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Spectral and thermodynamical properties of systems with noncanonical
commutation rules: semiclassical approach
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We study different quantum one dimensional systems with noncanonical commutation rule[x, p] = i~(1+ sH), whereH is the one particle
Hamiltonian ands a parameter. This is carried-out using semiclassical arguments and the surmise~ → ~(1 + sE), whereE is the energy.
We compute the spectrum of the potential box, the harmonic oscillator, and a more general power-law potential|x|ν . With the above surmise,
and changing the size of the elementary cell in the phase space, we obtain an expression for the partition function of these systems. We
calculate the first order correction ins for the internal energy and heat capacity. We apply our technique to the ideal gas, the phonon gas, and
to N non-interacting particles with external potential like|x|ν .
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Estudiamos diferentes sistemas cuánticos en dimensión uno y con relación de conmutación [x, p] = i~ (1 + sH), dondeH es el Hamilto-
niano de la partı́cula ys un paŕametro. Esto se realiza usando argumentos semi-clásicos y la proposición~ → ~ (1 + sE), dondeE es la
enerǵıa. Calculamos el espectro de la caja de potencial, el oscilador armónico y el caso mas general para la energı́a potencial|x|ν . Con
dicha proposicíon, y cambiando el tamaño de la celda elemental en el espacio de fase, obtenemos una expresión para la funcíon particíon del
sistema. Calculamos en primer orden ens la enerǵıa interna y capacidad calórica. Aplicamos este ḿetodo a un gas ideal, gas de fonónes
y aN part́ıculas sin interacción en un campo externo del tipo|x|ν .

Descriptores:Mecánica cúantica estad́ıstica; mećanica cúantica; teoŕıas semicĺasicas; termodińamica.
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1. Introduction

In one dimension, some authors [1-9] have showed that a
modification of the usual commutation rule for the momen-
tum and position operators,

[x, p] = i~{1 + sH(x, p)}, (1)

with s a parameter andH the Hamiltonian of the system,
produces new phenomena which appear, for instance, in high
energy physics and mesoscopic systems. In Ref. 1 it was
shown that for some commutation relation like (1), space dis-
creteness is compatible with Lorentz transformation. This
fact was explicitly related to atomic phenomena. In Refs. 2
and 3 the mass-spectrum for elementary particles was ob-
tained from (1), withH the Hamiltonian of the harmonic
oscillator and, applied for energy of the order of GeV-Tev
(109−1012 eV). In Ref. 4 it was shown that, for the free parti-
cle Hamiltonian, (1) produces space quantization. This result
can be related with quark confinement phenomena. More-
over, in Refs. 5 and 6 mathematical aspects of (1) were stud-
ied. In Refs. 7-10 it was found that charge discreteness in
mesoscopic circuits can be mathematically formulated with
commutation relations similar to (1) between charge and cur-
rent. This theory becomes related to the descriptions of phe-
nomena like persistent current in a ring of inductanceL,
Coulomb blockage phenomena in a pure capacitor-design [7],

or current magnification [10]. In these cases the parameters
becomes related to the elementary chargeqe by the relation-
ship s = Lq2

e/~2. The analogy between Refs. 4 and 7 be-
comes from charge and space quantization. We remark that
in Ref. 2 the general case[x, p] = i~f(H) was considered.
The particular casef = esH deserves some attention in our
paper. In fact, thermodynamical properties are easily found
in this case.

In this article we propose a method, supported with semi-
classical arguments, which permits to calculate the spectrum
of systems with canonical commutation relations like (1). In
fact, (1) suggests a formal energy dependence of the Planck
constant~ given by

~→ ~{1 + sE}. (2)

With this surmise we reproduce the spectrum of the sys-
tems treated in [2-4] such as the harmonic oscillator, the free
particle and the particle in a quantum box. Moreover, we
characterize the spectrum for the power-law potential given
by U(x) = k|x|ν .

On the other hand, we compute the thermodynami-
cal properties of systems with noncanonical commutation
rule (1). The surmise (2) introduces a new size for the ele-
mentary cell in the corresponding phase-space, and then for
the number of microstates. We calculate the internal energy
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and the heat capacity for the ideal gas, for particles in a gen-
eral potentialU ∼| x |ν and, finally, the phonon gas. We
remark that thermodynamical properties of a mesoscopic cir-
cuit, with charge discreteness [7-10], could be studied by
analogy with the mechanical case.

The paper is structured as follows: in Sec. II, we com-
pute the spectrum of the harmonic oscillator and the poten-
tial box, in accordance with the results found in the literature.
Moreover, we consider systems with potentials of the form
U ∼ |x|ν , ν > 0 and noncanonical commutation rule (1).
In Sec. III, we study the thermodynamical properties of these
systems. We calculate the density of states and, at first order
in s, the internal energy and heat capacity. Finally, in Sec. IV,
we give some conclusions and discussion.

