery IMMeQUge yse of band-pass filters based on the Fourier transform in-
lar data with purely deterministic equations of motion. Of y,4,ces modifications in the signal (ringing effects, spurious
course, a system with both, nonlinear and random inputs, Wilsgjjiations, etc.) [1-3]. While filtering and signal process-
most likely produce irregular data as well. ing have a long history for linear systems, new techniques
Meteorological time series are typical examples of ob-are required for the analysis of signals generated by nonlin-
servational data which usually present strong almost periodiear systems, because traditional filtering processes alter the
components. In consequence the nonlinear contributions mayonlinear metric invariants [4-10].
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Wavelet analysis is a method which relies on the introducfor detecting and characterizing specific phenomena in time
tion of an appropriate Hilbert space basis and spans the signahd frequency planes. The wavelet is a smooth and quickly
in it. If the wavelets are required to form a proper orthogo-vanishing oscillating function with good localization in both
nal basis, it has the advantage that an arbitrary function caflequency and time. A wavelet family, ; is the set of ele-
be uniquely decomposed and the decomposition can be impentary functions generated by dilations and translations of
verted [11-18]. At this point we can also refer to Mallat [16]. a unique admissible mother wavelgft):

He proved that in a one dimensional signal denoising pro-

cess (assuming additive noise), an orthogonal wavelet based Yan(t) = |a|_1/2¢ (t—b) 1)
method is better than a method based on Fourier transforms, ’ a ’

because wavelets do not change the original signal [16]. For

this reason we use a signal separation method based on d§¥h€rea, b € R (the set of real numbers), 7 0 are the scale
thogonal wavelets: we try to analyze the remaining signaRnd translation parameters respectively, afsthe time.

with a minimum modification in the associated dynamics. The correlated decimated discrete wavelet trans-
Observe that we have not yet assumed anything about tHeérm (DWT) provides a nonredundant representation of the
characteristics of this signal. On the other hand, if the asscsignals, and the valuesS, 1,5) constitute the coefficients
ciated dynamics is a chaotic one, the use of non orthogonéﬂ‘ a wavelet series. These wavelet coefficients provide rele-

wavelets as a signal separation method, like traditional filtersyant information in a simple way and a direct estimation of
could also change the dynamics [1,2,4-10]. local energies at the different scales. Moreover, the infor-

As an example we show how a periodic low frequencymation can be organized in a hierarchical scheme of nested
signal with strong intensity, added to a chaotic Lorenz timeSubspaces called multiresolution analysisif{R). In the
series, modifies the values of the correlation dimensios) (  Present work, we employ orthogonal cubic spline functions
and of the maximum Lyapunov exponent,{) computed for @S mother wavelets. Among several alternatives, cubic spline
the corresponding chaotic attractor associated with the purginctions are symmetric and combine in a suitable proportion
signal. Both invariant parameters were computed with differ-Smoothness with numerical advantages. They have become a
ent metric algorithms usually employed for this purpose inSuitable tool for representing natural signals [26,27].
the literature [19-23]. To avoid this kind of signal contamina-  In the following we assume that the signal is given by the
tion, a signal separation method with almost periodic composampled value$sy(n), n = 1,---, M}, which correspond
nents based on trigonometric wavelet packets [24,25] is introto an uniform time grid with sampling tima¢. If the decom-
duced. An example applies this procedure to a natural tim@osition is carried out over all resolution leve¥s= In, (M),
series with strong periodic effects (annual and semiannuafe wavelet expansion will be
corresponding to the daily mean discharges of the Atuel river . i
in Argentina. These two almost periodic effects are removed _ _
using the proposed method based on trigonometric wavelet S(t) = Z > CiRyin®) = 3 (1) @
packets. The signal separation process lets us observe a con- =Nk

siderable increment in the values obtained for the correlatioghere the wavelet coefficient; (k) can be interpreted as the
dimension and for the maximum Lyapunov exponent for theoca| residual error between successive signal approximation
residual dynamical system. at scaleg andj + 1, andr;(¢) is the detail of the signal at

