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Electroweak radiative corrections to semileptonicτ decays
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I present an update on the electroweak radiative correction factor to semileptonicτ decays, including a next-to-leading order resummation of
large logarithms. My result differs both qualitatively and quantitatively from the one recently obtained by Davieret al.. As two consequences,
(i) the discrepancy between the predictions for the muong−2 based onτ decay data ande+e− annihilation data increases, and (ii) theg−2

prediction based onτ decay data appears to be consistent (within about one standard deviation) with the experimental result from BNL.
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Presentamos una actualizacion del factor de correcion radiativo electrodebil al decaimiento semileptonico delτ , incluyendo una resumacion
de sugundo orden de logaritmos grandes. Nuestro resultado difiere cualitativa y cuantitativamente del recientemente obtenido por Davier et
al. Tenemos dos resultados,(i) la discrepancia entre la preciones para el g-2 del muon basado en los datos del decaimientos delτ y los datos
de la aniquilacione+e−, se incrementa y (ii) la prediccion de g-2 basada en los datos del decaimiento delτ parece ser consistente (dentro de
una desviacion estandar) con el resultado experimental de BNL.

Descriptores: Correciones radiativas electrodebiles; decaimiento delτ ; QCD perturbativa.

PACS: 11.10.Hi,12.15.Lk,13.35.Dx,13.40.Em.

The largest theoretical uncertainty in the Standard Model pre-
diction of the anomalous magnetic moment of the muon,
aµ = (gµ − 2)/2, arises from the hadronic two-loop vacuum
polarization contribution,∆a

had,(2)
µ . This contribution is two

orders of magnitude larger than the ultimate experimental er-
ror anticipated by the Muong − 2 Collaboration at BNL [2],
so it needs to be controlled at the 1% level or better. While
non-perturbative QCD effects prevent a first principles calcu-
lation, ∆a

had,(2)
µ can be rigorously obtained experimentally

from a dispersion relation which relates it to an integral over
e+e− annihilation cross sections. Using the conserved vector
current (CVC) hypothesis one can obtain additional informa-
tion by studying the invariant mass distribution ofτ decay
hadronic final states. This necessitates a careful assessment
of CVC breaking effects, which was done in a recent arti-
cle by Davieret al. [1]. In this note, I present an update of
the short distance electroweak radiative corrections toτ de-
cays, representing a particular CVC breaking effect. This up-
date is motivated by two mistakes in one of the formulas of
Ref. [1]. Numerically, the corresponding shifts are modest,
but not negligible, and have the same sign.

The leading electroweak radiative corrections toτ decays
are enhanced by a large logarithm [3,4],

SEW = 1 +
3α

4π
(1 + 2Q) ln

M2
Z

m2
τ

= 1.01878 (1)

whereMZ = 91.1876(2) GeV [5] is theZ boson mass, and
α = α(mτ ) = 1/133.50(2) [6] is the QED coupling at
theτ lepton mass,mτ = 1776.99(3) MeV [7], evaluated in
theMS renormalization scheme.Q is the hypercharge of the
weak doublet produced in the final state. Therefore,Q = 1/6
for semileptonic decays,τ− → ντ ūd(s). SinceQ = −1/2
for leptons, there are no large logarithms for leptonicτ de-

cays.
The remaining (not logarithmically enhanced) correc-

tions atO(α) have been obtained in Ref. [8] (final state
fermion masses are neglected throughout). In the notation
of Eq. (17) of Ref. [1] they are,

Ssub,had
EW = 1 +

α(mτ )
π

(
85
24
− π2

2

)
, (2)

Ssub,lep
EW = 1 +

α(mτ )
π

(
25
8
− π2

2

)
, (3)

for semileptonic and leptonic decays, respectively. In
Ref. [1], however,Ssub,had

EW was erroneously identified with
the ratio,

Ssub,had
EW

Ssub,lep
EW

= 1 +
5
12

α(mτ )
π

= 1.00099. (4)

This amounts to a double counting of the correction
Ssub,lep

EW − 1 = −0.00432: the hadronic spectral functions
are normalized relative to the leptonic branching ratio (see
Eq. (10) of Ref. [1]) so that the ratio (4) must be included, but
it is incorrect to perform an additional division bySsub,lep

