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The present manuscript describes effects of mixed convection on MHD flow of a second grade fluid above a vertical plate. The fluid impinges
orthogonally on the plate which is lubricated by a slim coating of power-law fluid. A system of ordinary differential equations is obtained

by employing the similarity transformations to the original partial differential equations. To handle the present flow situation, it is assumed
that velocity and shear stress of the second grade fluid and the lubricant are continuous at the interface. A well reputed numerical technique
called Keller-box method is utilized to solve coupled non-linear equations. Influence of slip, magnetic and mixed convection parameters,
Weissenberg and Prandtl numbers on the velocity, skin friction coefficient, temperature and heat transfer rate at the surface is presented in
the form of graphs and tabular data for both assisting and opposing flows. The results in the case of no-slip condition are compared with the
available numerical data. A good agreement of these results certifies our effort.

Keywords: Power-law lubricant; interfacial condition; second grade fluid; Keller-box method.

PACS: 47.55.N-; 47.11.Bc

1. Introduction Li et al [13]. They found dual solutions for velocity and
temperature for certain values of velocity ratio parameter.

A stagnation-point flow arises when a fluid impinges on the ~ Mixed convection near a stagnation-point is another area
surface at certain angle. A flow in which fluid strikes the sur-of significant importance. Difference of wall and ambient
face at right angle is called the orthogonal stagnation-pointemperatures is responsible for the generation of the buoy-
flow. Such flows are involved in cooling of nuclear reac-ancy forces. These buoyancy forces have remarkable ef-
tors, extrusion of polymer sheets, cooling of computer andects on the fluid temperature and velocity. Due to which,
other electronic devices, manufacturing of artificial fibers etcshear stress and heat transfer rate at the wall can be aug-
Hiemenz [1] considered the boundary layer equation for anented or reduced significantly. The problem under consid-
viscous fluid to discuss the stagnation point flow. Our aim iseration would make it possible for us to investigate how the
to discuss this type of flow for non-Newtonian fluids. stagnation-point flow develops a boundary layer and how dif-
Among non-Newtonian fluid models, second grade fluidferent parameters alters the boundary layer.
attracted many researchers as it exhibits both viscous and Hayatet al. [14] provided an analytic solution to discuss
elastic characteristics in response to an applied shear stresie mixed convection in a viscoelastic fluid towards a stagna-
Honey, plastic films and artificial fibers are some exam-tion point over a vertical plate. They provided dual solutions
ples of fluids that can be discussed through the rheologfor certain ranges of the buoyancy and viscoelastic parame-
ical equations of second grade fluids. Rajagopal [2] anders. Impact of applied magnetic field in Maxwell fluid for
Beard and Walters [3] are credited for the development oboth steady and unsteady cases was studied by Kumari and
the boundary layer theory of second grade fluids. The conNath [15]. They observed that shear stress and heat transfer
stitutive relationship caused an increase in the order of derate at the wall are affected by the magnetic parameter. Ef-
veloped differential equation. However, the available boundfects of mixed convection and applied magnetic field on the
ary conditions are same as for the viscous fluid. Raflow stagnated over a hot permeable vertical plate were ana-
jagopal [4,5] and Rajagopal and Kaloni [6] solved this prob-lyzed by Abdelkhalek [16]. Ishakt al. [17] discussed mag-
lem by using a supplement boundary condition at the freeetic effects in a micropolar fluid in a stagnation zone. The
stream. The analysis for the stagnation-point flows for vargeneral results of these investigations [16,17] are that the im-
ious non-Newtonian fluids is carried out by Srivatsava [7],posed magnetic field diminished the fluid velocity, wall shear
Rajeswari and Rathna [8], Beard and Walters [9], Garg andtress, temperature and wall heat transfer. Naral [18]
Rajagopal [10] and Ariel [11]. Ayulet al. [12] investigated discussed impact of mixed convection in MHD stagnation-
the viscoelastic fluid flow stagnated over a stretching sheepoint flow adjacent to a vertical wall. They found that the
They provided a comparison between the numerical and arnvelocity and temperature profiles are affected by the mag-
alytic solutions. Heat transfer analysis in a viscoelastic fluidnhetic parameter, the Prandtl number and the buoyancy pa-
due to non-orthogonal stagnation-point flow was studied byameter for both assisting and opposing flows. In another
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paper, Ahmed and Nazar [19] extended the work of [18] forFigures 1(i) and 1(ii) illustrate the assisting and opposing

a viscoelastic fluid. They concluded that the viscoelastic paflows, respectively.

