Electroweak radiative corrections to semileptonic τ decays

J. Erler

Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F., México, e-mail: erler@fisica.unam.mx

Recibido el 13 de octubre de 2003; aceptado el 24 de noviembre de 2003

I present an update on the electroweak radiative correction factor to semileptonic τ decays, including a next-to-leading order resummation of large logarithms. My result differs both qualitatively and quantitatively from the one recently obtained by Davier *et al.*. As two consequences, (i) the discrepancy between the predictions for the muon g - 2 based on τ decay data and e^+e^- annihilation data increases, and (ii) the g - 2 prediction based on τ decay data appears to be consistent (within about one standard deviation) with the experimental result from BNL.

Keywords: Electroweak radiative corrections; tau decay; perturbative QCD.

Presentamos una actualizacion del factor de correcion radiativo electrodebil al decaimiento semileptonico del τ , incluyendo una resumacion de sugundo orden de logaritmos grandes. Nuestro resultado difiere cualitativa y cuantitativamente del recientemente obtenido por Davier et al. Tenemos dos resultados,(i) la discrepancia entre la preciones para el g-2 del muon basado en los datos del decaimientos del τ y los datos de la aniquilacion e^+e^- , se incrementa y (ii) la prediccion de g-2 basada en los datos del decaimiento del τ parece ser consistente (dentro de una desviacion estandar) con el resultado experimental de BNL.

Descriptores: Correciones radiativas electrodebiles; decaimiento del τ ; QCD perturbativa.

PACS: 11.10.Hi,12.15.Lk,13.35.Dx,13.40.Em.

The largest theoretical uncertainty in the Standard Model prediction of the anomalous magnetic moment of the muon, $a_{\mu} = (g_{\mu} - 2)/2$, arises from the hadronic two-loop vacuum polarization contribution, $\Delta a_{\mu}^{had,(2)}$. This contribution is two orders of magnitude larger than the ultimate experimental error anticipated by the Muon q - 2 Collaboration at BNL [2], so it needs to be controlled at the 1% level or better. While non-perturbative QCD effects prevent a first principles calculation, $\Delta a_{\mu}^{had,(2)}$ can be rigorously obtained experimentally from a dispersion relation which relates it to an integral over e^+e^- annihilation cross sections. Using the conserved vector current (CVC) hypothesis one can obtain additional information by studying the invariant mass distribution of τ decay hadronic final states. This necessitates a careful assessment of CVC breaking effects, which was done in a recent article by Davier et al. [1]. In this note, I present an update of the short distance electroweak radiative corrections to au decays, representing a particular CVC breaking effect. This update is motivated by two mistakes in one of the formulas of Ref. [1]. Numerically, the corresponding shifts are modest, but not negligible, and have the same sign.

The leading electroweak radiative corrections to τ decays are enhanced by a large logarithm [3,4],

$$S_{\rm EW} = 1 + \frac{3\alpha}{4\pi} (1 + 2\overline{Q}) \ln \frac{M_Z^2}{m_\tau^2} = 1.01878 \qquad (1)$$

where $M_Z = 91.1876(2)$ GeV [5] is the Z boson mass, and $\alpha = \alpha(m_{\tau}) = 1/133.50(2)$ [6] is the QED coupling at the τ lepton mass, $m_{\tau} = 1776.99(3)$ MeV [7], evaluated in the $\overline{\text{MS}}$ renormalization scheme. \overline{Q} is the hypercharge of the weak doublet produced in the final state. Therefore, $\overline{Q} = 1/6$ for semileptonic decays, $\tau^- \rightarrow \nu_{\tau} \overline{u} \overline{d}(s)$. Since $\overline{Q} = -1/2$ for leptons, there are no large logarithms for leptonic τ decays.

The remaining (not logarithmically enhanced) corrections at $\mathcal{O}(\alpha)$ have been obtained in Ref. [8] (final state fermion masses are neglected throughout). In the notation of Eq. (17) of Ref. [1] they are,

$$S_{\rm EW}^{\rm sub,had} = 1 + \frac{\alpha(m_{\tau})}{\pi} \left(\frac{85}{24} - \frac{\pi^2}{2}\right),$$
 (2)

$$S_{\rm EW}^{\rm sub, lep} = 1 + \frac{\alpha(m_{\tau})}{\pi} \left(\frac{25}{8} - \frac{\pi^2}{2}\right),$$
 (3)

for semileptonic and leptonic decays, respectively. In Ref. [1], however, $S_{\rm EW}^{\rm sub,had}$ was erroneously identified with the ratio,

$$\frac{S_{\rm EW}^{\rm sub,had}}{S_{\rm EW}^{\rm sub,lep}} = 1 + \frac{5}{12} \frac{\alpha(m_{\tau})}{\pi} = 1.00099.$$
(4)

This amounts to a double counting of the correction $S_{\rm EW}^{\rm sub, lep} - 1 = -0.00432$: the hadronic spectral functions are normalized relative to the leptonic branching ratio (see Eq. (10) of Ref. [1]) so that the ratio (4) must be included, but it is incorrect to perform an additional division by $S_{\rm EW}^{\rm sub, lep}$.

