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Diffraction of an obliquely incident TE-polarized Gaussian beams by N equally spaced slits (finite grating) with conducting substrate is
treated. The substrate can be either vacuum or conductor. The diffracted and scattered patterns, the transmission and reflection coefficients,
and the normally diffracted energy are analyzed as a function of several optogeometrical parameters. Particularly, the coupling between slits
and the influence of the substrate is considered. We have found that, when the substrate is a conductor, the grating equation in reflection
predicts with good precision the angular positions of the orders of a finite grating; the angular positions of these orders are independents of
the beam width, the spot position on the finite grating, and the conductivity of the substrate. Besides, the envelope of the reflected energy is
conserved constant when the position of the spot is changed.
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Se presenta una teorı́a rigurosa modal para la difracción de un haz Gausiano con polarización T.E. incidiendo oblicuamente sobre una red
de difraccíon finita hecha deN rendijas. La pantalla donde están excavadas las rendijas es plana e infinitamente conductora, mientras que
el sustrato puede ser un dieléctrico o un metal cońındice de refracción complejo . Estudiamos el patrón de radiacíon en campo lejano, el
coeficiente de transmisión y la enerǵıa normalmente difractada. Particularmente se analiza el acoplamiento entre rendijas y la influencia del
sustrato.

Descriptores: Difracción; dispersíon; óptica electromagńetica; redes de difracción.
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1. Introduction

The diffraction of beam waves has attracted a great deal of at-
tention in recent years. Particularly, in visible and microwave
regions where the diffraction by slits has been widely inves-
tigated because of their great amount of applications in the
fields of acousto-optics, holography and spectroscopy [1].
However, the majority of the published papers consider only
the diffraction of incident plane waves [2-14]. The diffrac-
tion of other types of waves such as the higher modes of
emission of a laser [15], and particularly the fundamen-
tal TEM00emission mode have been also studied.

In order to treat the general problem of the diffraction
different approximate methods such as the scalar Rayleigh-
Sommerfeld theory [16] and the Kirchhoff approach have
been proposed. However, if accurate results are required, an
electromagnetic rigorous theory of diffraction is necessary,
especially within the so called vectorial region [16,17] de-
fined byλ/` ≥ 0.2, in opposition to the scalar region given
by λ/` < 0.2, whereλ is the wavelength and̀ is the char-
acteristic length of the apertures. As it is known, in the vec-
torial region of diffraction (λ/` ≥ 0.2) the polarization ef-
fects become significant [16,17], so that, the scalar theories
of diffraction can not be applied here.

In a previous paper [18] we treated the diffraction of
a T.E. polarized normal incident Gaussian beam by one slit
ruled onto a planar perfectly conducting screen with conduct-
ing substrate. In this paper we have extended the theory given
in Ref. 18 to the case of an obliquely incident Gaussian beam
on a finite grating made of N equally spaced slits with a sub-
strate, which can be either vacuum or a conductor. The grat-
ing is ruled into a planar perfectly conducting thin screen. To
our knowledge this case has not been studied rigorously in
detail. In this paper the T.E polarization case (the incident
electric fieldEi is parallel to the slits) is considered, and in a
future paper the T.M. mode (the incident magnetic fieldHi is
parallel to the slits) will be studied. We focus our attention to
the vectorial region of diffraction, although the scalar region
of diffraction is taken into account too.

It is important to mention that the problem which is
treated in this paper is not only an interesting subject in the
field of electromagnetic wave theory, but also it is an impor-
tant one relating to the surface measurement or diagnostics
by microwave, millimeter-wave, laser, or ultrasonic beams,
and particularly to the development of various kinds of op-
tical devices such as beam shapers, multiplexers, polarizers,
spatial filters, and waveguide couplers [1].
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2. Formulation of the theory