This paper is organized as follow: Sec. 2 is devoted to acale;. It contains the information of the signal(t) corre-
exposition of the signal separation method. In Sec. 3 we desponding to frequenciedin < |w| < 29+!7.

scribe theoretical examples. We analyze the consequences of |, the wavelet multiresolution framework it is possi-

overimposing a strong periodic signal to a chaotic one genelsie 1o evaluate the energy corresponding to each level,
ated by the integration of the Lorenz equations. We diSCUS§ 4t can be used for the detection of the characteristic
an example of the signal separation method and compute o ents [24,25]. Since the familn, x(¢)} is anorthonor-

and A, over the natural time series before and after signaly, 5 pasis forL?(R), the concept of énergy is linked with the

j=-N

separation. Sec. 4 presents our conclusions. usual notions derived from Fourier theory. The wavelet co-
efficients are given by, (k) = (S,v, ) and the energy, at
2. Time—frequency analysis each resolution level = —1,---, =N, will be the energy
of the detail signal

2.1. Wavelet transform
. o | Ej=rl* =) 1C;i (k)% (3)
Wavelet analysis is a method which relies on the introduc- %
tion of an appropriate basis and a characterization of the sig-
nal by the distribution of amplitude in this basis. If the ba- The total energy can be obtained as
sis is required to be a proper orthogonal basis, any arbitrary
function can be uniquely decomposed and the decomposition B = [SIP =) > IC;()P=>_E;. (4
can be inverted [11-18]. Wavelet analysis is a suitable tool J<0 k §<0
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2.2. Trigonometric Wavelet Packets average all the involved frequencigsr < |w| < 2917 and

. . ) ] we shall not have explicit information about stationary struc-
As is well known, wavelet analysis providestiane-scale tres.
successive decomposition of the signal at different scalessjon. The main idea is to decompose the componerits in

At each step, the corresponding details are separated prgprtions, each one covering a longer interval. We define any
viding useful information for detecting and characterizing portion or local signal as
short time phenomena or abrupt changes of energy. However,
since wavelets are not well defined in frequency, they are not (m.1) 427 -1
well suited for describing and characterizing stationary phe- ) = Y Gk (), (8)
nomena or for detecting time-frequency structures. This is k=L
an important limitation because significant events often in-Where the parameters and! are chosen so thaﬁm’l)(t)
volve joint variations of time and frequency. Wavelet packetscovers the full time intervat 71 < ¢ < 2-3(i 4 2™), which
analysis, a natural extension of wavelet analysis, overcomes’ " -ive long interval of Ienath"?*j Note that, we de-
this problem. Moreover, this technique allows a time-scale-fined the local wavelet packet wigh' bas.ic functionss, 4 (£)
frequency description of the signals. fork —1.... 14+9m_1 gk

A family of trigonometric wavelet packets is a collection Nowywe éefine the sét of fundamental frequencies
of elementary signals obtained from appropriate linear com- '
bination of wavelets [24,25]. They look as locally oscillating Wi =T+ 2h7w) 2™, (9)
wave forms resembling modulated sines or cosines. More-
over, they can be organized as an orthonormal basis of thgith 0 < » < 2™~! and associated Fourier mati ™
space of finite energy signals. The main advantage of usgiven by

ing wavelet packets is that standard wavelet analysis can be

extended with a flexible strategy. So, the description of the sin[r(k + 3)], if n=1;

given signal can be well adapted to the significant structures. 03 fot L it i )
Several families of wavelet packets have been proposed in , (m)_,- = 2 coslwmn (k+3)], ifnis even; (10)
the literature [11-18]. Here we apply trigonometric spline mk ok sinfwmn(k+1)], if nis odd;
wavelet packets [24,25]. First, let us have a brief review of mh 2/ '

the proposed technique. cos2m(k+1)], if n=2";