rameter rises the temperature and reduces the velocity of the If L, Ty, U, andT,, represent characteristic length, ref-

fluid. erence temperature, reference velocity and ambient temper-
Fazlinaet al. [20] discussed mixed convective slip flow ature respectively then free stream velocity and surface tem-

towards a stagnation point over a vertical wall. They ob-perature are

served that slip reduces the wall shear stress and enhances

X X
the heat transfer rate at the surface. Axisymmetric flow of ue = U, (f) y Iw =T +To (f) :
a viscous fluid due to stagnation point over a lubricated sta- . . _
tionary disc was presented by Sangtaal [21]. They used The flow phenomenon is same in the case of stagnation

a power-law fluid as a lubricant. Sajet al. [22] revisited ~ point flow whether it is discussed for a vertical or horizon-
the work of Santraet al. [21] by imposing the generalized tal plates, Hiemenz [1]. The power-law fluid spreads on the
slip boundary condition at the fluid-lubricant interface pro- plate with the flow rat& given as

posed by Thompson and Troian [23]. Rrecently Mahmebd hz)
al. [24] studied oblique flow of a second grade fluid towards

a stagnation point over a lubricated surface. In another inves- Q= / Ul(z,y)dy, (1)
tigation, Mahmoodkt al. [25] discussed slip flow of a second 0

grade fluid over a ubricated rotating disc. whereU is velocity of lubricant in the direction of andh ()

In this article, our interest is to analyze effects of applied . . . . o
o : . represents its variable thickness. The equation of motion is
magnetic field and mixed convection on the flow of a sec-

ond grade fluid towards a stagnation point produced due to v .
lubricated surface. The transformed non-linear equations are Par = divr, @

solved numerically using Keller-box method [26-29].
y g [ ] in which r is Cauchy stress tensor which for the second grade

fluid is defined by
2. Mathematical formulation T = —pl + pA; + a1 Ay + an A2 (3)

Consider steady, mixed convection, two-dimensional flow of  Here, I is unit tensorp; anday are the material moduli
a second grade fluid due to stagnation-point adjacent to a vesuch thatn; > 0 anda; + as = 0. The kinematic tensors
tical lubricated plate. A power-law fluid has been utilized A; and A, are defined as

for the lubrication purpose. The plate temperatLigeis lin-

early dependent to the distangefrom the origin. It is as- Ay =Vv+ (V)" and

sumed that the plate is resting in-plane and a transverse DA, .

magnetic fieldB, is applied on the plate as shown in Fig. 1. Az = —5= + (V- V)A1 + (V) + (W) A, (4)
Tw(x) > T, Tw(x) <Ts
\ X Ax

o) ue(x)
0 0
N - N o
Lubricant <—| Lubricant GJ
(1) assisting flow (i1) opposing flow

FIGURE 1. Flowing phenomenon showing assisting and opposing flow.
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where, v = [u(z,y),v(x,y),0] is the velocity vector of wherelU denotes velocity component of both the fluids at the
second grade fluid. Equations representing the consideredterface. Using Eq. (1), the thicknekéx) of the lubricant