2.1. Angular plane wave expansion of the fields

N equally slits of width` and separationd are ruled into a
planar perfectly conducting thin screen,i.e., we will consider
a finite grating where the period isD = ` + d (see Fig. 1).
We assume that the substrate can be either vacuum or a con-
ductor. The position of a point in space is fixed by its Carte-
sian coordinatesx, y, andz. Besides this, we consider an
obliquely incident T.E.-polarized Gaussian beam, which is
independent on thez-coordinate. The incident wave is a
cylindrical wave. The harmonic time dependence of the com-
plex field quantities is assumed to be of the formexp(−iωt).
We notice that this model of a finite grating can be used also
to consider a grating made (lamellar gratings) with conduct-
ing substrate. This lamellar grating can be simulated by tak-
ing the slit number N very large in our finite grating.

From the uniqueness of the solution and the invariance of
the field along thez−coordinate, we get that the total field E
depends only on the coordinatesx andy. Then, our origi-
nal vector problem becomes a scalar one with an unknown
functionE(x, y) given by the component of the electric field
along theOz-axis which satisfies the two-dimensional ver-
sion of the Helmholtz equation

∂2E

∂x2
+

∂2E

∂y2
+ k2E = 0, (1)

wherek = k0n, k0 = 2π/λ is the module of the wave vec-
tor in vacuum, andn is the refractive index of the medium,
which is a complex number for the substrate. This equation
is a second order partial differential equation which we need
to treat in order to solve the problem posed in this paper.

It is convenient to take the Fourier transform of the field
E(x, y) along theOx-axis as

E(x, y) =
1√
2π

∞∫

−∞
Ê(α, y) exp(iαx)dα, (2)

where the inverse Fourier transform
∧
E(α, y)is given by

∧
E(α, y) =

1√
2π

∞∫

−∞
E(x, y) exp(−iαx)dα. (3)

Observe that the spectral amplitude
∧
E(α, y) of the electric

field E(x, y) can be directly handle with the last transforma-
tion.

After substituting Eq.(2) into Eq. (1) we get an ordinary
second order differential equation in̂E(α, y) which solution
is immediately obtained. For this, it is necessary to distin-
guish among the upper-region (y > 0) and the lower-

FIGURE 1. Our configuration composed ofN slits of width` and
separationd, i.e. of periodD = ` + d in a planar perfectly con-
ducting screen with conducting substrate. The slits are parallel to
theOzaxis. We assume an obliquely incident Gaussian beam at the
angleθi.

region(y < 0) of our configuration

Ê1(α, y) = A(α) exp(−iβy) + B(α) exp(iβy)

(for y > 0), (4)

Ê2(α, y) = C(α) exp(−iβcy) + D(α) exp(iβcy)

(for y < 0), (5)

where we have the following definitionsβ2 = k2
0 − α2 with

Im(β) ≥ 0, andβ2
c = k2 − α2 with Im(βc) ≥ 0. The wave

vectork is a complex number, because in general the sub-
strate is a conductor.

Before to continue with the solution of our problem it is
convenient to analyze Eqs. (4) and (5). The first term of
Eq. (4) is related with the Fourier transform of the incident
beamEi (incoming wave), with amplitudeA(α). This func-
tion A(α) is very important in order to consider the shape of
the incident spot, in fact, with this function we can simulate a
Gaussian beam, a Hermite-Gaussian beam, and so on. In this
paper we concentrate our attention to the Gaussian beam, but
in a following paper the case of Hermite-Gaussian beams will
be discussed. The second term given byB(α) represents the
scattered wave. This field is composed of an infinite number
of plane waves dispersed by the slits, some of them are prop-
agating outgoing waves(|α| < k0), while others are evanes-
cent waves(|α| > k0). These evanescent fields are necessary
in order to coupling the upper-region and the bottom-region
and their behavior are similar to that of the problem of the
well potential encountered in quantum mechanics. Finally,
the total field below the screen given by Eq.(5) which is com-
posed of the coefficientsC(α) andD(α). Besides,A(α) = 0
for |α| > k0 andD(α) = 0 for all α, since the field should be
bounded fory → ±∞. Observe that this solution satisfies the
required outgoing wave condition or Sommerfeld’s radiation
condition. In conclusion, it follows from Eqs.(2) to (5) that
the electric fieldsE1 andE2 can be expressed by an infinite
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number of plane waves and evanescent waves as follow:

E1(x, y) =
1√
2π

k0∫

−k0

A(α)ei(α x−β y)dα

+
1√
2π

∞∫

−∞
B(α)ei(α x+β y)dα (for y > 0), (6)

E2(x, y) =
1√
2π

∞∫

−∞
C(α)ei(α x−βc y)dα (for y < 0), (7)

these expressions correspond to the so called angular plane-
wave expansions. We notice that the + sign at the exponen-
tials means that we have up propagating waves, while the -
sign means down propagating waves.

Let E3(x, y = 0) be the electric field aty = 0, which
have be null at the screen in the model of infinite conduc-
tivity considered here. It is convenient to mention that this
model is valid for microwave and radio wave regions, there-
fore, for the diffraction in the visible region it is necessary to
consider the finite conductivity of the screen. From this, it
follows thatE3 can be expressed as

E3(x, 0) =
∞∑

n=1

an1φn1(x)

+
∞∑

n=1

an2φn2(x) + . . . +
∞∑

n=1

anNφnN (x), (8)

where the functionsφnp(x) (with p = 1, 2, . . . , N) are given
by

φnp =

{
sin

[
(x− (p− 1) (d + `)) nπ

`

]
if (p− 1) (d + `) ≤ x ≤ ` + (p− 1) (d + `)

0 elsewherex
, (9)

the coefficientsanp are the so called modal coefficients. The
functionsφnp(x) constitute a basis with the following orthog-
onality condition

〈φnp, φmq〉 =

∞∫

−∞
φnpφ

∗
mqdx =

`

2
δnmδpq, (10)

with n,m = 1, 2, . . .∞ andp, q = 1, 2, . . . , N . From Eq.(9)
we see that functionsφnp(x) are sine functions over the slits
and null along the screen.

From Eqs. (6), (7), and (8) we have the expressions of the
total electric field at the upper-region, at the lower-region, and
on the screen. To finish completely our diffraction problem
it is necessary to determine the functionsB(α), C(α), and
the set of modal coefficientsan1, an2, . . . , anN . For this, we
have to use the boundary conditions given by the continuity
of the tangential component and the normal derivative of the
electric field aty = 0. It is important to notice that this two-
dimensional problem requires only two boundary conditions.

2.2. Conditions of continuity

From the continuity of the electric fieldsE1 andE3, and, of
the fieldsE2 andE3 at y = 0, we obtain from Eqs. (4), (5),
and (8) the following equations

A(α) + B(α) =
∞∑

n=1

an1φ̂n1(α)

+
∞∑

n=1

an2φ̂n2(α)+ . . . +
∞∑

n=1

anN φ̂nN (α) (11)

C(α) =
∞∑

n=1

an1φ̂n1(α)

+
∞∑

n=1

an2φ̂n2(α)+ . . . +
∞∑

n=1

anN φ̂nN (α), (12)

where φ̂np(α) is the Fourier transform ofφnp(x) with
n = 1, 2, . . . ,∞ andp = 1, 2, . . . , N

In addition, the continuity of the normal derivative ofE
at y = 0, andx within the slits, and the fact thatφmq(x) is
null on the screen give us the following relationship:

〈
∂ E1

∂ y
(x, 0)− ∂ E2

∂ y
(x, 0), φmq(x)

〉
= 0. (13)

By applying the Parseval-Plancherel theorem

〈f(x), g(x)〉 =
〈∧

f(α),
∧
g(α)

〉
,

to Eq. (13), we get

〈
∂ Ê1

∂ y
(α, 0)− ∂ Ê2

∂ y
(α, 0), φ̂mq(α)

〉
= 0, (14)

with m = 1, 2, . . . ,∞ y q = 1, 2, . . . , N

Finally, if we obtain the derivative of Eqs.(4) and (5), and
substituting them into Eq.(14), the unknownsB(α) andC(α)
can be eliminated by using Eqs. (11) and (12). After these
calculations the following equations are obtained for the un-
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knowns modal coefficientsanp:

∞∑
n=1

an1

〈
(β+βc)φ̂n1, φ̂mq

〉

+
∞∑

n=1

an2

〈
(β+βc)φ̂n2, φ̂mq

〉
+ . . .