Given a finite energy signaly(¢), using spline wavelet
analysis we can successively decompose it with the followwith 1 < n < 2™,0 < k < 2™ andh = [n/2], where[ ]

ing recursive scheme: denotes the integer part. It can be demonstrated\H&Y is
a2™ x 2™ dimensional orthogonal matrix [24,25].
sj+1(t) = s;(t) @ rj(t), (5) Then, we can define the new set of elemental functions
in order to expand(.m’”(t) as a2™ dimensional vector ob-
for each scalgy = 0,—1,---,—N. As we already men- i5ined from J

tioned, the components;;(t) and s;(¢) summarize the
information of the signal corresponding to the frequency (m.1) (m)
bands2/tlr < w < 277 and 27 < w < 29~ 'r, respec- O (1) = Z My $ik(t), (11)
tively. This means that the decomposition at leyebnsists k=l

of filtering the components; . (t), giving the details corre- for1 < n < 2™,

+2m—1

sponding to the remaining frequenci#sr < |w| < 2717, Clearly, these functions constitute a new local or-
The component;(t) summarizes this information and we thonormal basis covering the interval under analysis
can describe the signél(t) in term of detail signals as 2791 <t <279(l + 2™). Therefore we can give a second de-
scription of the local signal as
S(t) =2 r(t). ©)
7<0

gm
. o Py = ST Dy el (). (12)
The detail components can be described in terms of n—1

wavelets atoms . - .
The corresponding coefficients are easily computed as

ri(t) = D Ci(k)uir(t). W) , L2

2 Di"™(n)y = N MUY Ci(k),  (13)
Since each wavelet; ;. (t) = 2//2(27t — k) is well local- h=l
ized in the interva =7k < ¢t < 279(k + 1), the correspond- wherel < n < 2™,

ing coefficientC; (k) summarizes the local information of the The trigonometric wavelet packeﬂﬂ’”(t) have zero
detail. However, as we mentioned above, these coefficientsiean, oscillate on the intervalii < t < 277(1 4+ 2™)
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and decay with exponential ratio. Moreover, their wave- e Toreconstruct with this and the other wavelet levels the
forms resemble modulate sines or cosines. In fact, it can be total signal, without the periodic portion.
demonstrated that each Fourier transfcﬁjﬁ’l)(w) is cen-
tered at the fundamental frequeney,,, whenn = 2h or
n = 2h+ 1. Moreover,ééfﬁ’”(w) = 0 on the other fun-
damental frequencies and has a fast decay outside the range . Synthesized example

2 < |w| < 29F g,

In other words, the coeﬁicienl{sD§m’l)(n)} can be con- To test the hypothesis of this work about the incidence of
sidered as theliscrete Fourier spectrunfor the local signal the periodic or almost periodic effects and the metric algo-
r§m,l)(t). Summing up, we can resume in the double set ofithms of the nonlinear dynamics over time series, we used
the Lorenz dynamical system. We integrated the system us-
ing a fourth-order Runge-Kutta with adaptative step size con-
trol [28] for chaotic parameterdy = 45.92, ¢ = 16.0 and
b = 4.0) adding to the result a strong periodic signal. In
Fig. 1 we show the convergence 4f,, with the iteration
process: the solid line corresponds to the exponent for the

mals Lorenz systema-component)A,,, = 2.19, performed us-
ri(t) = Z 7"](‘ l )< t), (14) ing the m):)difie(j(WOIf glgorith)m for time ser?es [21-23]. We
i can see that the value obtained corresponds to the theoretical
where the sequence of indgwerifiesl; ;1 = [;+2™:. Then,  predictionsA,, = 2.16 obtained with the Wolf algorithm for
we implement the above referred time-scale-frequency tecterdinary differential Egs. [21].
nique for each local signal. In the same figure but in dot-dashed and dashed line we