2. Spectral properties: semiclassical approach

The old quantum theory (Bohr-Wilson-Sommerfeld) pro-
vides a general method for calculating spectra for some regu-
lar systems using simple rules. It works for different systems
like the harmonic oscillator, the hydrogen atom, and others.
In one dimension, the correspondence between classical and
quantum theory is established by the non linear differential
equation [11,12]

dE

dn
= ~ωcl(E), (3)

whereωcl(E) denotes the classical frequency of a given sys-
tem with energyE. In (3), ~ is the Planck’s constant, andn
will correspond to the quantum number. The quantization of
energy results from the fact thatn can take only integer values
in the solution of (3). The initial conditionE(n = 0) = Eo

corresponds to the fundamental level of energy. The deduc-
tion of (3) comes from the classical relation between the ac-
tion variableI and the period of the classical orbitTcl where
dI/dE = Tcl and the quantization ruleI = n2π~.

Our hypothesis is that, for systems with noncanonical
commutation rules (1), the Eq. (3) must be modified by con-
sidering the surmise (2), namely

dE

dn
= ~(1 + sE)ωcl(E). (4)

Hereafter, we assume that(1 + sE) ≥ 0. Note that (4)
introduces a new fixed-pointEf = −1/s which modifies the
spectral structure of the system. Sinceωcl > 0, the stabil-
ity of this new fixed-point, with respect to variations ofn,
depends only on the sign of the parameters.

As a first application of the semiclassical Eq. (4), we con-
sider a particle of massm in a quantum box potential defined
by

U(x) =
{

0 if 0 < x < a
∞ otherwise.

(5)

The classical frequency is given byωcl = (π/a)
√

(2E/m)

and the Eq. (4) becomes

dE

dn
= ~{1 + sE}π

a

√
2E

m
. (6)

Fors > 0 the solution of (6) is given by

En =
1
s

tan2(γn
√

s), (7)

whereγ = (π~)/(
√

2ma), in accordance with the result of
Ref. 4. The above result shows the power of our method
because the quantum calculation [4] is hard. Moreover (7)
corresponds to one case of finite number of states (when
γ
√

s = π/m, m integer). Namely, our method also applies
to these cases.

As a second application we consider the harmonic oscil-
latorU(x) = (1/2)ω2

ox2, whereωo is the classical frequency.
The Eq. 4 for the spectrum becomes

dE

dn
= ~{1 + sE}ωo. (8)

The solution of this equation is

En = (Eo +
1
s
)es~ωon − 1

s
, (9)

where the fundamental levelEo = ~ωo/2. This result is
in agreement, to first order ins~ωo, with Ref. 3. Note
that the spectrum is unbounded whens > 0. Besides, if
−1/Eo < s < 0, then in the limit n → ∞ we have
En → −1/s that corresponds to the stable fixed point of
Eq. 8.

Now, we consider the general case of a particle in the po-
tential energy

U(x) = k | x |ν , (10)

whereν andk are arbitrary positive constants. In this case the
system admits always classically bounded trajectories and the
classical frequency is [13]

ωcl(E) = α(k, ν)E
1
2− 1

ν ;

where α(k, ν) =
√

2πνk1/νΓ(1/2 + 1/ν)
2
√

mΓ(1/ν)
, (11)

with Γ the Gamma function. The differential equation (4)
becomes

dE

dn
= ~α(k, ν){1 + sE}E 1

2− 1
ν , (12)

which could be analytically solved in some cases. Notice
that (12) defines in a direct way the density of statesdn/dE
of these systems. This expression will be re-obtained in the
next section by an adequate definition of the elementary cell
volume in phase space and its thermodynamical properties.
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3. Thermodynamical properties

In this section we compute thermodynamical properties of
systems with noncanonical commutation rules like (1). The
change in~ (2) introduces a modification of the size of the
elementary cell in the phase space and then in the number
of microstates. From the number of microstates, we obtain
the density of states and the partition function. As usual, the
knowledge of the partition function allows us to compute the
thermodynamical properties of the system. In particularly,
we study the ideal gas, the phonon gas, and then we general-
ize these results to the case with potential (10).