+
∞∑

n=1

anN

〈
(β+βc)φ̂nN , φ̂mq

〉
=2

〈
βA(α), φ̂mq

〉
, (15)

with m = 1, 2, . . . ,∞, andq = 1, 2, . . . , N .
With these computations we have been able to reduce the

problem of the diffraction of a beam wave by a finite grating
made of N slits to a linear algebraic system with unknowns
given by the modal coefficients. We have to mention, that this
is not the only possible method of solution, since problems
within the vectorial region are frequently solved by means of
Fredholm type integral equations. It is important to note that
the diffraction patterns are accurately determined from these
modals coefficients, in fact, all the quantities of interest can
be expressed in terms of these constants, thus, simplifying
the numerical computations.

The conservation of energy is satisfied with these values
of no within a precision of better than 10−4. The modal co-
efficientsanp have been obtained numerically from Eq. (15)
by using the Gauss-Seidel algorithm. From the modal coef-
ficients and Eq. (8) the electric field inside the slits can be
calculated. After substituting these modal coefficientsanp.
into Eqs. (11) and (12) the spectral amplitudesB(α) and
C(α) are also obtained. By inserting these expressions into
Eqs. (6) and (7) the scattered and diffracted fields are finally
calculated. Thus, the solution of the diffraction problem is
formally and numerically given.

2.3. The theorem of conservation of energy

In order to establish the theorem of conservation of energy
it is important to define the way the diffracted and scattered
energies are calculated. Due to the fact that above the finite
grating we have vacuum, letR be the reflection coefficient
given by the ratio between the scattered energy and the inci-
dent energyI0. From the complex Pointing vectorR takes
the following form

R =

k0∫
−k0

β(α) |B(α)|2 dα

k0∫
−k0

β(α) |A(α)|2 dα

. (16)

For the transmitted energy it is necessary to distinguish
between the cases when the substrate is either vacuum or con-
ductor. In the first case, letT be the transmission coefficient
defined as the ratio between the transmitted energy through

theN slits and the incident energyI0 which is given by

T =

k0∫
−k0

β(α) |C(α)|2 dα

k0∫
−k0

β(α) |A(α)|2 dα

, (17)

from which the theorem of conservation of energy is written
as follows:

R + T = 1. (18)

However, in the case where the substrate is conductor, the
refractive index is complex, we will talk now of theA energy
absorbed by the substrate normalized to the incident energy,
thus, the conservation of the energy is given by

R + A = 1, (19)

whereR is given by Eq.(16).

2.4. The obliquely incident Gaussian beam

As an incident electromagnetic wave, the two-dimensional
version of a Gaussian beam will be considered. On the
screen, and at normal incidence this field is given by [17]

E(x, y = 0) = exp

[
−2 (x− b)2

L2

]
. (20)

From this expression the beam spectral amplitude for an
obliquely incident Gaussian beam can be obtained

A(α) =
L

2
(cos θi +

α

β
senθi)

× exp [i(−αb + βh)] exp(−γ2/2), (21)

whereθi is the angle of incidence with respect to theOy-axis.
The position of the waist of the incident beam is given byb
(the alignment with respect to theOy-axis) andh, with h=0
from now on, (see Fig. 1). We denote byL the local (1/e)-
intensity Gaussian beam diameter (L-spot diameter) which is
a basic beam parameter, andγ = (α cos θi − β sen θi)L/2.
Where the intensity is defined byI = cE2, with c a constant.