The wavelet packet&;TL’l) have their time definition in  display the convergence df,, evaluated for the same signal
the interval2 =71 < t < 277(I + 2™), that we can make as plus a periodic component (sinusoidal signal with frequency
small as the sample rate allows us to do. We use this charage = 1.0) with an amplitude twice A,,, = 0.29) and four
teristic to separate only the undesirable frequencies. So, corfimes as large as the Lorenz signal,( = 0.008), respec-
bining the expression given by Eq. (7) with the pacﬂéég’l) tively. In the last two cases the largest Lyapunov exponents
of our interest, we build the quasimonofrequency time serie§0 to zero as they would in a quasiperiodic situation, indi-
with the wavelet packet coefficients and the correspondingating that the algorithm detects only the strong perturbation

inverse transformation. This is feasible because in all casdgcluded. The original Lorenz system and the perturbed time
we used orthonormal bases for our calculations. series were constructed with the length of the natural time

series to be analyzed in the next section. The election of the

3. Numerical evaluation

coefficients{C; (k), D§"’”” (n)} the time-scale-frequency in-
formation of the local signaij(.m’l)(t).

Finally, to analyze the complete function(¢), that is,
the details at levef, we choose some partition in local com-

ponentsrj(.mi’li) (t), according to the structure of the signal

2.3. Signal separation scheme

To sum up, the signal separation method that we propose con
sists of the following steps:

e To apply the DWT to the data series under study, ac-
cording to Eq. (2), obtaining the signal expansion in a
wavelet basis.

Biggest Lyapunov

e To calculate, with the computed wavelet coefficients,
the corresponding energies for each frequency band
and along the series [see Eq. (3)].

e To identify the bands with higher energies and the 0 10 20 30 40 50 60 70 80
wavelet resolution level (these bands will be in general Iteration
associated to “almost periodic” phenomena). FIGURE 1. Convergence of maximum Lyapunov exponent,

. . . ..., withthe iteration process for its evaluation according with the mod-
* Todivide a; wavelet level energy band just identified iy wolf aigorithm for time series [21-23]. Solid line: Lorenz

in wavelet packets according to Eq. (13) (note that eachyynamical system with chaotic parameterscomponent). Dot-

packet corresponds to a narrow frequency band, whosgash line: Lorenz dynamical system plus a sinusoidal signal of

width can be reduced when increasing the number ofrequencywo = 1.0 and an amplitude twice the amplitude of the

packets). Lorenz system. Dash line: same as before but with a sinusoidal

signal with an amplitude four times the amplitude of the Lorenz

e To eliminate the chosen packets and then to reconstruignal. The horizontal lines represent the convergent value for the

the corresponding wavelet packet without them [seeahree cases considered; they &g = 2.19, 0.29 and0.008 re-

Eq. (14)]. spectively.
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Wolf algorithm [21-23] is due to the fact that it is the most could be present due to the influence of ENSO events. Fre-
frequently employed algorithm in the analysis of natural timequencies found in studies of ENSO signal include a broad
series. Similar results were obtained using the method prdsand of the spectrum. Highest frequencies are given by bien-

posed by Rosensteet al.[29]. nial annual variability (around8—35 months) in the South-
ern Oscillation (SO) and in the SSTs in the Equatorial Pa-
3.2. Natural time series cific Ocean, according to Rasmunssairal. [34]. Other low