Since numerically,

$$\frac{\alpha_s}{\pi} \ln \frac{M_Z^2}{m_\tau^2} \sim \mathcal{O}(1),\tag{5}$$

short distance QCD effects are of similar size as the $O(\alpha)$ corrections discussed in the previous paragraph. They have been computed in Ref. [9] and modify Eq. (1),

$$S_{\rm EW} = 1 + \frac{3\alpha}{4\pi} \ln \frac{M_Z^2}{m_\tau^2} \left[(1 + 2\overline{Q}) - 2\overline{Q} \frac{\alpha_s}{\pi} \right].$$
(6)

The short distance QCD correction corresponding to the term proportional to the strong coupling constant, α_s , has been approximated [9] in order to obtain an analytic result. I have checked that this approximation reproduces the exact $\mathcal{O}(\alpha \alpha_s \ln M_Z^2)$ result within about 1%. Since two scales enter Eq. (6), it is clear that a next-to-leading order renormalization group analysis is in order.

Resummation of the leading order logarithms in Eq. (1) is done using the renormalization group equation (RGE) [10],

$$\left[\mu^2 \frac{\partial}{\partial \mu^2} + \beta_0^{(1)} \frac{\alpha^2}{\pi} \frac{\partial}{\partial \alpha} - \frac{\alpha}{\pi}\right] S(\mu_0, \mu) = 0, \qquad (7)$$

where $\beta_0^{(1)}$ is the lowest order QED β -function coefficient. This RGE is subject to the initial condition, $S(\mu_0, \mu_0) = 1$, and its solution is given by,

$$S(\mu_0,\mu) = \left[1 - \frac{\alpha(\mu_0)}{\pi}\beta_0^{(1)}\ln\frac{\mu^2}{\mu_0^2}\right]^{-\frac{1}{\beta_0^{(1)}}}.$$
 (8)

Applied to the case at hand, this is often written as,

$$S(m_{\tau}, M_Z) = \left[\frac{\alpha(m_b)}{\alpha(m_{\tau})}\right]^{\frac{9}{19}} \left[\frac{\alpha(M_W)}{\alpha(m_b)}\right]^{\frac{9}{20}} \left[\frac{\alpha(M_Z)}{\alpha(M_W)}\right]^{\frac{36}{17}}$$
$$= 1.01937, \tag{9}$$

where the solution to the one-loop RGE of QED,

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \alpha(\mu) = \beta_{0}^{(1)} \frac{\alpha^{2}(\mu)}{\pi}, \qquad (10)$$

has been employed. It should be stressed, that consistency with the RGE demands one-loop evolution of $\alpha(\mu)$ within each of the factors in Eq. (9). On the other hand, the values used *across* the various factors, may be related to each other either by one-loop evolution or including higher order running effects, since the difference is of higher order in the RGE (7). The increase of $S(m_{\tau}, M_Z)$ in Eq. (9) relative to Eq. (1) due to the summation of $\mathcal{O}(\alpha^n \ln^n M_Z^2)$ effects is about 3% of the non-resummed correction.

I will now extend the RGE analysis of the previous paragraph to properly sum up all logarithms[We neglect nonlogarithmic and therefore non-enhanced terms of $\mathcal{O}(\alpha \alpha_s)$. This is in accordance with common practice where solutions of an *n*-loop RGE are supplemented by (n - 1)-loop threshold (matching) terms of non-logarithmic nature.] of $\mathcal{O}(\alpha \alpha_s^n \ln^n M_Z^2)$. Eq. (7) is to be replaced by,

$$\begin{bmatrix} \mu^2 \frac{\mathrm{d}}{\mathrm{d}\mu^2} - \frac{\alpha}{\pi} \left(1 - \frac{\alpha_s}{4\pi} \right) \end{bmatrix} S(\mu_0, \mu) = \begin{bmatrix} \mu^2 \frac{\partial}{\partial \mu^2} \\ + \beta_0^{(1)} \frac{\alpha^2}{\pi} \frac{\partial}{\partial \alpha} - \beta_0^{(3)} \frac{\alpha_s^2}{\pi} \frac{\partial}{\partial \alpha_s} - \frac{\alpha}{\pi} \left(1 - \frac{\alpha_s}{4\pi} \right) \end{bmatrix} S = 0, \quad (11)$$

where $\beta_0^{(3)}$ is the lowest order QCD β -function coefficient.

