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We study different quantum one dimensional systems with noncanonical commutation plle- ii(1+ sH), whereH is the one particle
Hamiltonian ands a parameter. This is carried-out using semiclassical arguments and the shirmigdl + sE), whereE is the energy.

We compute the spectrum of the potential box, the harmonic oscillator, and a more general power-law patentidth the above surmise,

and changing the size of the elementary cell in the phase space, we obtain an expression for the partition function of these systems.
calculate the first order correction érfor the internal energy and heat capacity. We apply our technique to the ideal gas, the phonon gas, a
to N non-interacting particles with external potential like"” .
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Estudiamos diferentes sistemasoticos en dimenén uno y con relaéin de conmutaén [z, p] = ik (1 + sH), dondeH es el Hamilto-
niano de la paftula y s un padmetro. Esto se realiza usando argumentos sdmieds y la proposion i — 7 (1 + sE), dondeE es la
enerda. Calculamos el espectro de la caja de potencial, el oscilad@némy el caso mas general para la efemptencialz|”. Con
dicha proposid@n, y cambiando el tanfi@ de la celda elemental en el espacio de fase, obtenemos una@xpasi la fundn particbn del
sistema. Calculamos en primer ordensda energa interna y capacidad céaica. Aplicamos este @iodo a un gas ideal, gas de fores
yaN parfculas sin interacéin en un campo externo del tipe|”.

Descriptores:Mecanica cintica estaidtica; meénica ciéntica; teclas semidsicas; termodimica.

PACS: 05.30.-d; 03.65.-w; 03.65.Sq; 05.70.-a

1. Introduction or current magnification [10]. In these cases the parameter

becomes related to the elementary chaggby the relation-
In one dimension, some authors [1-9] have showed that ghjp s = Lq2/k2. The analogy between Refs. 4 and 7 be-
modification of the usual commutation rule for the momen-comes from charge and space quantization. We remark that
tum and position operators, in Ref. 2 the general case, p] = ihf(H) was considered.
(e, p] = ih{1 + sH(z,p)}, 1) The particular cas¢ = e*? de_zserves some attention_ in our
paper. In fact, thermodynamical properties are easily found
with s a parameter and/ the Hamiltonian of the system, in this case.
produces new phenomena which appear, for instance, in high In this article we propose a method, supported with semi-
energy physics and mesoscopic systems. In Ref. 1 it waglassical arguments, which permits to calculate the spectrum
shown that for some commutation relation like (1), space disof systems with canonical commutation relations like (1). In
creteness is compatible with Lorentz transformation. Thisfact, (1) suggests a formal energy dependence of the Planck
fact was explicitly related to atomic phenomena. In Refs. Zconstant, given by
and 3 the mass-spectrum for elementary particles was ob-

tained from (1), withH the Hamiltonian of the harmonic h— h{l+ sE}. (2)
oscillator and, applied for energy of the order of GeV-Tev
(10°—10'2 eV). In Ref. 4 it was shown that, for the free parti- ~ With this surmise we reproduce the spectrum of the sys-

cle Hamiltonian, (1) produces space quantization. This resulems treated in [2-4] such as the harmonic oscillator, the free
can be related with quark confinement phenomena. Moreparticle and the particle in a quantum box. Moreover, we

over, in Refs. 5 and 6 mathematical aspects of (1) were studsharacterize the spectrum for the power-law potential given

ied. In Refs. 7-10 it was found that charge discreteness iby U(z) = k|x|”.

mesoscopic circuits can be mathematically formulated with  On the other hand, we compute the thermodynami-

commutation relations similar to (1) between charge and cureal properties of systems with noncanonical commutation

rent. This theory becomes related to the descriptions of pheule (1). The surmise (2) introduces a new size for the ele-

nomena like persistent current in a ring of inductarige mentary cell in the corresponding phase-space, and then for
Coulomb blockage phenomena in a pure capacitor-design [7the number of microstates. We calculate the internal energy
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and the heat capacity for the ideal gas, for particles in a gerand the Eq. (4) becomes

eral potentiallU' ~| « |¥ and, finally, the phonon gas. We

remark that thermodynamical properties of a mesoscopic cir- dE T

cuit, with charge discreteness [7-10], could be studied by dn h{1 + SE}E

analogy with the mechanical case. _ o
The paper is structured as follows: in Sec. Il, we com-Fors > 0 the solution of (6) is given by

pute the spectrum of the harmonic oscillator and the poten- 1

tial box, in accordance with the results found in the literature. E, = —tan?(yn/s), )