Unless otherwise is stated, throughout the paper the beam
position will be kept fixed atb = Λ / 2, whereΛ is the total
length of the system composed byN slits andN -1 separa-
tions d, i.e. the beam will be focused at the center of the
finite grating. In addition, we call attention to the fact that
the present theory is valid not only for Gaussian beams, but
also for Hermite-Gaussian beams [19,20].

In order to assure accuracy of the numerical results, in
all the simulations the energy-balance criterion has been al-
ways satisfied within a precision of better than10−4, which
is the precision usually accepted in the literature. Before we
continue, we would like to point out that the numerical re-
sults reported below are illustrated for some particular wave-
lengthsλ/`; nevertheless conclusions will also be valid for
any value within the vectorial region, whereλ/` > 0.2.
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3. Numerical results: angular transmitted
energy

In Ref. 21 the case of the diffraction of a normally incident
TE polarized Gaussian beam by a finite grating was treated,
where the substrate is vacuum. In this section we consider
the same configuration but with an obliquely incident Gaus-
sian beam where the substrate is vacuum. It is interesting to
compare among the results obtained here at oblique incidence
with those at normal incidence from Ref. 21. This compari-
son shows us with surprise that the case at normal incidence
is very different to the case at oblique incidence. In all the
results the slit width will be taken as̀=1 and the angle of
incidence asθi = 30◦.

As we have seen, it is possible to consider the reflected
energy and the transmitted energy by the grating, but in order
to compare our results with those of Ref. 21 we only ana-
lyze the energy transmitted. However, in the next section the
reflected energy will be taken into account.

3.1. Influence of the wavelength

First, the evolution of the far-field radiation pattern when the
wavelength increases is considered. Figures 2 (semilog plots)

FIGURE 2. Logarithm of the diffracted intensity normalized
to the total incident energylog(I(θ)/I0) for 10 slits of period
D/` = 2.0. With θi = 300, L/` = 20/

√
2, b/` = 9.5, and

wavelengths: (a)λ/` = 0.1, (b) λ/` = 0.8, (c) λ/` = 1.5, and
(d) λ/` = 2.5.

show the diffraction from ten slits of normalized period
D/` = 2.0, illuminated by an obliquely incident Gaussian
beam(θi = 30◦) of width L/` = 20/

√
2, with wavelengths

λ/` = 0.1, 0.8, 1.5 and2.5. The diffraction patterns of
Fig. 2a shows the typical sharp orders resembling those of
the diffraction of plane waves by a grating. However, as the
ratioλ/` comes into the vectorial zone, the number of oscilla-
tions decreases and the orders become wider. The maximum
energy transmitted occurs atθ = 60◦ (see Fig.1) for any con-
sidered wavelength. Notice that the symmetry presented in
Fig. 3 of Ref. 21 at normal incidence is broken here. Further-
more, we have found that the order positions agree very well
with the predictions given by the classical grating rule.

In Fig. 3a we have plotted the energy diffracted nor-
mally E as a function of the wavelength for the diffraction
of an obliquely incident Gaussian beam (θi = 30◦) of width
L/` = 5/

√
2 by 2, 4, and8 slits of periodD/` = 1.5; unless

otherwise indicated, this period will be used in what follows.
It is surprising to verify that these results are very different
to those obtained at normal incidence in Fig.4 of Ref. 21. In
Fig.3b we have the transmission coefficient T as a function
of the wavelength. It is interesting to see that the maxima in
Fig.4a have the same positions that the maxima from Fig.4b,
a similar conclusion can be obtained from Fig.4(a) of Ref. 21.

FIGURE 3. (a) Intensity diffracted at normal direction normalized
to the total incident energy, and (b) transmission coefficient as a
function of the normalized wavelength for a finite grating com-
posed of 2, 4, and 8 slits of periodD/` = 1.5. With L/` = 5/

√
2

andθi = 30◦, the beam waist is located at the middle of the finite
grating.
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FIGURE 4. Transmission coefficient as a function of the normal-
ized beam width(L/`) for a finite grating of (a) 2,4,6 slits, and
(b) 3,5,7 slits of periodD/` = 1.5 with wavelengthλ/` = 0.9.
The beam waist is located at the middle of the finite grating.