With the definitions,

$$\eta_{\tau} = \frac{\alpha_s(m_{\tau})}{4\pi} \left[1 + \frac{75}{76} \frac{\alpha_s(m_{\tau})}{\alpha(m_{\tau})} \right]^{-1},$$

$$\eta_b = \frac{\alpha_s(m_b)}{4\pi} \left[1 + \frac{69}{80} \frac{\alpha_s(m_b)}{\alpha(m_b)} \right]^{-1},$$

$$\eta_W = \frac{\alpha_s(M_W)}{4\pi} \left[1 + \frac{69}{17} \frac{\alpha_s(M_W)}{\alpha(M_W)} \right]^{-1},$$
 (12)

Eq. (11) is solved by,

$$S(m_{\tau}, M_Z) = \left[\frac{\alpha(m_b)}{\alpha(m_{\tau})}\right]^{\frac{3}{29}(1-\eta_{\tau})} \left[\frac{\alpha_s(m_b)}{\alpha_s(m_{\tau})}\right]^{\frac{9}{29}\eta_{\tau}} \\ \left[\frac{\alpha(M_W)}{\alpha(m_b)}\right]^{\frac{9}{20}(1-\eta_b)} \left[\frac{\alpha_s(M_W)}{\alpha_s(m_b)}\right]^{\frac{9}{20}\eta_b} \\ \left[\frac{\alpha(M_Z)}{\alpha(M_W)}\right]^{\frac{36}{17}(1-\eta_W)} \left[\frac{\alpha_s(M_Z)}{\alpha_s(M_W)}\right]^{\frac{36}{17}\eta_W} \\ = 1.01907 \pm 0.00001,$$
(13)

where I used the solutions to the one-loop RGE of QCD,

$$\mu^{2} \frac{\mathrm{d}}{\mathrm{d}\mu^{2}} \alpha_{s}(\mu) = -\beta_{0}^{(3)} \frac{\alpha_{s}^{2}(\mu)}{\pi}, \qquad (14)$$

and of QED[QCD corrections to Eq. (10) are suppressed by an additional factor α_s/π . Their inclusion gives rise to the summation of $\mathcal{O}(\alpha_s \alpha^n \ln^n M_Z^2)$ effects, but the integration cannot be performed analytically. Numerically this summation affects the result at the 10^{-5} level which can safely be neglected.]. The shift, -0.00030, between Eqs. (9) and (13) is somewhat larger than the shift, -0.00022, obtained in Ref. [4], which is in part due to the summation, but mainly due to the inputs. The uncertainty in Eq. (13) is from the current uncertainty in $\alpha_s = 0.120 \pm 0.002$, while other parametric uncertainties are minuscule[What enters Eqs. (9) and (13) is the \overline{MS} b-quark definition, which is free of renormalon ambiguities and therefore much better known (see Ref. [11] for a recent sub-percent determination) than the *b*-quark pole mass. Higher order matching corrections are also smaller if one uses the \overline{MS} mass definition.]. Neglecting two-loop $\mathcal{O}(\alpha^{n+1}\ln^n M_Z^2)$ effects, Eq. (13) simplifies,

$$S(m_{\tau}, M_Z) = \left[\frac{\alpha(m_b)}{\alpha(m_{\tau})}\right]^{\frac{9}{19}} \left[\frac{\alpha(M_W)}{\alpha(m_b)}\right]^{\frac{9}{20}} \left[\frac{\alpha(M_Z)}{\alpha(M_W)}\right]^{\frac{36}{17}} \\ \left[\frac{\alpha_s(m_b)}{\alpha_s(m_{\tau})}\right]^{\frac{3}{25}\frac{\alpha(m_{\tau})}{\pi}} \left[\frac{\alpha_s(M_Z)}{\alpha_s(m_b)}\right]^{\frac{3}{23}\frac{\alpha(m_b)}{\pi}}, (15)$$

which differs by only $\approx 3 \times 10^{-6}$. Neglecting further the numerically similar three-loop $\mathcal{O}(\alpha_s \alpha^n \ln^n M_Z^2)$ effects, one can expand the second line in Eq. (15) to linear order in α . If one then rewrites the resulting expression in terms of QCD scale parameters, $\Lambda_{\rm QCD}$, one encounters the doublelogarithmic form originally obtained 20 years ago [9].