Moreover, we consider systems with potentials of the form 5

U ~ |z/“, v > 0 and noncanonical commutation rule (1). \wherey = (w1)/(v/2ma), in accordance with the result of

In Sec. lll, we study the thermodynamical properties of thesegyef 4. The above result shows the power of our method

systems. We calculate the density of states and, at first ordgjocause the quantum calculation [4] is hard. Moreover (7)

in 5, the internal energy and heat capacity. Finally, in Sec. IVeorresponds to one case of finite number of states (when

we give some conclusions and discussion. vv/3 = 7/m, m integer). Namely, our method also applies
to these cases.

2. Spectral properties: semiclassical approach As a second application we gonsider thg harmonic oscil-
latorU (z) = (1/2)w?2?, wherew, is the classical frequency.

The old quantum theory (Bohr-Wilson-Sommerfeld) pro- The Eq. 4 for the spectrum becomes

vides a general method for calculating spectra for some regu-

lar systems using simple rules. It works for different systems dE = h{1 4 sE}w,. (8)

like the harmonic oscillator, the hydrogen atom, and others. dn

In one dimension, the correspondence between classical aRghe solution of this equation is

guantum theory is established by the non linear differential

equation [11,12]

2E 6)

1 1
En = (Eo + 7)eshwon - (9)
S S

- = ha}cl(E)v (3)

dn where the fundamental levédl, = hw,/2. This result is

h d he classical f £ adi in agreement, to first order infiw,, with Ref. 3. Note
wherew;(E) denotes the classical frequency of a given SYSthat the spectrum is unbounded wher> 0. Besides, if

tem with energyF. In (3), & is the Planck’s constant, and _1/E, < s < 0, then in the limitn — oo we have

will correspond to the quantum number. The_ guantization OfEn . —1/s that corresponds to the stable fixed point of
energy results from the fact thatcan take only integer values Eq. 8

in the solution of (3). The initial conditio®'(n = 0) = E,
corresponds to the fundamental level of energy. The deducién
tion of (3) comes from the classical relation between the ac-
tion variablel and the period of the classical orliit; where
dI/dE = T, and the quantization rule = n2wh.

Our hypothesis is that, for systems with noncanomcalNhereV andk are arbitrary positive constants. In this case the

cpmmutation ruIe; (1), the Eq. (3) must be modified by Con'system admits always classically bounded trajectories and the
sidering the surmise (2), namely classical frequency is [13]

Now, we consider the general case of a particle in the po-
tial energy

Ulz) =k[z|", (10)

aE _

dn = h(].“y‘SE)Wd(E) (4) w(:l(E) :O((k’7l/)E%7%7
Hereafter, we assume thét + sE) > 0. Note that (4) where a(k,v) = 2mvk!/VT(1/2 + 1/1/)7 (11)
introduces a new fixed-poir; = —1/s which modifies the 2ymI(1/v)

spectral structure of the system. Singg > 0, the stabil-

ity of this new fixed-point, with respect to variations #f with T' the Gamma function. The differential equation (4)

depends only on the sign of the parameter becomes
As a first application of the semiclassical Eq. (4), we con- dE 11
sider a particle of mass in a quantum box potential defined an ho(k, v){1 + sE}E="7, (12)

by
which could be analytically solved in some cases. Notice

U(z) = { 0 fo<zx<a 5) that (12) defines in a direct way the density of stategd
oo otherwise of these systems. This expression will be re-obtained in the
next section by an adequate definition of the elementary cell
The classical frequency is given by, = (v/a)+/(2E/m)  volume in phase space and its thermodynamical properties.
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3. Thermodynamical properties For the ideal gas, wher&(®) = (1/2)NT , we have

) . ) ) U =~ (1/2)NT(1 — sT) and the correction to the heat ca-
In this section we compute thermodynamical properties opacity isC' = (1/2)N (1 — 2sT). These results agree with
systems with noncanonical commutation rules like (1). Thegef. 4.
change ink (2) introduces a modification of the size of the Now we shall considelN' non interacting particles in an

elementary cell in the phase space and then in the NUMb@Lernal energy potential like (10). When= 0 it is direct to
of microstates. From the number of microstates, we obtaiRpow that

the density of states and the partition function. As usual, the

iti i 11 11 1 1
knowledge of '_che partition function allows us to compute the (o) _pi+i /e_g;x;_fdx; U= (242 NT. (18)
thermodynamical properties of the system. In particularly, 2

we study the ideal gas, the phonon gas, and then we general- ) ]
ize these results to the case with potential (10). We note that the density of states can be evaluated directly