frequencies belonging to the band arow2d88 months are
As an application of the signal separation method proposedlso presentin the spectral analysis of atmospheric or oceanic
and to analyze the remaining dynamics of a system with th@ariables influenced by ENSO. This band corresponds to a
characteristic mentioned above, we used a time series of dailyurrent period of the event, because a characteristic of the
discharges of the Argentinian Atuel river. Argentinian rivers ocean-atmosphere system is that the system oscillates suc-
whose sources are in the Andean Cordillera are extremelgessively from one extreme to the other of the signal, go-
important for the economic development of the region (northng from the warm SST anomaly and negative phase in SSO
of 38° S). The climate of that area is arid or semi-arid to the cold SST anomaly and positive phase in SSO, as was
and river discharges are used for hydropower and for irrigamentioned by Philander [34].
tion. The regime of these rivers is governed by strong an-  The time series includes the period from Januigry9 to
nual waves: minimum discharges take place in winter andune1995, that is,M = 10228 data points, and is shown in
maximum discharges in summer. Water comes almost excluFig. 2. This signal is long enough for the metric algorithms of
sively from melting of snow accumulated in the high peaks ofnonlinear dynamics to be applied. We tested the stationarity
the Cordillera during snowstorms that occur mainly betweerof the series with a procedure based on the weak stationarity
mid-autumn and the beginning of spring, and whose maximariteria introduced by our group [35]. Figure 3a shows the
are in winter [30]. The contribution of rains to dischargesspectrum of this signal and the high peaks corresponding to
is almost nil, especially for points located at or upstreamthe annual, = 0.0027 1/day) and semiannual periodic-
the foothills, because moisture from the Pacific Ocean canity (w;, = 0.0054 1/day) are clearly spotted. Note that these
not cross the high peaks of the Cordillera and moisture fronpeaks have a low but finite frequency dispersion.
the Atlantic Ocean yields only isolated connective storms in  after a multiresolution analysis using the wavelet trans-
summer in the plains. .The area of g]amers causes a regula\:‘orm and in agreement with a daily sampling rate . =
ing effect over the regime of these rivers, because blizzards ) 1 /day), the annual wave appears at leyet —8 and the
act as regulating storage places that inhibit melting and storgamiannual at level = —7. Both these levels have the max-
rains from one year to the following. It may happen that thej,um energy per band too, as we can see in Table I. The cor-
ice and snow created during a year of high precipitation hav@esponding levels were split with the wavelet packets tech-
not vanished when a poor year arrives, compensating the ejque in3 and 5 packets respectively. In this way we ob-
tremes of oscillation in the annual discharge of the river.  tained the same frequency resolution for both wavelet levels,

In spite of its regulating effect, the discharge series ex-A, = 1.9531 103 1/day. The annual wave was isolated

hibits an important component of interannual variability, duej,, the second packet of the level= —8, i.e., 95(32,3) and the

to the large variability in intensity and frequency of win- gemiannual wave in the second packet of the Igvel —7,
ter snowstorms in this region of the Cordillera. Previous; o ,(2.5)

works [31, 32] showed the existence of a connection between = "

the presence of the ENSO (El i Southern Oscillation)

event in the Equatorial Pacific Ocean and rainfall data over ~ 2507 ' ' ' ' '

the mean in central Chile. On the other hand, Compag- ?25| ]

nucci [31] found a relationship between the rainfall in San- 200 - ]

tiago de Chile, Chile, and the area of the Cordillera north of , 1751 .

latitude40° .S, that corresponds to the zone of accumulation 2 150

of the snow of the basin of the Atuel river. I
Therefore, discharges, being determined by the amount ofg 10 |

snow stored, will be sensitive to the ENSO event occurrences?® 5 [

In the Southern hemisphere (SH) summer, in the presence

of ENSO, that is, of the warm sea surface temperature (SST)

anomaly phase in the eastern Equatorial Pacific Ocean, dis

1m
—-
[A¥)
o

charges will tend to be above the average. On the other hand 0 2000 4000 6000 8000 10000 12000

in summers when the opposite event happeas,cold SST Time [ day ]

anomaly phase, named Lafi by Philander [33], stream- £ 5ygre 2. Daily mean discharges of the Atuel river in Argentina.
flows below the average occur. The time series includes the period from January 1959 to June

