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Relation between the field quadratures and the characteristic function of a mirror
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We analyze the possibility of measuring the state of a movable mirror by using its interaction with a quantum field. We show that measuring
the field quadratures allows us to reconstruct the characteristic function corresponding to the mirror state.
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Analizamos la posibilidad de medir el estado cuántico de un espejo ḿovil usando su interacción con un campo cuantizado. Mostramos que
midiendo las cuadraturas del campo permite la reconstrucción de la funcíon caracteŕıstica correspondiente al espejo móvil.

Descriptores: Espejos ḿoviles; operador de desplazamiento.
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1. Introduction

Cavities with moving mirrors have attracted the attention
of researchers because of the great possibilities they have
to produce non-classical states of both, the mirror and field
states [1]. The possibilities to generate non-classical states,
and in particular a superposition of coherent states of the
quantized field are because of the Kerr like Hamiltonians that
may be obtained in these systems [1]. Indeed, it was shown
several years ago [2] that an empty cavity with a moving mir-
ror in its steady state may mimic a Kerr medium when it is
illuminated with coherent light. This effect is completely
because of the radiation pressure force. Bistable behaviour
analogous to that produced by anχ(3) nonlinear medium in
a cavity was experimentally demonstrated in the optical [3],
as well as in the microwave domains [4]. More recently,
we have studied bistability in this system by considering not
the semiclassical behaviour [2], but a completely quantum-
mechanical treatment [5]. The fact that the motion of the
mirror is quantized, allows the possibility to generate non-
classical states of the mirror [1],i.e. of a quantum state of a
macroscopic object. It is therefore very interesting to try to
measure such non-classical states.

The reconstruction of a quantum state is a central topic
in quantum optics and related fields [6, 7]. During the past
years, several techniques have been developed, for instance
the direct sampling of the density matrix of a signal mode in
multiport optical homodyne tomography [8], tomographic re-
construction by unbalanced homodyning [9], reconstruction
via photocounting [10], cascaded homodyning [11] to cite
some. There have also been proposals to measure electro-
magnetic fields inside cavities [12, 13] and vibrational states
in ion traps [12, 14]. In fact the full reconstruction of non-
classical states of the electromagnetic field [15], and of (mo-
tional) states of an ion [16] have been experimentally ac-
complished. The quantum state reconstruction in cavities is
usually achieved through a finite set of selective measure-
ments of atomic states [12] that makes it possible to construct

quasiprobability distribution functions such as the Wigner
function, that constitutes an alternative representation of a
quantum state of the field.

Recently, there has been interest in the production of su-
perposition states of macroscopic systems such as a moving
mirror [18]. It is therefore of interest to have schemes to mea-
sure the non-classical states that may be generated for the
moving mirror. Here we will propose a method to relate the
quadratures of the field to the characteristic function associ-
ated to the density matrix of the mirror.

2. The Hamiltonian of the model

We follow Mancini and Tombesi [19], and consider a cavity
with two perfectly reflecting mirrors, one of them fixed and
the other one can move, undergoing harmonic oscillations.
The cavity resonances are calculated in the absence of the
impinging field. GivenL to be the equilibrium cavity length,
the resonant angular frequencies of the cavity are

ω = kπ
c

L
(1)

wherek is an arbitrary integer number andc the speed of
light. We assume that the retardation effects due to the oscil-
lating mirror may be neglected. We will use a filed intensity
such that the correction to the radiation pressure force, due to
the Doppler frequency shift of the photons [20] may also be
neglected. Therefore we are able to write the relevant Hamil-
tonian as [19,21,22]

H = ~ωa†a +
p2

2m
+

mΩ2x2

2
+ Hint (2)

wherea anda† are the annihilation and creation operators
for the cavity field, respectively. The field frequency isω, the
mirror oscillates at a frequencyΩ, p, andx are the momentum
and displacement from the equilibrium position operators of
the oscillating mirror with massm, andHint accounts for the
interaction between the cavity mode and the oscillating mir-
ror. Because we have assumed no retardation effects, we may
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simply write

Hint = −~ga†ax, (3)

where the coupling constant is

g =
ω

L

√
~

2mΩ
, (4)

with m the mass of the movable mirror.Hint represents the
effect of the radiation pressure forceFR = (~ω/L)a†a that
causes the instantaneous displacementx of the mirror [19].

We can therefore rewrite the Hamiltonian (2) in the form

H = ~(ωa†a + Ωb†b− ga†a(b† + b)) (5)

b and b† are the annihilation and creation operators for the
mirror.