boundary layer flow are can be expressed as
ou v 2Q
T hiz) = =——, (14)
ox + Ay 0, ®) U(x)
ou ou du, 9% Substituting Egs. (9)-(11) into Eqg. (8) we get the following
U T Yoy = " + Vo2 slip boundary condition
(O e oudte du ko (U% LD 23“3”>
o <“axay2 Toxay T oyoy ay) oy \"oy? " “axvy ~ "oy dy
Bg k 1 " r72n
_ 20 (7. — =—|=—= . 15
£ (T~ T) 4 2B (0, ), © (o) U ®
oT oT 0*T Assuming the continuity of velocity at the interface, we have
Uar T Yoy ~ Yo (") = u. Therefore Eq. (15) gives
in which p, ¢ andv denote density, gravitational accelera- Ou + ko <U82“ +u 0%u _ 28“8”>
tion and kinematic viscosity respectively. Furthermorgey, dy p \ 0y*  Oxdy  OyO0y
ko, anda represent thermal expansion coefficient, electrical E/1\"
conductivity, viscoelastic parameter and thermal diffusivity = ; <2Q> n (16)

respectively. The positive sign mentioned in Eq. (6) is for the

assisting and negative sigh for the opposing flow. Using continuity of normal components of the velocity of
To discuss present flow situation, the boundary conditiongoth fluids along with Eq. (10), one obtains

are applied at the surface, interface of both fluids and free

stream. The boundary conditions at fluid-solid interface im- v(@, h(z)) = 0. (17)

ply Following Santraet al. [21] boundary conditions (16)
and (17) can be applied gt= 0. The conditions at the free

U(x,0)=0, V(z,0)=0 ®)  stream imply
X
T(2,0) = T+ To (7). (©) wooo) UL Do)
b - €L7 ay - )
where,V is the velocity of the lubricant normal to the sur- T =T (18)
r,00) = 1.

face. As the lubrication film is very thin, therefore

Defining the dimensionless variables
Vie,y) =0 ¥ yel0,h). (10) J

U. x . U.
The boundary conditions at the fluid-lubricant interface 7 =¥\/ 7, “=Uep/f ), v=- f”f(”)’
are obtained by applying continuity of shear stress and ve- r
locity of both the fluids. Continuity of shear stress at the 1 = T + T (f) 0(n) (19)
fluid-lubricant interface implies )
Egs. (6), (7). (8), (9). (16), (17) and (18) yield

@ _|_k U@ +uﬂ _2@@ — 8£ (11) 1" 12 " 1 We(2 1 eI 112 v
u@y 0 Dy 920y dy dy _MLay’ = SR We2f f1 = = )

O+M(1—f)=0, 20
wherey, and . are the viscosities of the second grade and +A+MA 1) (20)
power-law fluids respectively. Assumird§//dz < 9U/dy L g L0 - o =0, 21)
the viscosity of the lubricanty, is given by Pr

n—1 f(O) =0,
Mzk(@) : 12) p7(0) + 3Wef (0)f(0) = AS'(0)*", 6(0)=1, (22)

in which k is the consistency coefficient ands flow behav-
ior index. We assum& (z, y) in the following form
_ where3 = Gr/Re? is the mixed convection parameter, in
Ulz,y) = yU(x)7 (13) Wwhich Gr = ¢yTyL?/v? is the Grashof numberRe =
h(x) U.L/v is the Reynolds number and, = koU./vL is the

fle0) =1, f"(00) =0, 0(c0)=0, (23
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Weissenberg number. The cases> 0, 5 = 0 andj < 0 where
correspond to the assisting, forced convection and oppos-

ing flows, respectively. Other dimensionless parameters are fi1= fit+ fima etc.
magnetic paramete¥/ = oByL/pU. and Prandtl number e 2
ggra_mye{gr- [;'g]e a%%r?smoitﬁe%g/ﬁgvmglz (fqér(an) 's called slip Equations (30) and (31).are qonlinear algebraic quatigns
om 9m1 and therefore have to be linearized before the factorization
o BV e (24)  scheme can be used. We write the Newton iterates in the fol-
pooad22Q)m lowing way: For the(j + 1)th iterates, we write
wherea = U./L. From Eq. (24) we see that Egs. (20)
and (21) possess a similar solution whers= 1/2. Further- fiv1=f; +4f;, etc, (32)
more, A from Eq. (24) can be re-written as
(v/a) Lovise - for all dependent variables. By substituting these expressions
N AT (25)  inEgs. (29)-(31) and dropping the quadratic and higher-order

terms iné f;, a linear tridiagonal system of equations will be

The case when the lubrication length,;, is smalli.e. obtained as follows:

when the flow rateR is small andk is large (lubricant is

highly viscous), the parametér becomes large. The case Uj + uj_1

when) — oo, one gets no-slip boundary conditigh(0) = 0 0fj +0fj-1—h; ( 9 =(r)j-4

from Eq. (22). The case whely,,;, — oo, we gethA — 0 to

obtain f”/(0) = 0 called full-slip boundary condition. Su; — duj_1 — h; (1)34r2@71> = (r2);_1. (33)
) i it wi_