EW .
Since numerically,

αs

π
ln

M2
Z

m2
τ

∼ O(1), (5)

short distance QCD effects are of similar size as theO(α)
corrections discussed in the previous paragraph. They have
been computed in Ref. [9] and modify Eq. (1),

SEW = 1 +
3α

4π
ln

M2
Z

m2
τ

[
(1 + 2Q)− 2Q

αs

π

]
. (6)
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The short distance QCD correction corresponding to the term
proportional to the strong coupling constant,αs, has been
approximated [9] in order to obtain an analytic result. I
have checked that this approximation reproduces the exact
O(ααs ln M2

Z) result within about 1%. Since two scales en-
ter Eq. (6), it is clear that a next-to-leading order renormal-
ization group analysis is in order.

Resummation of the leading order logarithms in Eq. (1) is
done using the renormalization group equation (RGE) [10],

[
µ2 ∂

∂µ2
+ β

(1)
0

α2

π

∂

∂α
− α

π

]
S(µ0, µ) = 0, (7)

whereβ
(1)
0 is the lowest order QEDβ-function coefficient.

This RGE is subject to the initial condition,S(µ0, µ0) = 1,
and its solution is given by,

S(µ0, µ) =
[
1− α(µ0)

π
β

(1)
0 ln

µ2

µ2
0

]− 1

β
(1)
0 . (8)

Applied to the case at hand, this is often written as,

S(mτ ,MZ) =
[

α(mb)
α(mτ )

] 9
19

[
α(MW )
α(mb)

] 9
20

[
α(MZ)
α(MW )

] 36
17

= 1.01937, (9)

where the solution to the one-loop RGE of QED,

µ2 d
dµ2

α(µ) = β
(1)
0

α2(µ)
π

, (10)

has been employed. It should be stressed, that consistency
with the RGE demands one-loop evolution ofα(µ) within
each of the factors in Eq. (9). On the other hand, the val-
ues usedacrossthe various factors, may be related to each
other either by one-loop evolution or including higher order
running effects, since the difference is of higher order in the
RGE (7). The increase ofS(mτ ,MZ) in Eq. (9) relative to
Eq. (1) due to the summation ofO(αn lnn M2

Z) effects is
about 3% of the non-resummed correction.

I will now extend the RGE analysis of the previous para-
graph to properly sum up all logarithms[We neglect non-
logarithmic and therefore non-enhanced terms ofO(ααs).
This is in accordance with common practice where solu-
tions of ann–loop RGE are supplemented by(n − 1)–loop
threshold (matching) terms of non-logarithmic nature.] of
O(ααn

s lnn M2
Z). Eq. (7) is to be replaced by,

[
µ2 d

dµ2
−α

π

(
1−αs

4π

)]
S(µ0, µ)=

[
µ2 ∂

∂µ2

+β
(1)
0

α2

π

∂

∂α
−β

(3)
0

α2
s

π

∂

∂αs
−α

π

(
1−αs

4π

)]
S=0, (11)

whereβ
(3)
0 is the lowest order QCDβ-function coefficient.

With the definitions,

ητ =
αs(mτ )

4π

[
1 +

75
76

αs(mτ )
α(mτ )

]−1

,

ηb =
αs(mb)

4π

[
1 +

69
80

αs(mb)
α(mb)

]−1

,

ηW =
αs(MW )

4π

[
1 +

69
17

αs(MW )
α(MW )

]−1

, (12)

Eq. (11) is solved by,

S(mτ ,MZ) =
[

α(mb)
α(mτ )

] 9
19 (1−ητ ) [

αs(mb)
αs(mτ )

] 9
19 ητ

[
α(MW )
α(mb)

] 9
20 (1−ηb) [

αs(MW )
αs(mb)

] 9
20 ηb

[
α(MZ)
α(MW )

] 36
17 (1−ηW ) [

αs(MZ)
αs(MW )

