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Signal separation with almost periodic components: a wavelets based method
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Natural time series usually show either a combination of periodic phenomena with stochastic components or chaotic behavior. In many cases,
when nonlinear characteristics are computed, they will essentially indicate the most remarkable effects and the results will underestimate or
overestimate the real complexity of the system. For that reason signal separation of the frequency bands representing well known phenomena,
like periodic or almost periodic behaviors, allows comprehension of the hidden nonlinear or stochastic phenomena involved. In this work
a signal separation method based on trigonometric wavelet packets is described. The method has been applied, as an example, to a time
series of daily mean discharges of the Atuel river in Argentina, that presents strong annual and semiannual oscillations due to meteorological
effects. The correlation dimension and the maximum Lyapunov exponent of the residual time series were obtained taking away its known
almost periodic components.
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Las series de tiempo representan una combinación de feńomenos períodicos y componentes estocásticas o comportamiento caótico. En mu-
chos casos, cuando se computan cuantificadores no lineales para dichas series temporales, es de desear queéstos resalten las caracterı́sticas
más notables de las mismas y que sus resultados no subvaloren o sobrestimen la complejidad real del sistema. Por esa razón, la separación
de bandas de frecuencia que representan fenómenos bien conocidos, tales como el caso de comportamientos periódicos o cuasi-periódicos,
permite la comprensión de feńomenos no-lineales y/o fenómenos estoćasticos ocultos involucrados en la ge/-neración de dichas series tem-
porales. En este trabajo un método de separación de sẽnales basado en paquetes wavelet trigonométricos es descrito. El ḿetodo ha sido
aplicado, como un ejemplo, a una serie temporal de descargas media diarias del rı́o de Atuel en Argentina. Esta serie temporal presenta una
fuerte oscilacíon anual y semestral debido a efectos meteorológicos. La dimensión de la correlación y el ḿaximo exponente de Lyapunov
correspondientes a la serie de tiempo residual fueron obtenidos luego de eliminar las componentes cuasi-periódicas conocidas.

Descriptores:Análisis de sẽnales en tiempo-frecuencia; análisis de wavelets; separación de sẽnales; series temporales meteorológicas.

PACS: 05.45.Tp; 02.70.Hm; 92.40.Fb

1. Introduction

Time series corresponding to observable data of natural sys-
tems are frequently analyzed by a combination of linear and
nonlinear dynamics. As Kantz and Schreiber emphasize in
the introduction of their book [1], linear methods interpret
all regular structures in a data set as a set of pure frequen-
cies. That means that the intrinsic dynamics of the system is
governed by the linear paradigm: small causes lead to small
effects. Since linear equations with constant coefficients can
only lead to exponentially growing (or decreasing) or peri-
odically oscillating functions, all the irregular behaviors of
the system are usually attributed to some random external in-
put. Now, chaos theory has taught us that random input is
not the only possible source of irregularity in the system’s
output: nonlinear chaotic systems can produce very irregu-
lar data with purely deterministic equations of motion. Of
course, a system with both, nonlinear and random inputs, will
most likely produce irregular data as well.

Meteorological time series are typical examples of ob-
servational data which usually present strong almost periodic
components. In consequence the nonlinear contributions may

be masked by them. In the evaluation of nonlinear metric pa-
rameters this situation is reflected, for instance, in a decreas-
ing value of the correlation dimension and Lyapunov expo-
nents. These facts are related to the algorithms employed for
the evaluation of the nonlinear metric parameters and are in-
dependent of the intrinsic characteristics of the signals. It
must be remarked that, in practice, many nonlinear phenom-
ena are incorrectly evaluated when the periodic effects are
still present.