It is convenient to write the Hamiltonian (5) with the help
of displacement operators [1]

H = Dm(ηa†a)
(
ωa†a + Ωb†b− ε(a†a)2

)
D†

m(ηa†a) (6)

whereε = gη with η = g/Ω and the displacement operator
is given by

Dm(β) = eβb†−β∗b, (7)

with N = a†a. Then the unitary evolution operator is simply

U(t) = e
−iHt
~ Dm(ηN)e−it(ωN+Ωb†b−εN2)D†

m(ηN) (8)

We will consider the initial state of the field to be in a coher-
ent state

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉. (9)

and the initial state of the mirror to be arbitrary and denoted
by the density matrixρm, so that the total density matrix at a
time t is given by

ρ(t) = U(t)|α〉〉α| ⊗ ρmU†(t). (10)

Once having the evolved density matrix we may calculate the
average of any operator,A by thetotal trace:

〈A〉 = Tr{ρ(t)A} = Tr{|α〉〉α| ⊗ ρmU†(t)AU(t)} (11)

where we have substituted (10) into the above equation and
have made use of the invariance under permutations of the
trace.

We can now calculate〈a〉 in the form

〈a〉 = αe−i(ω+ε)tTr

×
[
ρmDm

(
ηeiΩt

)
Dm (−η) |αe2i(εt−η2 sin Ωt)〉〈α|

]
(12)

where we have used several times the properties of permuta-
tion under the trace symbol. By using that

Dm

(
ηeiΩt

)
Dm (−η) eiη2 sin Ωt = Dm

(
η(eiΩt − 1)

)
(13)

we may finally write

〈a〉 = αe−i(ω+ε)te−iη2 sin Ωte−|α|
2(εt−η2 sin Ωt)

×χm

(
η(eiΩt − 1)

)
(14)

where χm

(
η(eiΩt − 1)

)
= Tr{ρmDm[η(eiΩt − 1)]} is

the characteristic function associated to the density ma-
trix ρm. Therefore, by measuring the quadratures of
the field (see for instance [7])〈X〉 = 〈(a + a†)〉/√2 and
〈Y 〉 = −i〈(a− a†)〉/√2 we may obtain the average value
for the annihilation operator, and hence information about
the state of the mirror through its characteristic function. The
argument of the characteristic function may be changed in
some range of parameters asω ∼ 1016s−1, Ω ∼ 1 kHz,
L ∼ 1 m andm ∼ 10 mg [2,3,22]. One could use the present
method to reconstruct the quantum superpositions of a mir-
ror state recently proposed by Marshallet al. [18] around the
origin to look for a negative Wigner function in this region.

3. Wigner function in terms of characteristic
function

We now write the characteristic function in terms of the aver-
age value of the annihilation operator

χm(η(eiΩt − 1))

=
〈a〉

αe−i(ω+ε)te−iη2 sin Ωte−|α|2(εt−η2 sin Ωt)
, (15)

from which we can obtain the set ofs-parametrized
quasiprobability distributions, and in particular the Wigner
function for the mirror state [23]:

Wm(ξ) =
1
π2

∫
d2βeξβ∗−ξ∗βχm(β), (16)

where we have definedβ = η(eiΩt− 1). Note that a value of
β defines only one point in the dual phase space, or in other
words, a particular set of parameters, such as interaction time,
mirror-field interaction constant, etc., define only one value
of β. The transformation of the characteristic function above
requires an infinite set of points (in general, a continuous set
of values from minus infinity to infinity. Therefore the preci-
sion of the method pointed out here is related with the amount
of times the experiment has to be repeated. However, this is
a ’problem’ related to all reconstruction schemes [7]. The
Wigner function has a one to one correspondence with the
density matrix, in fact they are related by an integral Fourier
transform [7,23]. Detailed forms to measure the quadratures
of the field may be found in reference [7]. There, the meth-
ods to reconstruct the Wigner function are based on tomogra-
phy and Radon transforms. Therefore, measurement of field
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quadratures are required for different angles (again, the qual-
ity of the reconstruction depends on the ’distance’ of these
angles, and therefore the number of times the experiment has
to be repeated).

4. Conclusions

In conclusion, we have shown that by measuring field quadra-
tures one may be able to reconstruct the characteristic func-
tion for the density matrix of the mirror. We have given an
explanation on why it is possible to reconstruct the character-
istic function by using an analogy with the atom field, inter-
action with counter-rotating terms.

What makes it possible to obtain information about the
mirror state is the initial coherence of the field and the form

of the Hamiltonian that has the term

b + b†. (17)

Wilkens and Meystre [24] had shown that for the Jaynes-
Cummings Model (JCM) [25], it was possible to obtain infor-
mation about the characteristic function of the field only if the
system interacted with an extra (classical) field to allow sev-
eral absorptions (ak) or emissions [(a†)k] such that moments
of a and/ora† could be obtained,i.e. the characteristic func-
tion reconstructed. Here, the multiple absorptions/emissions
are given by the term in Eq. (17), being this term responsible
for the possibility of the reconstruction.
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