In statistical mechanics [14], the number of mi-
crostates∆n with energies betweenE andE + ∆E is given
by a semiclassical expression related to the volume in phase-
space (see (13) below withs = 0). The factorh, the size of
the elementary cell in this semiclassical approach, is chosen
to contact with quantum theory. Thus (2) suggests to consider
for the number of microstates∆n the expression

∆n =
1

h(1 + sE)

∫

E<H<E+∆E

dxdp. (13)

Note that the integral in (13) coincides with the usual one
(s = 0) because the functional form of the HamiltonianH
does not change as a function of the variablesx andp. The
density of statesρ = ∆n/∆E becomes

ρ =
ρ(o)

1 + sE
, (14)

ρ(o) being the usual density function. The partition function
for the Boltzmann distribution is given by

Z =
∫

e−E/T ρ(o)

1 + sE
dE, (15)

where we consider units so that the Boltzman’s constant
k = 1. From (15) we can obtain the thermodynamical quan-
tities. For instance, the internal energyU = T 2∂ ln Z/∂T
becomes

sU =
Z(o)

Z
− 1, (16)

whereZ(o) stands for the usual function partition (s = 0).
From (15-16), we have the first correction in the parameters
for the internal energy:

U = U (o) − sT 2 ∂U (o)

∂T
+ O(s2). (17)

From (17), the heat capacity could be computed from the
usual definitionCV = ∂U/∂T . Note that the use of (17) is
easy since one only needs to know the energy of the unper-
turbed system.

Recall that Eq. (17) allows us to compute the first or-
der correction to the internal energy from the usual expres-
sion for the internal energyU (o). Moreover, whenU (o) in-
creases with temperature, fors > 0, the new internal energy
is smaller than the usual one.

For the ideal gas, whereU (o) = (1/2)NT , we have
U ≈ (1/2)NT (1 − sT ) and the correction to the heat ca-
pacity isC = (1/2)N (1− 2sT ). These results agree with
Ref. 4.

Now we shall considerN non interacting particles in an
external energy potential like (10). Whens = 0 it is direct to
show that

Z(o)=T
1
ν + 1

2

∫
e−xx

1
ν− 1

2 dx; U (o)=
(

1
ν

+
1
2

)
NT. (18)

We note that the density of states can be evaluated directly
from (12). Using (17) and (18) we obtain the internal energy
to first order ins:

U =
(

1
ν

+
1
2

)
NT{1− sT}. (19)

While the heat capacity, to this order becomes

C =
(

1
ν

+
1
2

)
N (1− 2sT ) . (20)

where the usual harmonic oscillator corresponds to the case
ν = 2.

For the phonon gas at the regime of low temperature with
internal energyU (o) = AT 4, whereA is a constant [14], we
obtainU ≈ AT 4(1− 4sT ). The corresponding correction to
the heat capacity isC = A

(
4T − 20sT 4

)
.

4. Conclusions and discussion

We have studied some systems with noncanonical commuta-
tion rules like (1). This was carried-out using a semiclassical
method and the surmise~ → ~{1 + sE}. With this method
we have reproduced the spectrum of the particle in a quan-
tum well [4] and the harmonic oscillator [2,3]. Moreover, we
have given an explicit equation to determine the spectrum of
a particle in an external energy potential like|x|ν with ν a
positive constant (12).

Thermodynamical properties of a system with noncanon-
ical commutation rules can be directly calculated, if we note
that our surmise implies a change in the size of the elemen-
tary cell in phase space. We have obtained the general ex-
pression for the density of states (14) and the partition func-
tion (15). to first order in the parameters, we have found an
expression for the internal energyU as a function of the usual
oneU (o). We have applied this method to study the ideal gas,
the phonon gas and the noninteracting particle in a potential
like |x|ν . Thermodynamical properties were calculated us-
ing the Boltzman distribution. Since we have the density of
states (14) in principle we can calculate the partition function
with the Fermi-Dirac or Bose-Einstein distribution.

As mentioned in the introduction, charge quantization for
mesoscopic circuits can be considered by noncanonical quan-
tization rules like (1) [7-10]. These physical systems are to-
day the object of research because of eventual technological
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applications. Our semiclassical calculation of energy spectra
and thermodynamical properties is useful as a first approach
to these mesoscopic systems. For instance, from the analogy
between an electric circuit and the harmonic oscillator, the
spectrum (9) could be related to the LC quantum circuit with
charge discreteness.

As a curiosity, we remark that several experiments in par-
ticle physics show that the fine structure fineα = e2/c~ de-
pends on the energy [15,16]. This is usually interpreted as
the change of the electron charge with the energy parameter.
It seems to us that this presents an analogy with our results,
namely, an energy dependence of the constant~. This subject
will be studied elsewhere.

Finally, as mentioned in the introduction, the case
~→ ~esE in (2) is soluble in many cases since here

Z =
∫

e−E/T−sEρ(o)dE

and defining the effective temperature

1
∗T ∗ =

1
T

+ s

then we can operate with the formal changeT → T ∗ in any
solvable thermodynamical system.
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