3. Numerical Method 505 + 6051 — h, (wj 2% 1> — (r3), 1,

The values off’, f”, 6 and #’ are evaluated by solving
Egs. (20)-(23) using a two-point implicit finite difference 59 _ 59, _ . (Pj +Pj1) = (r4);_1, (34)
scheme known as Keller-box method [26-29] for certain val- ! ! ’ 2 I

ues of pertinent parameters. As a first step, a system of first SFi+ SFii Suws + St
order ordinary differential equations is obtained in the fol- (W)ofs + (2)dfi-1 + (¥3)0u; + (Ya)u1

lowing way + (¢5)0v; + (Y6)0vj—1 + (Y7)0w; + (Ys)dw; 1
fl=u, v=v, vV=w 0 =p. (26) + (19)00; + (¥10)060; -1 = (r5);_1, (35)
Therefore, Egs. (20) and (21) imply
w—u?+ fv+1+ 2uw —ov* — fu') + (0
+M(1—u)=0, p +pr(fp—ud)=0. (27)

(11)0f; + (p2)d fj—1 + (p3)du; + (pa)duj—1
+ (15)00; + (116)00; -1 + (p7)dp;

- _ + (ps)dpj—1 = (re);_1, (36)
The transformed boundary conditions for= 0.5 imply
f(0) =0, w(0)(143Weu(0)) = Iu(0), 6(0)=1, subject to boundary conditions
u(o0) =1, v(c0) =0, 6(c0)=0. (28) 5fo =0, (A—3Weug)dug — (1 + 3Weuq)dvg

The obtained first-order system is approximated with

. - = - A
forward-difference for derivatives and averages for the de- vo + 3Weuguo = Auo,

pendent variables. The reduced algebraic systemis givenby vy =0, 6y =0, &py =0, (37)
fi=fi-1 _ Uj —Uj-1
o Y-y n. Vi—y where
J J
Vi — Vi1 0: —0:_1 h:
sy S =y (29) (V1) = (2); = (v +vj—1) ete
J J 4
w1 — u?_% +fio1v 1 +1 The resulting linearized system of algebraic equations is
solved by the block-elimination method. In matrix-vector
+We {gu w1 —v2 o —fi (”J_vﬂl) } form, the above system can be written as
J J—3 =3 J—3 hj
+80;_1 +M(1—u;_1) =0, (30) Ad =, (38)

) =0, (31) in which
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L (B]
where the elements iA are6 x 6 matrices and that of and
r are respectively of orde¥ x 1.

Now, we let
A= LU, (40)

WherelL is a lower and’ is an upper triangular matrix.
Equation (40) can be substituted into Eq. (38) to get

Byl [As] [Crl
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[61] [r1]
[02] [r2]
, 6= , r= , (39)
[0.7-1] [ry1]
[6.7] 7]
[As] ]

Figures 4 and 5 display the variation jand# for var-
ious values of magnetic parametef when Pr, 5 andWe
are fixed. The magnetic parameter can augment or suppress
the velocity or it alters the boundary layer thickness. In the
present case Fig. 4 illustrates that with an increment/in
the velocity is gained and momentum boundary layer thick-
ness is reduced. According to Fig. 5, the temperafuie
diminished as the numerical value &f rises. A comparison

LUS =r. (41) of Figs. 3 and 5 suggests that effects of the magnetic parame-
Defining .