The use of traditional filtering methods, such as signal
separation methods, is specially difficult when we are trying
to clean processes associated with low and medium frequen-
cies, because the traditional filtering methods usually drag in
the processes unwanted portions of the signal. In particular,
the use of band-pass filters based on the Fourier transform in-
troduces modifications in the signal (ringing effects, spurious
oscillations, etc.) [1-3]. While filtering and signal process-
ing have a long history for linear systems, new techniques
are required for the analysis of signals generated by nonlin-
ear systems, because traditional filtering processes alter the
nonlinear metric invariants [4-10].
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Wavelet analysis is a method which relies on the introduc-
tion of an appropriate Hilbert space basis and spans the signal
in it. If the wavelets are required to form a proper orthogo-
nal basis, it has the advantage that an arbitrary function can
be uniquely decomposed and the decomposition can be in-
verted [11-18]. At this point we can also refer to Mallat [16].
He proved that in a one dimensional signal denoising pro-
cess (assuming additive noise), an orthogonal wavelet based
method is better than a method based on Fourier transforms,
because wavelets do not change the original signal [16]. For
this reason we use a signal separation method based on or-
thogonal wavelets: we try to analyze the remaining signal
with a minimum modification in the associated dynamics.
Observe that we have not yet assumed anything about the
characteristics of this signal. On the other hand, if the asso-
ciated dynamics is a chaotic one, the use of non orthogonal
wavelets as a signal separation method, like traditional filters,
could also change the dynamics [1,2,4-10].

As an example we show how a periodic low frequency
signal with strong intensity, added to a chaotic Lorenz time
series, modifies the values of the correlation dimension (D2)
and of the maximum Lyapunov exponent (Λm) computed for
the corresponding chaotic attractor associated with the pure
signal. Both invariant parameters were computed with differ-
ent metric algorithms usually employed for this purpose in
the literature [19-23]. To avoid this kind of signal contamina-
tion, a signal separation method with almost periodic compo-
nents based on trigonometric wavelet packets [24,25] is intro-
duced. An example applies this procedure to a natural time
series with strong periodic effects (annual and semiannual)
corresponding to the daily mean discharges of the Atuel river
in Argentina. These two almost periodic effects are removed
using the proposed method based on trigonometric wavelet
packets. The signal separation process lets us observe a con-
siderable increment in the values obtained for the correlation
dimension and for the maximum Lyapunov exponent for the
residual dynamical system.

This paper is organized as follow: Sec. 2 is devoted to an
exposition of the signal separation method. In Sec. 3 we de-
scribe theoretical examples. We analyze the consequences of
overimposing a strong periodic signal to a chaotic one gener-
ated by the integration of the Lorenz equations. We discuss
an example of the signal separation method and computeD2

andΛm over the natural time series before and after signal
separation. Sec. 4 presents our conclusions.

2. Time–frequency analysis

2.1. Wavelet transform

Wavelet analysis is a method which relies on the introduc-
tion of an appropriate basis and a characterization of the sig-
nal by the distribution of amplitude in this basis. If the ba-
sis is required to be a proper orthogonal basis, any arbitrary
function can be uniquely decomposed and the decomposition
can be inverted [11-18]. Wavelet analysis is a suitable tool

for detecting and characterizing specific phenomena in time
and frequency planes. The wavelet is a smooth and quickly
vanishing oscillating function with good localization in both
frequency and time. A wavelet familyψa,b is the set of ele-
mentary functions generated by dilations and translations of
a unique admissible mother waveletψ(t):

ψa,b(t) = |a|−1/2ψ

(
t− b

a

)
, (1)

wherea, b ∈ R (the set of real numbers),a 6= 0 are the scale
and translation parameters respectively, andt is the time.

The correlated decimated discrete wavelet trans-
form (DWT) provides a nonredundant representation of the
signalS, and the values〈S, ψa,b〉 constitute the coefficients
in a wavelet series. These wavelet coefficients provide rele-
vant information in a simple way and a direct estimation of
local energies at the different scales. Moreover, the infor-
mation can be organized in a hierarchical scheme of nested
subspaces called multiresolution analysis inL2(R). In the
present work, we employ orthogonal cubic spline functions
as mother wavelets. Among several alternatives, cubic spline
functions are symmetric and combine in a suitable proportion
smoothness with numerical advantages. They have become a
suitable tool for representing natural signals [26,27].