For this reason, it is likely that, besides the variability in 1995. The number of data of the time series4s= 10228 and the
discharges due to the annual wave, components of variabilitgample rate is/sampie = 1.0 1/day.
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15 T T T T
Annual freq. (a TABLE |. Wavelet energied’; and corresponding wavelets fre-
quency bands associaté¢do(™™) | w(™®) ) to a sample fre-
101 T quencywsampre = 1.00 1/day for resolution wavelet level
Semi—Annual freq. — ——
j E] w('mm) w("L(L‘L)
" -1 1585.1874 x 10! 0.2500 0.5000
—2 4759.0858 x 10! 0.1250 0.2500
-3 1011.6495 x 10? 0.0625 0.1250
0 —4 1411.9919 x 10? 0.0312 0.0625
0.00 0.01 0.02 0.03 0.04 0.05 -5 1862.6291 x 102 0.0156 0.0312
18 ; ' ; ' —6 2265.6863 x 102 0.0078 0.0156
> (b -7 8891.0145 x 102 0.0039 0.0078
-+ 10 -8 3201.7304 x 103 0.0018 0.0039
- p—{ B 7 9
g Semi—Annual freq. -9 4893.5804 x 10 0.0009 0.0018
) 5 tion was calculated using the false neighbors method [2, 36]
"E and the attractor reconstruction expansion was used as
e a geometry-based framework for choosing proper times
delays [37]. The convergence of correlation dimension
0 ) ) ) ) D5 [19,20] and maximum Lyapunov exponeky, [21-23]
0.00 0.01 0.02 0.03 0.04 0.05 were tested for five successive increasing values of the em-
15 ' ' ' ' bedding dimensiotD, taken as starting valuB{™"™.
(c Figure 4 displays the convergence of the largest Lya-
punov exponent of the two time series evaluated with the
10 7 modified Wolf method for experimental data [21-23]. The
dot-dashed line corresponds to the residual time series
(A,, = 1.321072) and the solid line £,, = 6.18 10~%) to
5} ] the original one. We see that the largest Lyapunov exponent
falls about two orders of magnitude with respect to the orig-
inal time series. The correlation dimension evaluated using
al Grassberger and Procaccia algorithm [19, 20] for crude series
L L L L is aboutD,=2.5 and for the residual series is abdd=4.2.
0.00 0.01 0.02 0.03 0.04 0.05
Frequency [ 1 / day ] 0.018 T T T T T T T
FIGURE 3. Power spectrum of the time series of daily discharges 0.016 |
of Atuel River (Fig. 2) for:a) Original data. Note that the main 0.014 Ffiv
peaks correspond to the annual and semi-annual frequenigjes. 3 o[ Hdy
Residual time series without annual periodicit). Residual time g 0.010 L i
series without annual and semiannual periodicity. g ’ i
= 0.008 [
Starting with the coefficients of these trigonomet- §  0.006 |
ric wavelet packets we reconstructed the two quasi-g 0.004 .
monofrequent time series and then subtracted them from the 0.002
original time series. Figure 3b shows the spectrum of the 0.000 | ]
Atuel river daily discharges after signal separation of the an- —0.002 L

1 1 L 1 I 1 L L
0 10 20 30 40 50 60 70 80 90 100 110
Iteration

nual wave. It can be seen that the corresponding peak ha:
disappeared without any visible alteration in the spectrum. In _
Fig. 3c we show the spectrum after signal separation of th&'GURE 4. Convergence of maximum Lyapunov exponenl,

semiannual frequency. The corresponding peak disappeare@r time series of daily discharges of the Atuel River with the it-

The minimum embedding dimensioﬁ){”m)), time de- eration process for its evaluation. Solid line: Original data, with