Uo=W, (42) NG

0.8F.7

Eq. (38) becomes

LW =r, (43) 0.67

S
where the elements & are6 x 1 column matrices. The ele- 04!
ments ofl’ can be solved from Eg. (43). Once the elements )
of W are found, Eq. (42) then gives the solutibnVhen the
elements ob are found, Eq. (38) can be used to find the next 0.2
iteration. "
0 1 2 3 4 5

4. Results and discussions n

To illustrate the influence of magnetic parametér slip pa-
rameter\, mixed convection parametgy Weissenberg num-
berWe and Prandtl numbePr on f’ andd, Figs. 2-10 have
been plotted. Numerical values of wall shear stig49) and

B=0.1,Pr=1.

FIGURE 2. Impact of A on f'(n) whenM = 1, We = 0.5,

local Nusselt number-6’(0) are given in Tables I-IV. This

numerical data is utilized to discuss the influence of involved

parameters orf” (0) and—6'(0). 0.8f m\\
Figures 2 and 3 are displayed to analyze the behavior of \\\

slip parameter on the velocity and temperature profiles. Fig- __ 0.6} "‘.\\\

ure 2 depicts the dependencefé{velocity component along “1,\\ _

z-axis) on slip parametex. According to this figuref’ in- \\\“\ 2=0.1,1,3, 0

creases when slip is increased at the surface. It means tha b

the lubricant raises the velocity of the fluid. The case when ()2t ‘\\\

A approaches to zero.e. full slip regime, the effects of vis- AN

cosity are suppressed by the lubricant. Figure 3 demonstrates ! R

2
350'4_

how the slip parametex affects the temperatui® It is ob- 0 1 5 3 4
served from this figure that the fluid temperature is reduced
by raising the slip. This is because velocity is enhanced by
increasing slip and as a result the impact of wall temperatur@ cure 3. Impact of A on 6(n) when M =
on the flowing fluid is reduced. B=0.1,Pr=1.

1, We =

Rev. Mex. Fis63(2017) 134-144
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1
0.8+ .
A 0.6f .
We=0.05,04,1
T 0.4+ )
0.2 A= 1 0.2} N ]
r=3 — s
0 | I I ! 0 ) ) X
0 1 2 3 4 5 0 1 ) 3 4
U n

FIGURE 4. Impact of M on f’(n) for two various values ok when

FIGURE 7. Impact of We onf(n) when\ =4, M =1, 3 = 0.1,
We=0.5,8=0.1, Pr=1.

Pr =0.5.

Assissting flow

<o 5
~

Opposing flow -~
! ? 0 1 2 3 4 5
n
FIGURE 5. Impact of M on 6(n) when X = 3, We = 0.5 )
B3=0.1, Pr=1. FIGURES8. : Impact ofg on f'(n) when\ = 3, Pr = 0.5, M = 3,
We = 0.5.
1F
1
08 _/I,":,:;'ﬁ;' 0.8t Iéssisti?lg ﬂOW —
pposing flow -----------
S 0l _
™ 0.6} - Sl % B=-05,-3.5 |
0.2} |
04 ]
0 1 2 3 4 5 0r p= 0.5? 3.5
T 0 1 2 3 4 5
FIGURE 6. Impact of We on f'(n) for two various values of n

whenM =1,8=0.1, Pr = 1.
FIGURE 9. Impact of 3 on 6(n) when\ = 3, Pr = 1, M = 3,
ter and slip on the temperature are the same. Therefore, folye = 0.5.

lowing the same arguments the temperature shows a decre-

ment with an increase it/. Furthermore, the thermal bound- Figure 6 shows thaft’ decreases by increasifje. This de-

ary layer thickness is reduced by increasivig Variation in ~ crease in the velocity is due to increase in the effective viscos-
f’ and@ for the influence of viscoelastic parametéte for ity of fluid for larger values ofiWe. A reverse phenomenon
fixed \, M, 8 and Pr has been reported in Figs. 6 and 7. has been observed near the surface as slip is increased. It
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0.8}

0.6-"‘::

A

04} |

02F

Pr=1,2,5,10

FIGURE 10. Impact of Pr on 6(n) for two various values of
whenM = 3,3 =0.1, We = 0.5.