In the following we assume that the signal is given by the
sampled values{s0(n), n = 1, · · · ,M}, which correspond
to an uniform time grid with sampling time∆t. If the decom-
position is carried out over all resolution levelsN = ln2(M),
the wavelet expansion will be

S(t) =
−1∑

j=−N

∑

k

Cj(k)ψj,k(t) =
−1∑

j=−N

rj(t). (2)

where the wavelet coefficientsCj(k) can be interpreted as the
local residual error between successive signal approximation
at scalesj andj + 1, andrj(t) is the detail of the signal at
scalej. It contains the information of the signalS(t) corre-
sponding to frequencies2jπ ≤ |ω| ≤ 2j+1π.

In the wavelet multiresolution framework it is possi-
ble to evaluate the energy corresponding to each level,
that can be used for the detection of the characteristic
events [24,25]. Since the family{ψj,k(t)} is an orthonor-
malbasis forL2(R), the concept of energy is linked with the
usual notions derived from Fourier theory. The wavelet co-
efficients are given byCj(k) = 〈S, ψj,k〉 and the energy, at
each resolution levelj = −1, · · · ,−NJ , will be the energy
of the detail signal

Ej = ‖rj‖2 =
∑

k

|Cj(k)|2. (3)

The total energy can be obtained as

Etot = ‖S‖2 =
∑

j<0

∑

k

|Cj(k)|2 =
∑

j<0

Ej . (4)
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2.2. Trigonometric Wavelet Packets

As is well known, wavelet analysis provides atime-scale
description for any finite energy signal. Essentially, it is a
successive decomposition of the signal at different scales.
At each step, the corresponding details are separated pro-
viding useful information for detecting and characterizing
short time phenomena or abrupt changes of energy. However,
since wavelets are not well defined in frequency, they are not
well suited for describing and characterizing stationary phe-
nomena or for detecting time-frequency structures. This is
an important limitation because significant events often in-
volve joint variations of time and frequency. Wavelet packets
analysis, a natural extension of wavelet analysis, overcomes
this problem. Moreover, this technique allows a time-scale-
frequency description of the signals.

A family of trigonometric wavelet packets is a collection
of elementary signals obtained from appropriate linear com-
bination of wavelets [24,25]. They look as locally oscillating
wave forms resembling modulated sines or cosines. More-
over, they can be organized as an orthonormal basis of the
space of finite energy signals. The main advantage of us-
ing wavelet packets is that standard wavelet analysis can be
extended with a flexible strategy. So, the description of the
given signal can be well adapted to the significant structures.
Several families of wavelet packets have been proposed in
the literature [11-18]. Here we apply trigonometric spline
wavelet packets [24,25]. First, let us have a brief review of
the proposed technique.

Given a finite energy signals0(t), using spline wavelet
analysis we can successively decompose it with the follow-
ing recursive scheme:

sj+1( t ) = sj( t ) ⊕ rj( t ), (5)

for each scalej = 0,−1, · · · ,−N . As we already men-
tioned, the componentssj+1(t) and sj(t) summarize the
information of the signal corresponding to the frequency
bands2j+1π ≤ ω ≤ 2jπ and 2jπ ≤ ω ≤ 2j−1π, respec-
tively. This means that the decomposition at levelj consists
of filtering the componentssj+1(t), giving the details corre-
sponding to the remaining frequencies2jπ ≤ |ω| ≤ 2j+1π.
The componentrj(t) summarizes this information and we
can describe the signalS(t) in term of detail signals as

S(t) =
∑

j<0

rj(t). (6)

The detail components can be described in terms of
wavelets atoms

rj(t) =
∑

k

Cj(k)ψj,k(t). (7)

Since each waveletψj,k(t) = 2j/2ψ(2jt − k) is well local-
ized in the interval2−jk ≤ t ≤ 2−j(k + 1), the correspond-
ing coefficientCj(k) summarizes the local information of the
detail. However, as we mentioned above, these coefficients

average all the involved frequencies2jπ ≤ |ω| ≤ 2j+1π and
we shall not have explicit information about stationary struc-
tures.