3.2. Influence of the beam width

In Figs. 4 and 5 the transmission coefficient and the normal-
ized diffracted energy are plotted as a function of the beam
width L/`. An obliquely incident Gaussian beam (θi = 30◦)
of wavelengthλ/` = 0.9 is assumed. In these cases the re-
sults are very similar to those shown in Ref. 21 at normal
incidence, except in Fig. 5b where a very important discrep-
ancy is present.

The evolution of the diffraction patterns when the beam
width increases is depicted in Fig. 6, for an obliquely in-
cident Gaussian beam atθi = 30◦, with a wavelength of
λ/` = 0.9, and a finite grating made of 15 slits. Firstly,
Fig. 6a shows the far-field pattern for a narrow incident beam
of width L/` = 7/

√
2 (note that the beam waist covers not

even half of the finite grating). Wide orders can be observed
and, instead of secondary maxima, broad and very deep min-
ima occur. In Fig. 6b a beam of widthL/` = 10/

√
2 covers

almost half of the finite grating making secondary maxima
be visible. In Fig. 6c the finite grating is completely covered
by a spot of widthL/` = 50/

√
2. Finally, in Fig. 6d a very

wide incident beam ofL/` = 500/
√

2 (resembling a plane
wave) makes the half-width of primary and secondary max-
ima become more narrow. It is remarkable to note that the
angular position of the orders remains fixed, no matter what
the beam width is given. On comparing Fig.6 with the corre-
sponding Fig. 7 of Ref. 21 at normal incidence, we can see
that the zero order is located atθ = 60◦ (30◦ measured from
the normal) and the symmetry of these figures is lost.

FIGURE 5. Intensity diffracted at normal direction normalized to
the total incident energy(E/I0) as a function of the normalized
beam width(L/`). Parameters are set as in Fig. 4.

FIGURE 6. Logarithm of the normalized diffracted intensity
log(I(θ)/I0) for a finite grating with 15 slits of periodD/` = 1.5.
With θi = 30◦ ,wavelengthλ/` = 0.9, beam positionb/` = 11.0,
and beam widths (a)L/` = 7/

√
2, (b) L/` = 10/

√
2, (c)

L/` = 50/
√

2, and (d)L/` = 5000/
√

2.
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3.3. Influence of the beam position

Figure 7 shows the normally diffracted energy and the trans-
mission coefficient as a function of the beam position for
a finite grating made of 5 slits. For an obliquely inci-
dent (θi = 30◦) Gaussian beam, withλ/` = 0.9, and beam
width L/` = 50/

√
2. In Ref. 21 we have shown that the

corresponding results are described by a Gaussian function.
However, from the results of Fig. 7 we see that for oblique
incidence we have no Gaussian function, in fact for the nor-
mally diffracted energy we have found a minimum instead of
the maximum usually encountered at normal incidence.

3.4. Coupling between slits

The transmission coefficient as a function of the separa-
tion d/` between slits for the particular case of two slits was
already studied in Ref. 22 for a TE-polarized normally inci-
dent Gaussian beam, and in Ref. 23 for a TM-polarized nor-
mally incident Gaussian beam, and the following results were
obtained: (1) coupling produces an oscillate-decreasing be-
havior as the separation between slits increases, and (2) the
period for these oscillations is exactlyλ. We have obtained
the same conclusion for a T.E.-polarized normally incident
Gaussian beam on a finite grating as shown in Fig. 9 of
Ref. 21.

Figure 8 shows the transmission coefficient as a function
of the separationd/` for a finite grating made of 3 and 5 slits.
An obliquely incident Gaussian beam (θi = 30◦) of wave-
lengthλ/` = 0.9 was used. To uniformly illuminate every
each slit the beam width has been taken asL/` = 500/

√
2.