and results are shown in Fig. 7. To analyze the effects of
6 on f" and# both for assisting and opposing flows, Figs. 8
and 9 are plotted. Figure 8 depicts that velogityis an in-
creasing function of the mixed convection parameteior

the assisting flow and is decreasing function for the opposing
flow. The reason is that when the fluid is in contact with the
heated plate, the molecules of the fluid are excited and as a
result the velocity of the fluid enhances. On the other hand,
velocity of the fluid decreases near the cooled plate. Figure
9 shows the influence gf on the temperatur@ We observe
that by increasings the temperature of fluid reduces for as-
sisting flow situation and it increases for the opposing flow.
Impact of Pr on the numerical values df is displayed in
Fig. 10. As expected temperatuteeduces for large values
of Pr. From the explicit definition ofPr, we observe that

it is inversely related to thermal diffusivity. Therefore, in-
creasingPr, results in the decrement afcausing a decrease

means slip dominates the viscoelastic effects near the bounif heat transfer. This reduction becomes more prominent for
ary. Temperature in this case is a decreasing functidiv ef

the increased slip case.

TABLE . Influence of\ on f”(0) and —6’(0) whenWe = 0.5, M = Pr = 1 both for assisting flow# = 0.1) and opposing flow

(8 =-0.1).
B £ (0) —0'(0) £(0) —~0'(0)
(assisting flow) (assisting flow) (opposing flow) (opposing flow)
0.1 0.0396940 1.2468289 0.0392670 1.2329180
0.5 0.1880087 1.1962867 0.1855159 1.1817533
1.0 0.3490132 1.1396209 0.3431851 1.1246462
5.0 0.9224531 0.9185478 0.8898624 0.9065654
10 1.0695407 0.8554430 1.0263591 0.8456094
50 1.1853942 0.8032163 1.1337357 0.7951291
100 1.1991614 0.7968415 1.1465225 0.7889483
500 1.2100200 0.7917863 1.1566146 0.7840427
00 1.2127123 0.7905292 1.1591178 0.7828222

TABLE Il. Influence ofM on f(0) and—6'(0) when\ = Pr = 1 andWe = 0.5 both for assisting flowg = 0.1) and opposing flow

B =-0.1).
M £(0) —0'(0) £(0) —0'(0)
(assisting flow) (assisting flow) (opposing flow) (opposing flow)

0.1 0.3401739 1.1164548 0.3322275 1.0965899
0.5 0.3446506 1.1281423 0.3378313 1.1108543
1.0 0.3490132 1.1396209 0.3431851 1.1246462
5.0 0.3655151 1.1833976 0.3626590 1.1757119
10 0.3732894 1.2037015 0.3714764 1.1987397
50 0.3868837 1.2361132 0.3863826 1.2347291
100 0.3905841 1.2433106 0.3903140 1.2425701
500 0.3957243 1.2508222 0.3956649 1.2506633
1000 0.3969675 1.2519991 0.3969371 1.2519187

10000 0.3990316 1.2531760 0.3990285 1.2531679

50000 0.3995571 1.2532920 0.3995564 1.2532904
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TABLE lll. Influence ofPr on f(0) and—#’'(0) when\ = M = 1 andWe = 0.5 both for assisting flowg = 0.1) and opposing flow
(8= —0.1).

Pr £(0) —0'(0) £(0) —0'(0)
(assisting flow) (assisting flow) (opposing flow) (opposing flow)

0.1 0.3506510 0.3903749 0.3414380 0.3845350
0.5 0.3495519 0.8174892 0.3426122 0.8054638
1.0 0.3490132 1.1396209 0.3431851 1.1246462
2.0 0.3484959 1.5902881 0.3437320 1.5722180
5.0 0.3478845 2.4762945 0.3443735 2.4541926
10 0.3474944 3.4690130 0.3447793 3.4441100
50 0.3468439 7.6403326 0.3454490 7.6103073
100 0.3466601 10.762119 0.3456363 10.730519

TABLE IV. Influence ofiWe on f”(0) and—6¢’(0) whenPr = M = 1 and\ = 3 both for assisting flowg = 0.1) and opposing flow
(8=-0.1).