Now, we are interested in improving the frequency preci-
sion. The main idea is to decompose the componentsrj(t) in
portions, each one covering a longer interval. We define any
portion or local signal as

r
(m,l)
j (t) =

l+2m−1∑

k=l

Cj(k)ψj,k(t), (8)

where the parametersm and l are chosen so thatr(m,l)
j (t)

covers the full time interval2−j l ≤ t ≤ 2−j(l + 2m), which
is a relative long interval of length2m−j . Note that we de-
fined the local wavelet packet with2m basic functionsψj,k(t)
for k = l, · · · , l + 2m − 1.

Now, we define the set of fundamental frequencies

ωmh = π + 2hπ/ 2m, (9)

with 0 ≤ h ≤ 2m−1 and associated Fourier matrixM(m)

given by

M
(m)
n,k =2−

m
2 ·





sin[π(k + 1
2 )], if n=1;

2
1
2 cos[ωmh(k+ 1

2 )], if n is even;

2
1
2 sin[ωmh(k+ 1

2 )], if n is odd;

cos[2π(k+ 1
2 )], if n=2m;

(10)

with 1 ≤ n ≤ 2m, 0 ≤ k < 2m andh = [[n/2]], where[[ ]]
denotes the integer part. It can be demonstrated thatM(m) is
a2m × 2m dimensional orthogonal matrix [24,25].

Then, we can define the new set of elemental functions
in order to expandr(m,l)

j (t) as a2m dimensional vector ob-
tained from

θ
(m,l)
j,n ( t ) =

l+2m−1∑

k=l

M
(m)
n,k ψj,k( t ), (11)

for 1 ≤ n ≤ 2m.
Clearly, these functions constitute a new local or-

thonormal basis covering the interval under analysis
2−j l ≤ t ≤ 2−j(l + 2m). Therefore we can give a second de-
scription of the local signal as

r
(m,l)
j ( t ) =

2m∑
n=1

D
(m,l)
j ( n ) θ

(m,l)
j,n ( t ). (12)

The corresponding coefficients are easily computed as

D
(m,l)
j ( n ) =

l+2m−1∑

k=l

M
(m)
n,k Cj( k ), (13)

where1 ≤ n ≤ 2m.
The trigonometric wavelet packetsθ(m,l)

j,n (t) have zero
mean, oscillate on the interval2−j l ≤ t ≤ 2−j(l + 2m)
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and decay with exponential ratio. Moreover, their wave-
forms resemble modulate sines or cosines. In fact, it can be
demonstrated that each Fourier transformθ̂

(m,l)
j,n (ω) is cen-

tered at the fundamental frequencyωmh, whenn = 2h or
n = 2h + 1. Moreover,θ̂(m,l)

j,n (ω) = 0 on the other fun-
damental frequencies and has a fast decay outside the range
2jπ ≤ |ω| ≤ 2j+1π.

In other words, the coefficients{D(m,l)
j (n)} can be con-

sidered as thediscrete Fourier spectrumfor the local signal
r
(m,l)
j (t). Summing up, we can resume in the double set of

coefficients{Cj(k), D(m,l)
j (n)} the time-scale-frequency in-

formation of the local signalr(m,l)
j (t).

Finally, to analyze the complete functionrj(t), that is,
the details at levelj, we choose some partition in local com-
ponentsr(mi,li)

j (t), according to the structure of the signal

rj( t ) =
∑
mi

r
(mi,li)
j ( t ) , (14)

where the sequence of indexli verifiesli+1 = li+2mi . Then,
we implement the above referred time-scale-frequency tech-
nique for each local signal.