To summarize, next-to-leading order effects *reduce* the leading order summation by about 50%, *i.e.*, they are numerically of the same order. Both effects are in turn numerically

Rev. Mex. Fís. 50 (2) (2004) 200-202

of order α , so they must be included for a complete $\mathcal{O}(\alpha)$ evaluation. Unknown higher orders are suppressed by at least a factor of α_s/π relative to any of the effects mentioned before. Thus, the uncertainty due to higher order effects is of order $\mathcal{O}(\alpha \alpha_s) \sim 0.0003$.

Following Ref. [1] one can write,

$$S_{\rm EW} \equiv S(m_{\tau}, M_Z) \frac{S_{\rm EW}^{\rm sub,had}}{S_{\rm EW}^{\rm sub,lep}} = 1.0201 \pm 0.0003, \quad (16)$$

but there $S_{\rm EW} = 1.0267 \pm 0.0027$ is quoted instead. Almost 2/3 of the difference is due to the error pointed out after Eq. (4), and about 5% due to neglecting next-to-leading order contributions to $S(m_{\tau}, M_Z)$. Another 15% difference is likely due to applying Eq. (9) incorrectly (as discussed above). The remaining 15% can perhaps be traced to use of the on-shell definition of α in place of the \overline{MS} definition as used in the present work. Note, that the derivation of Eq. (9) assumes a mass-independent renormalization scheme (such as the \overline{MS} scheme), in which at each fermion threshold the β -function coefficients change by a finite amount: this is the origin of the product form of Eq. (9). Thus, the solution (9) cannot be applied to mass-dependent schemes, such as the on-shell renormalization scheme. It is emphasized again, that the numerical difference to Ref. [1] should not be viewed as a scheme-dependence and thus as an estimate of uncalculated higher order corrections (which are much smaller as discussed above). On the contrary, one should expect that a self-consistent treatment within the on-shell scheme will reproduce the result of the present work.

As far as the τ -based analysis of Ref. [1] is concerned, about 77% of the data is affected by $S_{\rm EW}$. Since $S_{\rm EW}$ obtained in this paper differs by about 0.65% from the one in Ref. [1], one expects a 0.5% shift in the extracted $\Delta a_{\mu}^{had,(2)}$. Including an update of the CKM matrix element $|V_{ud}|$ entering the analysis (the value, $|V_{ud}| = 0.9752 \pm 0.0007$, is replaced by, $|V_{ud}| = 0.97485 \pm 0.00046$, from the fit result of Ref. [7]), this amounts to about one half of the current experimental uncertainty of 0.8 parts per billion [2] for the muon magnetic moment. The τ -based Standard Model prediction would then be consistent with the measurement [2] within about one standard deviation. The discrepancy to the e^+e^- based analysis of Ref. [1] would correspondingly be larger. Furthermore, the smaller errors in Eq. (16) and in $|V_{ud}|$ compared to Ref. [1] should lead to a slight reduction of the overall uncertainty of the τ -based result. As a final remark, the recent determination [11] of α_s from the τ lifetime, when updated with the present next-to-leading order analysis, increases $\alpha_s(M_Z)$ by less than 0.0001.

Acknowledgments

It is a pleasure to thank Eric Braaten and Michael Ramsey-Musolf for their comments.

- 1. M. Davier, S. Eidelman, A. Höcker, and Z. Zhang, Confronting Spectral Functions from e + e - Annihilation and τ Decays: Consequences for the Muon Magnetic Moment, e-print hepph/0208177.
- 2. Muon g-2 Collaboration: G.W. Bennett *et al.*, *Phys. Rev. Lett.* **89** (2002) 101804.
- 3. A. Sirlin, Rev. Mod. Phys. 50 (1978) 573.
- 4. W.J. Marciano and A. Sirlin, Phys. Re. Lett. 61 (1988) 1815.
- ALEPH, DELPHI, L3, and OPAL Collaborations, LEP Electroweak Working Group and SLD Heavy Flavor and Electroweak Groups: D. Abbaneo *et al.*, A Combination of Prelim-

inary Electroweak Measurements and Constraints on the Standard Model, e-print hep-ex/0112021.

- 6. J. Erler, Phys. Rev. D 59 (1999) 054008.
- 7. Particle Data Group: K. Hagiwara *et al.*, *Phys. Rev. D* **66** (2002) 010001.
- 8. E. Braaten and C.S. Li, Phys. Rev. D 42 (1990) 3888.
- 9. A. Sirlin, Nucl. Phys. B 196 (1982) 83.
- 10. W.J. Marciano and A. Sirlin, Phys. Rev. Lett. 56 (1986) 22.
- 11. J. Erler and M. Luo, *Precision Determination of Heavy Quark Masses and the Strong Coupling Constant*, e-print hep-ph/0207114.