] 36
17 ηW

= 1.01907± 0.00001,
(13)

where I used the solutions to the one-loop RGE of QCD,

µ2 d
dµ2

αs(µ) = −β
(3)
0

α2
s(µ)
π

, (14)

and of QED[QCD corrections to Eq. (10) are suppressed by
an additional factorαs/π. Their inclusion gives rise to the
summation ofO(αsα

n lnn M2
Z) effects, but the integration

cannot be performed analytically. Numerically this summa-
tion affects the result at the10−5 level which can safely be
neglected.]. The shift,−0.00030, between Eqs. (9) and (13)
is somewhat larger than the shift,−0.00022, obtained in
Ref. [4], which is in part due to the summation, but mainly
due to the inputs. The uncertainty in Eq. (13) is from the cur-
rent uncertainty inαs = 0.120±0.002, while other paramet-
ric uncertainties are minuscule[What enters Eqs. (9) and (13)
is theMS b-quark definition, which is free of renormalon am-
biguities and therefore much better known (see Ref. [11] for
a recent sub-percent determination) than theb-quark pole
mass. Higher order matching corrections are also smaller
if one uses theMS mass definition.]. Neglecting two-loop
O(αn+1 lnn M2

Z) effects, Eq. (13) simplifies,

S(mτ , MZ)=
[

α(mb)
α(mτ )

] 9
19

[
α(MW )
α(mb)

] 9
20

[
α(MZ)
α(MW )

] 36
17

[
αs(mb)
αs(mτ )

] 3
25

α(mτ )
π

[
αs(MZ)
αs(mb)

] 3
23

α(mb)
π

, (15)

which differs by only≈ 3 × 10−6. Neglecting further
the numerically similar three-loopO(αsα

n lnn M2
Z) effects,

one can expand the second line in Eq. (15) to linear order
in α. If one then rewrites the resulting expression in terms
of QCD scale parameters,ΛQCD, one encounters the double-
logarithmic form originally obtained 20 years ago [9].

To summarize, next-to-leading order effectsreducethe
leading order summation by about 50%,i.e., they are numer-
ically of the same order. Both effects are in turn numerically
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of orderα, so they must be included for a completeO(α)
evaluation. Unknown higher orders are suppressed by at least
a factor ofαs/π relative to any of the effects mentioned be-
fore. Thus, the uncertainty due to higher order effects is of
orderO(ααs) ∼ 0.0003.

Following Ref. [1] one can write,

SEW ≡ S(mτ ,MZ)
Ssub,had

EW

Ssub,lep
EW

= 1.0201± 0.0003, (16)

but thereSEW = 1.0267 ± 0.0027 is quoted instead. Al-
most 2/3 of the difference is due to the error pointed out after
Eq. (4), and about 5% due to neglecting next-to-leading or-
der contributions toS(mτ ,MZ). Another 15% difference
is likely due to applying Eq. (9) incorrectly (as discussed
above). The remaining 15% can perhaps be traced to use
of the on-shell definition ofα in place of theMS definition as
used in the present work. Note, that the derivation of Eq. (9)
assumes amass-independentrenormalization scheme (such
as theMS scheme), in which at each fermion threshold the
β-function coefficients change by a finite amount: this is the
origin of the product form of Eq. (9). Thus, the solution (9)
cannot be applied tomass-dependentschemes, such as the
on-shell renormalization scheme. It is emphasized again, that
the numerical difference to Ref. [1] should not be viewed
as a scheme-dependence and thus as an estimate of uncal-
culated higher order corrections (which are much smaller as
discussed above). On the contrary, one should expect that a

self-consistent treatment within the on-shell scheme will re-
produce the result of the present work.

As far as theτ -based analysis of Ref. [1] is concerned,
about 77% of the data is affected bySEW. SinceSEW ob-
tained in this paper differs by about 0.65% from the one in
Ref. [1], one expects a 0.5% shift in the extracted∆a

had,(2)
µ .

Including an update of the CKM matrix element|Vud| en-
tering the analysis (the value,|Vud| = 0.9752 ± 0.0007, is
replaced by,|Vud| = 0.97485 ± 0.00046, from the fit result
of Ref. [7]), this amounts to about one half of the current
experimental uncertainty of 0.8 parts per billion [2] for the
muon magnetic moment. Theτ -based Standard Model pre-
diction would then be consistent with the measurement [2]
within about one standard deviation. The discrepancy to the
e+e− based analysis of Ref. [1] would correspondingly be
larger. Furthermore, the smaller errors in Eq. (16) and in
|Vud| compared to Ref. [1] should lead to a slight reduction
of the overall uncertainty of theτ -based result. As a final re-
mark, the recent determination [11] ofαs from theτ lifetime,
when updated with the present next-to-leading order analysis,
increasesαs(MZ) by less than0.0001.
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