The wavelet packetsθ(m,l)
j,n have their time definition in

the interval2−j l ≤ t ≤ 2−j(l + 2m), that we can make as
small as the sample rate allows us to do. We use this charac-
teristic to separate only the undesirable frequencies. So, com-
bining the expression given by Eq. (7) with the packetθ

(m0,l)
j,n0

of our interest, we build the quasimonofrequency time series
with the wavelet packet coefficients and the corresponding
inverse transformation. This is feasible because in all cases
we used orthonormal bases for our calculations.

2.3. Signal separation scheme

To sum up, the signal separation method that we propose con-
sists of the following steps:

• To apply the DWT to the data series under study, ac-
cording to Eq. (2), obtaining the signal expansion in a
wavelet basis.

• To calculate, with the computed wavelet coefficients,
the corresponding energies for each frequency band
and along the series [see Eq. (3)].

• To identify the bands with higher energies and thej
wavelet resolution level (these bands will be in general
associated to “almost periodic¨ phenomena).

• To divide aj wavelet level energy band just identified
in wavelet packets according to Eq. (13) (note that each
packet corresponds to a narrow frequency band, whose
width can be reduced when increasing the number of
packets).

• To eliminate the chosen packets and then to reconstruct
the corresponding wavelet packet without them [see
Eq. (14)].

• To reconstruct with this and the other wavelet levels the
total signal, without the periodic portion.

3. Numerical evaluation

3.1. Synthesized example

To test the hypothesis of this work about the incidence of
the periodic or almost periodic effects and the metric algo-
rithms of the nonlinear dynamics over time series, we used
the Lorenz dynamical system. We integrated the system us-
ing a fourth-order Runge-Kutta with adaptative step size con-
trol [28] for chaotic parameters (R = 45.92, σ = 16.0 and
b = 4.0) adding to the result a strong periodic signal. In
Fig. 1 we show the convergence ofΛm with the iteration
process: the solid line corresponds to the exponent for the
Lorenz system (x-component),Λm = 2.19, performed us-
ing the modified Wolf algorithm for time series [21–23]. We
can see that the value obtained corresponds to the theoretical
predictionsΛm = 2.16 obtained with the Wolf algorithm for
ordinary differential Eqs. [21].

In the same figure but in dot-dashed and dashed line we
display the convergence ofΛm evaluated for the same signal
plus a periodic component (sinusoidal signal with frequency
ω0 = 1.0) with an amplitude twice (Λm = 0.29) and four
times as large as the Lorenz signal (Λm = 0.008), respec-
tively. In the last two cases the largest Lyapunov exponents
go to zero as they would in a quasiperiodic situation, indi-
cating that the algorithm detects only the strong perturbation
included. The original Lorenz system and the perturbed time
series were constructed with the length of the natural time
series to be analyzed in the next section. The election of the

FIGURE 1. Convergence of maximum Lyapunov exponentΛm

with the iteration process for its evaluation according with the mod-
ified Wolf algorithm for time series [21–23]. Solid line: Lorenz
dynamical system with chaotic parameters (x-component). Dot-
dash line: Lorenz dynamical system plus a sinusoidal signal of
frequencyω0 = 1.0 and an amplitude twice the amplitude of the
Lorenz system. Dash line: same as before but with a sinusoidal
signal with an amplitude four times the amplitude of the Lorenz
signal. The horizontal lines represent the convergent value for the
three cases considered; they areΛm = 2.19, 0.29 and0.008 re-
spectively.
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Wolf algorithm [21–23] is due to the fact that it is the most
frequently employed algorithm in the analysis of natural time
series. Similar results were obtained using the method pro-
posed by Rosensteinet al. [29].