From Fig.8 we observe with surprise that the conclusions ob-
tained at normal incidence are no longer valid at oblique in-
cidence. We see an oscillating behavior but in this case the
period of oscillation is2λ in place ofλ (occurring at normal
incidence). This result motive us to analyze in detail other
cases, but this will be done in a future publication.

3.5. Non-periodic finite grating

Finally, we consider two finite gratings withN = 6,
d/` = 0.5, and D/` = 1.5, joined with a different metal
separationd/` = 0.1, 0.45, and 5.0. In Fig. 9 we show
the diffraction patterns obtained with an obliquely incident
Gaussian beam atθi = 30◦, with width L/` = 20/

√
2, and

λ/` = 0.9. The spot is located at the middle of the finite
non-periodic grating.

We note that the diffraction patterns resemble more a
rough surface than the corresponding spectra of a finite grat-
ing. It is interesting to note that the highest maximum is lo-
cated atθ = 60◦, where must be located the order zero of
a grating. The results of Fig.9 have drastically changed with
respect to those given in Fig. 10 of Ref. 21.

4. Numerical results: angular reflected energy

In Sec. 3 we have analyzed the angular transmitted energy
when the substrate is vacuum, and in this section we consider
the angular reflected energy when the substrate is either vac-
uum or a conductor. The complex refractive index of the sub-

FIGURE 7. (a) Intensity diffracted at normal direction normal-
ized to the total incident energy(E/I0), and (b) transmission co-
efficient τ versus the normalized beam position(b/`) for a finite
grating of 5 slits of periodD/` = 1.5. With λ/` = 0.9 and
L/` = 50/

√
2.

FIGURE 8. Coupling between slits. Transmission coefficient as a
function of the normalized separation(d/`) for a finite grating with
N = 3 andN = 5 slits of periodD/` = 1.5. With λ/` = 0.9,
L/` = 500/

√
2, andb/` = 0.5.
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FIGURE 9. Diffracted intensity normalized to the total incident en-
ergy(I (θ) /I0) for a finite nonperiodic grating with 6 slits of orig-
inal periodD/` = 1.5 and metal separationd/` = 0.5 where the
mid-separation has been replaced byd′/` = 0.1, 0.45, and5.0.
For L/` = 20/

√
2, λ/` = 0.9. The beam waist is placed at the

middle of the finite non-periodic gratings.

straten has been obtained by interpolation fromHandbook
of optical constants of solidsby Edward D. Palik [24].

4.1. Influence of the beam position

In all the cases considered in this Sec.4.1 we plotted the an-
gular scattered energy for a finite grating made of 10 slits
with width slit ` = 1µm and periodD = 2µm. We also
have an obliquely incident Gaussian beam withθi = 30◦,
wavelengthλ = 0.8µm, and width spotL = 20/

√
2µm.

In Fig. 10 we have plotted the angular scattered energy
when the substrate is vacuum. In Fig. 10a the spot is centered
at the finite grating, (b/` = 9.5, see Fig. 1), and in Fig.10b
the centre of the spot is located at the edge of the finite grat-
ing (b/` = 0, see Fig. 1). These two figures show us the in-
fluence of the beam position in the angular distribution of the
energy. In both of them, we notice the presence of five or-
ders predicted by the grating equation for reflection given by
cosβn = sin θi + nλ/D, see Fig.1. The maximum relative
error between the positions of the orders given by our calcu-
lation and those from the grating equation is 1.3%.

From the results of Figs.10a and 10b two important gen-
eral facts can be obtained:

1) We can say that for an incident Gaussian beam the grat-
ing equation in reflection predicts the angular positions
of the orders of a finite grating with good precision,i.e.,

FIGURE 10. Angular scattered energy when the substrate is vac-
uum. For a finite grating made with 10 slits with width slit` = 1µm
and periodD = 2µm. The angle of incidence isθi = 30◦, the
wavelengthλ = 0.8µm, and the width spotL = 20/

√
2µm. In (a)

the spot is centered at the finite grating (b/` = 9.5), in (b) the cen-
tre of the spot is located at the edge of the finite grating (b/` = 0),
and in (c) we have superimposed (a) and (b).