We £(0) —0'(0) £"(0) —0'(0)
(assisting flow) (assisting flow) (opposing flow) (opposing flow)
0.03 1.0747540 1.0137079 1.0298616 0.9996494
0.05 1.0540099 1.0114689 1.0107714 0.9974826
0.08 1.0247655 1.0084133 0.9838120 0.9945146
0.1 1.0063865 1.0065586 0.9668427 0.9927064
0.3 0.8581134 0.9939460 0.8292726 0.9802323
0.6 0.7069658 0.9872453 0.6878929 0.9732819
0.9 0.6005525 0.9880183 0.5875407 0.9737522
1.2 0.5204170 0.9925383 0.5113612 0.9780998

TABLE V. Comparison showing the influence various parameter§ @) when\ = oo, for assisting as well as opposing flow situations.
The numerical values written in the parentheses are calculated by [19] for the no-slip case.

M We Pr=0.2 Pr=10
£ =0.2 6 =-0.2 68=02 B8=-0.2

0 0.2 1.1559190 0.9561434 1.1058027 1.0096210
(1.559) (0.9561) (1.1058) (1.0096)

0 1 0.8174430 0.68443491 0.7905304 0.7141263
(0.8174) (0.6844) (0.7905) (0.7141)

0 2 0.6472373 0.5432061 0.6291413 0.5636410
(0.6472) (0.5432) (0.6291) (0.5636)

1 0.2 1.4554268 1.2948136 1.4171454 1.3346086
(1.4554) (1.2948) (1.4171) (1.3346)

1 1 1.0513271 0.9470308 1.0312133 0.9682148
(1.0513) (0.9470) (1.0312) (0.9682)

1 2 0.8419355 0.7617252 0.8286659 0.7758104
(0.8419) (0.7617) (0.8287) (0.7758)

10 0.2 3.0220059 2.9400916 3.0066963 2.9555134
(3.0220) (2.9401) (3.0067) (2.9555)

10 1 2.2416015 2.1901398 2.2338363 2.1979406
(2.2416) (2.1901) (2.2338) (2.1979)

10 2 1.8193215 1.7805365 1.8143020 1.7856210
(1.8193) (1.7805) (1.8143) (1.7856)
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TABLE VI. Comparison showing the influence various parameters@0) when\ = oo, for assisting as well as opposing flow situations.
The numerical values written in the parentheses are calculated by [19] for the no-slip case.

M We Pr=0.2 Pr=10
£8=02 B =-0.2 8=02 B =-0.2

0 0.2 0.4261279 0.4096336 1.7909049 1.7564229
(0.4261) (0.4096) (1.7909) (1.7564)

0 1 0.3919394 0.3784332 1.6090485 1.5763975
(0.3919) (0.3784) (1.6090) (1.5764)

0 2 0.3696079 0.3575229 1.4956738 1.4641391
(0.3696) (0.3575) (1.4957) (1.4641)

1 0.2 0.4403162 0.4288206 1.9159220 1.8907467
(0.4403) (0.4288) (1.9159) (1.8907)

1 1 0.4085240 0.3993254 1.7320370 1.7096146
(0.4085) (0.3993) (1.7320) (1.7096)

1 2 0.3872433 0.3791416 1.6160154 1.5950066
(0.3872) (0.3791) (1.6160) (1.5950)

10 0.2 0.4832037 0.4795827 2.3335900 2.3242681
(0.4832) (0.4795) (2.3336) (2.3243)

10 1 0.4585322 0.4555471 2.1333937 2.1258812
(0.4585) (0.4555) (2.1334) (2.1259)

10 2 0.4408275 0.4382215 2.0041575 1.9975412
(0.4408) (0.4382) (2.0042) (1.9975)