3.2. Natural time series

As an application of the signal separation method proposed
and to analyze the remaining dynamics of a system with the
characteristic mentioned above, we used a time series of daily
discharges of the Argentinian Atuel river. Argentinian rivers
whose sources are in the Andean Cordillera are extremely
important for the economic development of the region (north
of 38◦ S). The climate of that area is arid or semi-arid
and river discharges are used for hydropower and for irriga-
tion. The regime of these rivers is governed by strong an-
nual waves: minimum discharges take place in winter and
maximum discharges in summer. Water comes almost exclu-
sively from melting of snow accumulated in the high peaks of
the Cordillera during snowstorms that occur mainly between
mid-autumn and the beginning of spring, and whose maxima
are in winter [30]. The contribution of rains to discharges
is almost nil, especially for points located at or upstream
the foothills, because moisture from the Pacific Ocean can-
not cross the high peaks of the Cordillera and moisture from
the Atlantic Ocean yields only isolated connective storms in
summer in the plains. The area of glaciers causes a regulat-
ing effect over the regime of these rivers, because blizzards
act as regulating storage places that inhibit melting and store
rains from one year to the following. It may happen that the
ice and snow created during a year of high precipitation have
not vanished when a poor year arrives, compensating the ex-
tremes of oscillation in the annual discharge of the river.

In spite of its regulating effect, the discharge series ex-
hibits an important component of interannual variability, due
to the large variability in intensity and frequency of win-
ter snowstorms in this region of the Cordillera. Previous
works [31,32] showed the existence of a connection between
the presence of the ENSO (El Niño Southern Oscillation)
event in the Equatorial Pacific Ocean and rainfall data over
the mean in central Chile. On the other hand, Compag-
nucci [31] found a relationship between the rainfall in San-
tiago de Chile, Chile, and the area of the Cordillera north of
latitude40◦ S, that corresponds to the zone of accumulation
of the snow of the basin of the Atuel river.

Therefore, discharges, being determined by the amount of
snow stored, will be sensitive to the ENSO event occurrences.
In the Southern hemisphere (SH) summer, in the presence
of ENSO, that is, of the warm sea surface temperature (SST)
anomaly phase in the eastern Equatorial Pacific Ocean, dis-
charges will tend to be above the average. On the other hand,
in summers when the opposite event happens,i.e., cold SST
anomaly phase, named La Niña by Philander [33], stream-
flows below the average occur.

For this reason, it is likely that, besides the variability in
discharges due to the annual wave, components of variability

could be present due to the influence of ENSO events. Fre-
quencies found in studies of ENSO signal include a broad
band of the spectrum. Highest frequencies are given by bien-
nial annual variability (around18–35 months) in the South-
ern Oscillation (SO) and in the SSTs in the Equatorial Pa-
cific Ocean, according to Rasmunssonet al. [34]. Other low
frequencies belonging to the band around32–88 months are
also present in the spectral analysis of atmospheric or oceanic
variables influenced by ENSO. This band corresponds to a
current period of the event, because a characteristic of the
ocean-atmosphere system is that the system oscillates suc-
cessively from one extreme to the other of the signal, go-
ing from the warm SST anomaly and negative phase in SSO
to the cold SST anomaly and positive phase in SSO, as was
mentioned by Philander [34].

The time series includes the period from January1959 to
June1995, that is,M = 10228 data points, and is shown in
Fig. 2. This signal is long enough for the metric algorithms of
nonlinear dynamics to be applied. We tested the stationarity
of the series with a procedure based on the weak stationarity
criteria introduced by our group [35]. Figure 3a shows the
spectrum of this signal and the high peaks corresponding to
the annual (ωa = 0.0027 1/day) and semiannual periodic-
ity (ωb = 0.0054 1/day) are clearly spotted. Note that these
peaks have a low but finite frequency dispersion.