. . . ¢ D{™™ = 6 andr = 16 days. Dot-dash line: Residual time series
lay (7), correlation dimension/) and maximum Lyapunov ithout annual and biennial periodicity, with{™"™ = 10 and

exponent {,,,) were computed for the original and cleaned . _ 7 days. The horizontal lines represent the convergent value
signal after the stationarity was checked [35]. The minimumfor the both cases consideret,, = 6.18 10~* and1.32 10~2 for

embedding dimensio®{™"™ for the attractors reconstruc- original and residual time series, respectively.
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The minimum embedding dimension estimated through thalgorithms must be used carefully in the analysis of natural
false neighbors method [2, 36] again changes with the signdime series that present strong periodicity and, therefore, the

separation: it increases fro@.™"™ = 6 to D™ = 10.  laborious method implemented for separated the known peri-
The time-lag employed [37] was= 16 days and- = 7days  odicity from the original signal are justified.
for the original and residual time series, respectively. Regarding the results obtained for the natural time series

Physical quantities are almost never known exactly;studied (daily discharges of the Atuel river in Argentina) we
therefore it is essential to provide an error estimate for alcan infer that the system’s dynamics may be described as a
quantities, measured or calculated. In the case of nonlineauperposition of phenomena ruled by a linear dynamics as-
metric invariants (correlation dimension, largest Lyapunovsociated to annual and semiannual periodicities, plus other
exponent, etc.) this is surprisingly difficult and, accordingresidual phenomena. In particular, the remaining phenomena,
to some authors, almost impossible except in favorable situaaccording with the previous results, present slightly chaotic
tion [1,38]. This problem is closely linked to the fundamental characteristics, that could also be associated with colored
problems of time series analysis: given only a finite amountoise. A more specific analysis using for example surrogate
of data all conclusions are tentative. Numerical algorithmsmethods or similar (work in this direction are in progress)
to estimate generalized dimension, Lyapunov exponents arould be employed. Again we stress that the river streamflow
other measures of the dynamical properties of the time seriegata were used as an example of the proposed signal separa:
will usually produce some numbers without giving any infor- tion method described in this work.
mation about the accuracy of results. It would be desirable |n summary, in this paper we present a method, based on
not only to estimate the statistical error of the result, but alsahe wavelet transform, to separate signals according to spe-
to assess whether the result was biased by numerical artifactfic frequencies. The method permits to remove exactly the
and systematical sources of errors. That means: could thgesired frequency without perturbing other parts of the sig-
same results be obtained by other time series which are simiral and leaving unaltered the dynamics of the remaining se-
lar in some respect to the original data, but for which we not&ies. This methodology is appropriate to treat natural series
that results would be biased or completely spurious? Thisn which there is a strong presence of a periodicity that has
question leads to the more general problem of statistical hya significant part of the energy of the signal. Removing this
pothesis testing: giving the data, which is the probability thafportion of the signal usually affects the remaining compo-
the data are a realization from a certain class of processesignts of frequency, above all when we are treating a slow
Surrogate data tests have been designed to provide some geriodicity.

swers to this complex of problems and questions. For avery Many natural phenomena exist that present signals with

good discussion on this topics see Ref. 8. almost periodic components; for instance, fluctuations in pul-
sars, movements of planets and satellites, meteorological se-
4. Conclusions ries affected by the solar activity, that forces a 24 hour pe-

riod, etc. In ionospheric series usually the 11 years solar cy-

Taking into account these results, the analysis of the dynanele appears. Something similar happens with physiologic se-
ics associated to the Atuel river can be posed as the superposies, for instance series that record presence of hormones or
tion of two phenomena, one “almost periodic”, that explainsenzymes in the bodyi.€., circadian phenomena). In short,
the annual and semiannual variabilities, and the other correany series with a strong pulsation may be treated with this
sponding to a phenomenon unknown but, most likely, nonmethod. On the other hand, the method can easily be numeri-
linear. As periodic phenomena tend to have higher energyally implemented and it does not need much computer time.
they mask the nonlinear dynamics, so that we consider that
the proposed method is a good manner of separating them
without altering the existent dynamics. On the other handAcknowledgments
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