Numerical values of skin friction coefficient’(0) and 5. Conclusion
local Nusselt number¢’(0) for the influence of\ are pre-
sented in Table | both for assisting and opposing flow casedD this paper, effects of lubrication in MHD mixed convec-
It is observed thaf” (0) is an increasing and¢’ (0) is a de-  tion stagnation point flow of a second grade fluid adjacent
creasing function of\ for the both cases. But magnitude t0 @ vertical plate has been investigated. A thin coating of
of increase or decrease is smaller when there is an oppod-Power-law fluid is used for the lubrication purpose. Nu-
ing flow. Table Il is displayed for the analysis ¢f (0) and merical solutlons_ are found to _analyze the mfluencg of slip
—0/(0) for the influence of magnetic parametef. We see Parameten (rapglng from no-slip to fu!l slip), magnetic pa-
that by increasing//, both f”(0) and—#’(0) gain the mag- fameteri, Weissenberg numbé¥,, mixed convection pa-
nitude. The rate of increase of both quantities is larger if@meters and Prandtl numbePr on the flow characteristics.
full slip regime and is smaller in no slip regime for both the Results are presented in the form of tables and figures for cer-
cases. Effects aPr on f”(0) and—6’(0) on the lubricated tain vglues of parameters by con_sid_ering ass_isting as well as
surface has been depicted in Table IlI. The results show th&Pposing flow situations. Some findings of this study are
by increasingPr, f”(0) decreases andf’(0) increases in i _ i o
the case of assisting flow and both quantities accelerate in () The lubricant enhances the fluid velocify and re-
opposing flow situation. Table IV incorporates the effects duces the fluid temperatuée
of We on f”(0) and —¢'(0) during assisting anc/i/ Opposing (i) The velocity f is raised and the temperatuteis
rov/vs forA =3, M =1andPr = 1. We see thaf”(0) and decreased by augmenting the magnetic parameter M.
—0'(0) are reduced by enhancing We in each case. Tables V Moreover, the momentum boundary layer thickness

and VI are presented to examine the variatior/f{0) and and the thermal boundary layer thickness are dimin-
—0'(0) for the influence oiVe, M andPr. A comparison of ished.

obtained results for the no-slip case {+ o) with those of
Ahmed and Nazar [19] validates the accuracy of the provided (iii) The velocity f’ is decreased and the temperat@ris
solutions. increased by increasing. .

(iv) The velocity f’ is an increasing function of the mixed
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convection parametet for the assisting flow and is a Symbol Quantity
decreasing function for the opposing flow. k Consistency coefficient
(v) The temperature of fluid reduces for assisting flow sit- p Density of second grade fluid
uation and it rises for the opposing flow. ko Material parameter of second grade fluid
(vi) The temperaturé reduces by increasing the values of g Gravitational acceleration
Prandtl numbePr. Gr Grashof number
(vii) Skin friction coefficient f”(0) decreases and local B Mixed convection parameter
Nusselt number-6'(0) increases by increasing slip on n Dimensionless independent variable
the surface. Lyise Viscous length scale
(viii) Skin friction coefficient f”(0) and local Nusselt num- v Kinematic viscosity
ber—¢’(0) gain the magnitude by increasing magnetic L Characteristic length
parameter M and reduce with an increase in We. M Magnetic parameter
(i) f”(0) decreases and¢’(0) increases during assisting uv Velocity components i andy
flow and both quantities increase during opposing flow directions for a power-law fluid
by increasingPr. o Electrical conductivity
n Flow behavior index
Nomenclature W Weissenberg number
Symbol Quantity k Viscosity of second grade fluid
Q Flow rate o Thermal diffusivity
T, Wall temperature v Thermal expansion coefficient
T Free stream temperature Re Reynolds number
T Fluid temperature Pr Prandtl number
h Thickness of lubrication layer 4 Dimensionless temperature
U, Reference velocity f Dimensionless velocity
Ue Free stream velocity Ly Lubrication length scale
To Reference temperature
A Slip parameter
Apparent viscosit
e pparent VIscostty Acknowledgments
Bo Magnetic field strength
T,y Rectangular coordinates We are grateful to the anonymous reviewers for the valuable
U, v Velocity components inc andy suggestions. These comments really helped us in improving

directions for a second grade fluid
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