After a multiresolution analysis using the wavelet trans-
form and in agreement with a daily sampling rate (ωsample =
1.0 1/day), the annual wave appears at levelj = −8 and the
semiannual at levelj = −7. Both these levels have the max-
imum energy per band too, as we can see in Table I. The cor-
responding levels were split with the wavelet packets tech-
nique in 3 and 5 packets respectively. In this way we ob-
tained the same frequency resolution for both wavelet levels,
∆ω = 1.9531 10−3 1/day. The annual wave was isolated
in the second packet of the levelj = −8, i.e., θ

(2,3)
8,n and the

semiannual wave in the second packet of the levelj = −7,
i.e., θ

(2,5)
7,n .

FIGURE 2. Daily mean discharges of the Atuel river in Argentina.
The time series includes the period from January 1959 to June
1995. The number of data of the time series isM = 10228 and the
sample rate isωsample = 1.0 1/day.
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FIGURE 3. Power spectrum of the time series of daily discharges
of Atuel River (Fig. 2) for: a) Original data. Note that the main
peaks correspond to the annual and semi-annual frequencies.b)
Residual time series without annual periodicity.c) Residual time
series without annual and semiannual periodicity.

Starting with the coefficients of these trigonomet-
ric wavelet packets we reconstructed the two quasi-
monofrequent time series and then subtracted them from the
original time series. Figure 3b shows the spectrum of the
Atuel river daily discharges after signal separation of the an-
nual wave. It can be seen that the corresponding peak has
disappeared without any visible alteration in the spectrum. In
Fig. 3c we show the spectrum after signal separation of the
semiannual frequency. The corresponding peak disappeared.

The minimum embedding dimension (D
(min)
e ), time de-

lay (τ ), correlation dimension (D2) and maximum Lyapunov
exponent (Λm) were computed for the original and cleaned
signal after the stationarity was checked [35]. The minimum
embedding dimensionD(min)

e for the attractors reconstruc-

TABLE I. Wavelet energiesEj and corresponding wavelets fre-
quency bands associated( ω(min) , ω(max) ) to a sample fre-
quencyωsample = 1.00 1/day for resolution wavelet levelj.

j Ej ω(min) ω(max)

−1 1585.1874× 101 0.2500 0.5000

−2 4759.0858× 101 0.1250 0.2500

−3 1011.6495× 102 0.0625 0.1250

−4 1411.9919× 102 0.0312 0.0625

−5 1862.6291× 102 0.0156 0.0312

−6 2265.6863× 102 0.0078 0.0156

−7 8891.0145× 102 0.0039 0.0078

−8 3201.7304× 103 0.0018 0.0039

−9 4893.5804× 102 0.0009 0.0018

tion was calculated using the false neighbors method [2,36]
and the attractor reconstruction expansion was used as
a geometry-based framework for choosing proper times
delays [37]. The convergence of correlation dimension
D2 [19,20] and maximum Lyapunov exponentΛm [21–23]
were tested for five successive increasing values of the em-
bedding dimensionDe taken as starting valueD(min)

e .
Figure 4 displays the convergence of the largest Lya-

punov exponent of the two time series evaluated with the
modified Wolf method for experimental data [21–23]. The
dot-dashed line corresponds to the residual time series
(Λm = 1.32 10−2) and the solid line (Λm = 6.18 10−4) to
the original one. We see that the largest Lyapunov exponent
falls about two orders of magnitude with respect to the orig-
inal time series. The correlation dimension evaluated using
Grassberger and Procaccia algorithm [19,20] for crude series
is aboutD2=2.5 and for the residual series is aboutD2=4.2.

FIGURE 4. Convergence of maximum Lyapunov exponentΛm

for time series of daily discharges of the Atuel River with the it-
eration process for its evaluation. Solid line: Original data, with
D

(min)
e = 6 andτ = 16 days. Dot-dash line: Residual time series

without annual and biennial periodicity, withD(min)
e = 10 and

τ = 7 days. The horizontal lines represent the convergent value
for the both cases considered,Λm = 6.18 10−4 and1.32 10−2 for
original and residual time series, respectively.
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The minimum embedding dimension estimated through the
false neighbors method [2, 36] again changes with the signal
separation: it increases fromD(min)

e = 6 to D
(min)
e = 10.