In statistical mechanics [14], the number of mi- from (12). Us_ing (17) and (18) we obtain the internal energy
crostates\n with energies betwees andE + AE is given [ firstorder ins:
by a semiclassical expression related to the volume in phase- 1 1
space (see (13) below with= 0). The factorh, the size of U= (V + 2) NT{1 - sT}. (19)
the elementary cell in this semiclassical approach, is chosen
to contact with quantum theory. Thus (2) suggests to considewhile the heat capacity, to this order becomes
for the number of microstatesn the expression

1 1

B 1 C:(+>N(1—25T). (20)
An = Wi+ sE) / dzdp. (13) v o 2

E<H<E+AE . .
where the usual harmonic oscillator corresponds to the case

Note that the integral in (13) coincides with the usual one,, — 9.

(s = 0) because the functional form of the Hamiltoniah For the phonon gas at the regime of low temperature with
does not change as a function of the variablesmdp. The  jsternal energy/(®) = AT* whereA is a constant [14], we
density of statep = An/AE becomes obtainU ~ AT*(1 — 4sT'). The corresponding correction to
(0) the heat capacity i€' = A (47 — 20sT*).
p=-L (14)
1+ sE’

p(©) being the usual density function. The partition function4. ~Conclusions and discussion

for the Boltzmann distribution is given by . . .
We have studied some systems with noncanonical commuta-

7 / e~ E/Tplo) E (15) tion rules like (1). This was carried-out using a semiclassical
B 1+sE ’ method and the surmise— k{1 + sE}. With this method

where we consider units so that the Boltzman’s constanf'® have reproduced the spectrum of the particle in a quan-

k = 1. From (15) we can obtain the thermodynamical quantuM well [4] and the harmonic oscillator [2,3]. Moreover, we
tities. For instance, the internal ener§y= T281n Z/0T have given an explicit equation to determine tDe spectrum of
a particle in an external energy potential likd” with v a

becomes -
) positive constant (12).
sU = z7 1, (16) Thermodynamical properties of a system with noncanon-
Z ical commutation rules can be directly calculated, if we note

where Z(©) stands for the usual function partitiog (: 0) that our surmise Implles a Change in the size of the elemen-
From (15-16), we have the first correction in the parameter tary cell in phase space. We have obtained the general ex-

for the internal energy: pression for the density of states (14) and the partition func-
tion (15). to first order in the parameterwe have found an
U=y®© _ 72 ou©) +O(s?). (17) expression for the internal enerffyas a function of the usual

or onelU(®), We have applied this method to study the ideal gas,

From (17), the heat capacity could be computed from théhe phonon gas and the noninteracting particle in a potential
usual definitionCy, = OU/OT. Note that the use of (17) is like |z|”. Thermodynamical properties were calculated us-
easy since one only needs to know the energy of the unpeirg the Boltzman distribution. Since we have the density of
turbed system. states (14) in principle we can calculate the partition function

Recall that Eq. (17) allows us to compute the first or-with the Fermi-Dirac or Bose-Einstein distribution.
der correction to the internal energy from the usual expres- As mentioned in the introduction, charge quantization for
sion for the internal energy (®). Moreover, wheri/(®) in- mesoscopic circuits can be considered by noncanonical quan-
creases with temperature, for> 0, the new internal energy tization rules like (1) [7-10]. These physical systems are to-
is smaller than the usual one. day the object of research because of eventual technological
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applications. Our semiclassical calculation of energy spectrand defining the effective temperature
and thermodynamical properties is useful as a first approach

to these mesoscopic systems. For instance, from the analogy 1 1

between an electric circuit and the harmonic oscillator, the «T* T T

spectrum (9) could be related to the LC quantum circuit with

charge discreteness. then we can operate with the formal charige—~ 7* in any

As a curiosity, we remark that several experiments in parsolvable thermodynamical system.
ticle physics show that the fine structure fime= e /ch de-
pends on the energy [15,16]. This is usually interpreted as
the change of the electron charge with the energy parameter.
It seems to us that this presents an analogy with our resultgy}cknowledgments
namely, an energy dependence of the congtaiihis subject
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