FIGURE 11. Same parameters as in Fig.10 but the substrate is
lithium.
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FIGURE 12. Same parameters as in Fig. 10 but the substrate is
gold.

FIGURE 13. Influence of the wavelength on the angular reflected
energy when the substrate is gold. For a finite grating with N=10
slits and periodD/` = 2.0, when is illuminated by an obliquely
incident Gaussian beam (θi = 300) of width L/` = 20/

√
2, for

the wavelengthsλ/` =0.1, 0.8, 1.5, and 2.5.

the angular positions of these orders are independents
of the beam width and the position of the spot on the
finite grating.

2) In Fig. 10c we have superimposed the Figs. 10a
and 10b. We get from Fig. 10c that the envelope of the
reflected energy is conserved constant when the posi-
tion of the spot is changed along the finite grating (ex-
cept for the reflected orders).

3) The last conclusions are also true for a conductor sub-
strate. Besides, the angular positions of these orders
are independents of the conductivity. These facts are
shown in Figs.11 and 12 with the same parameters as
in Fig. 10 but the substrate is lithium in Fig.11 and gold
in Fig. 12. Also, these plots show how the scattered en-
ergy changes when the conductivity of the substrate is
increased.

4.2. Influence of the wavelength

In Fig. 13 we show the influence of the wavelength on the
angular reflected energy when the substrate is gold. We
consider a finite grating made of 10 slits of normalized pe-
riod D/` = 2.0, illuminated by an obliquely incident Gaus-

FIGURE 14. Influence of the beam width on the angular reflected
energy when the substrate is gold. For a finite grating made of 15
slit of normalized periodD/` = 1.5, illuminated by an obliquely
incident Gaussian beam (θi = 30◦) of wavelengthλ/` =0.9, and
spot widthL/` = 7/

√
2, 10/

√
2, 50/

√
2, 5000/

√
2.
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sian beam (θi = 30◦) of width L/` = 20/
√

2, for the wave-
lengthsλ/` =0.1, 0.8, 1.5, and 2.5.

It is interesting compare these plots of Fig.13 with those
given in transmission in Fig. 2, where the parameters are the
same. From our calculations we get that the grating equa-
tion in reflection predict very well the position of the or-
ders. We notice that the angular width of the orders is in-
creased when the ratio between the wavelength and the width
spot increase,i.e., the angular width of the orders increase
whenλ/L also increase. This is true also in transmission as
can be seen from Fig. 2.

4.3. Influence of the beam width
Now we consider the influence of the beam width on the an-
gular reflected energy when the substrate is gold. In Fig. 14
are plotted the results for a finite grating made of 15 slit of
normalized periodD/` = 1.5, illuminated by an obliquely
incident Gaussian beam (θi = 30◦) of wavelengthλ/` =0.9,
and spot widthL/` = 7/

√
2, 10/

√
2, 50/

√
2, 5000/

√
2.

This Fig. 14 is the corresponding one of Fig. 6 in trans-
mission, where the same parameters are taken into account.
As we can see from these plots the property mentioned in
Sec. 4.2 is also verified,i.e., in transmission or in reflection

the angular width of the orders increase when the ratioλ/L
increase.

5. Conclusions
A rigorous modal theory for solving the diffraction of Gaus-
sian beams byN equally spaced slits (finite grating) on a
planar perfectly conducting screen was presented. We as-
sume that the substrate is vacuum or conductor. The case of
T.E. polarization and oblique incidence was considered. The
study has been especially carried out in the vectorial region,
where the polarization effects are important. The reflected
and transmitted energy are analyzed as a function of several
optogeometrical parameters: the wavelength, the beam width
and the beam position, as well as the separation between slits
(coupling).
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