The time-lag employed [37] wasτ = 16 days andτ = 7 days
for the original and residual time series, respectively.

Physical quantities are almost never known exactly;
therefore it is essential to provide an error estimate for all
quantities, measured or calculated. In the case of nonlinear
metric invariants (correlation dimension, largest Lyapunov
exponent, etc.) this is surprisingly difficult and, according
to some authors, almost impossible except in favorable situa-
tion [1,38]. This problem is closely linked to the fundamental
problems of time series analysis: given only a finite amount
of data all conclusions are tentative. Numerical algorithms
to estimate generalized dimension, Lyapunov exponents or
other measures of the dynamical properties of the time series
will usually produce some numbers without giving any infor-
mation about the accuracy of results. It would be desirable
not only to estimate the statistical error of the result, but also
to assess whether the result was biased by numerical artifacts
and systematical sources of errors. That means: could the
same results be obtained by other time series which are simi-
lar in some respect to the original data, but for which we note
that results would be biased or completely spurious? This
question leads to the more general problem of statistical hy-
pothesis testing: giving the data, which is the probability that
the data are a realization from a certain class of processes?
Surrogate data tests have been designed to provide some an-
swers to this complex of problems and questions. For a very
good discussion on this topics see Ref. 8.

4. Conclusions

Taking into account these results, the analysis of the dynam-
ics associated to the Atuel river can be posed as the superposi-
tion of two phenomena, one “almost periodic”, that explains
the annual and semiannual variabilities, and the other corre-
sponding to a phenomenon unknown but, most likely, non-
linear. As periodic phenomena tend to have higher energy,
they mask the nonlinear dynamics, so that we consider that
the proposed method is a good manner of separating them
without altering the existent dynamics. On the other hand,
the regional economies depend on the flood regime of the At-
uel river, due to its direct incidence in the farming and cattle
raising development of the region, so that a detailed study of
it has economic importance.

The evaluation of nonlinear metric invariants is a diffi-
cult business, which can not be employed in the same way
as other standard tools of time series analysis, for example,
Fourier power spectrum estimation. This implies that metric

algorithms must be used carefully in the analysis of natural
time series that present strong periodicity and, therefore, the
laborious method implemented for separated the known peri-
odicity from the original signal are justified.

Regarding the results obtained for the natural time series
studied (daily discharges of the Atuel river in Argentina) we
can infer that the system’s dynamics may be described as a
superposition of phenomena ruled by a linear dynamics as-
sociated to annual and semiannual periodicities, plus other
residual phenomena. In particular, the remaining phenomena,
according with the previous results, present slightly chaotic
characteristics, that could also be associated with colored
noise. A more specific analysis using for example surrogate
methods or similar (work in this direction are in progress)
could be employed. Again we stress that the river streamflow
data were used as an example of the proposed signal separa-
tion method described in this work.

In summary, in this paper we present a method, based on
the wavelet transform, to separate signals according to spe-
cific frequencies. The method permits to remove exactly the
desired frequency without perturbing other parts of the sig-
nal and leaving unaltered the dynamics of the remaining se-
ries. This methodology is appropriate to treat natural series
in which there is a strong presence of a periodicity that has
a significant part of the energy of the signal. Removing this
portion of the signal usually affects the remaining compo-
nents of frequency, above all when we are treating a slow
periodicity.

Many natural phenomena exist that present signals with
almost periodic components; for instance, fluctuations in pul-
sars, movements of planets and satellites, meteorological se-
ries affected by the solar activity, that forces a 24 hour pe-
riod, etc. In ionospheric series usually the 11 years solar cy-
cle appears. Something similar happens with physiologic se-
ries, for instance series that record presence of hormones or
enzymes in the body (i.e., circadian phenomena). In short,
any series with a strong pulsation may be treated with this
method. On the other hand, the method can easily be numeri-
cally implemented and it does not need much computer time.
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