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Diffraction of an obliquely incident TE-polarized Gaussian beams by N equally spaced slits (finite grating) with conducting substrate
treated. The substrate can be either vacuum or conductor. The diffracted and scattered patterns, the transmission and reflection coeffi
and the normally diffracted energy are analyzed as a function of several optogeometrical parameters. Particularly, the coupling betweer
and the influence of the substrate is considered. We have found that, when the substrate is a conductor, the grating equation in refle
predicts with good precision the angular positions of the orders of a finite grating; the angular positions of these orders are independen
the beam width, the spot position on the finite grating, and the conductivity of the substrate. Besides, the envelope of the reflected ener
conserved constant when the position of the spot is changed.
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Se presenta una téarrigurosa modal para la difraéei de un haz Gausiano con polariZatiT .E. incidiendo oblicuamente sobre una red
de difraccon finita hecha deV rendijas. La pantalla donde astexcavadas las rendijas es plana e infinitamente conductora, mientras que
el sustrato puede ser un dietrico o un metal coindice de refracéin complejo . Estudiamos el péatr de radiadn en campo lejano, el
coeficiente de transmian y la energa normalmente difractada. Particularmente se analiza el acoplamiento entre rendijas y la influencia d
sustrato.

Descriptores: Difraccion; dispersin; optica electromaggtica; redes de difracmn.

PACS: 42.25.Fx; 42.10.H.C

1. Introduction In a previous paper [18] we treated the diffraction of

The diffraction of beam waves has attracted a great deal of aft T-E. polarized normal incident Ga_u35|an beam by one slit

o ) Lo . ruled onto a planar perfectly conducting screen with conduct-
tention in recent years. Particularly, in visible and microwave. . .

. . . . . . ing substrate. In this paper we have extended the theory given
regions where the diffraction by slits has been widely inves- . o i
. . o . in Ref. 18 to the case of an obliquely incident Gaussian beam
tigated because of their great amount of applications in the

fields of acousto-optics, holography and spectroscopy [1]on a finite grating made of N equally spaced slits with a sub-

However, the maijority of the published papers consider onlystrate, which can be either vacuum or a conductor. The grat-

the diffraction of incident plane waves [2-14]. The diffrac- Ing is ruled into a planar perfectly conducting thin screen. To

. : ur knowledge this case has not been studied rigorously in
tion of other types of waves such as the higher modes 0getail. In this paper the T.E polarization case (the incident

faT'TSgX; me?s;?(fr?rm[;gl hz?/: bpi}:c;glztjzieesundamen'electric fieldE; is parallel to the slits) is considered, and in a
00 ' future paper the T.M. mode (the incident magnetic filflds

diff In o;der 0 t_reatt the %Engral prﬁblenghof thel d'fgacr'anfarallel to the slits) will be studied. We focus our attention to
SI eren faﬁ)dprt%xma elrge %?hSUT(' ar?h f? scalar r?yhelg he vectorial region of diffraction, although the scalar region
ommerte eory [16] an € ’irehnotl approach Nave ¢ igraction is taken into account too.

been proposed. However, if accurate results are required, an

electromagnetic rigorous theory of diffraction is necessary, It is important to mention that the problem which is
especially within the so called vectorial region [16,17] de-treated in this paper is not only an interesting subject in the
fined by \/¢ > 0.2, in opposition to the scalar region given field of electromagnetic wave theory, but also it is an impor-
by A\/¢ < 0.2, where) is the wavelength andis the char-  tant one relating to the surface measurement or diagnostics
acteristic length of the apertures. As it is known, in the vec-by microwave, millimeter-wave, laser, or ultrasonic beams,
torial region of diffraction /¢ > 0.2) the polarization ef- and particularly to the development of various kinds of op-
fects become significant [16,17], so that, the scalar theoriescal devices such as beam shapers, multiplexers, polarizers,
of diffraction can not be applied here. spatial filters, and waveguide couplers [1].
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2. Formulation of the theory
2.1. Angular plane wave expansion of the fields

N equally slits of width? and separatiod are ruled into a
planar perfectly conducting thin screé,, we will consider
a finite grating where the period B = ¢ + d (see Fig. 1).
We assume that the substrate can be either vacuum or a cor
ductor. The position of a point in space is fixed by its Carte-
sian coordinates, y, andz. Besides this, we consider an
obliquely incident T.E.-polarized Gaussian beam, which is
independent on the-coordinate. The incident wave is a
cylindrical wave. The harmonic time dependence of the comgure 1. Our configuration composed o¥ slits of width ¢ and
plex field quantities is assumed to be of the foxm(—iwt). separationd, i.e. of period D = ¢ + d in a planar perfectly con-
We notice that this model of a finite grating can be used alsalucting screen with conducting substrate. The slits are parallel to
to consider a grating made (lamellar gratings) with conducttheOzaxis. We assume an obliquely incident Gaussian beam at the
ing substrate. This lamellar grating can be simulated by takangled.
ing the slit number N very large in our finite grating.

From the uniqueness of the solution and the invariance ofegiony < 0) of our configuration
the field along the—coordinate, we get that the total field E

< Substrate
S

depends only on the coordinatesandy. Then, our origi- Ei(a,y) = A(e) exp(—ify) + B(a) exp(iBy)
nal vector problem becomes a scalar one with an unknown
function E(xz, y) given by the component of the electric field (fory >0), (4)

along theOz-axis which satisfies the two-dimensional ver- - _ ) ;
sion of the Helmholtz equation Ea(a,y) = Cla) exp(=ificy) + D(a) exp(ifey)
(fory <0), (5)

5 T a5 THE=0, 1)
v Yy where we have the following definition#? = k2 — o2 with
Im(B3) > 0, andB3? = k% — o2 with Im(8,) > 0. The wave

wherek = kon, ko = 27/) is the module of the wave Vec- yocior is a complex number, because in general the sub-
tor in vacuum, anch is the refractive index of the medium, strate is a conductor.

which is a complex number for the substrate. This equation . , . o
is a second order partial differential equation which we need  Before to continue with the solution of our problem it is

to treat in order to solve the problem posed in this paper. ~ convenient to analyze Egs. (4) and (5). The first term of
It is convenient to take the Fourier transform of the field Eqg. (4) is related with the Fourier transform of the incident
: beamF; (incoming wave), with amplitudel(«). This func-
E(z,y) along theOz-axis as

tion A(«) is very important in order to consider the shape of
o the incident spot, in fact, with this function we can simulate a
Bz, y) = 1 / B, 1) explios)da @) Gaussian beam, a Hermite-Gau_ssian beam, and_ soon. In this
’ NG ’ ’ paper we concentrate our attention to the Gaussian beam, but
—o© in a following paper the case of Hermite-Gaussian beams will
be discussed. The second term givenR{yy) represents the
where the inverse Fourier transfmﬁ;}j(ol7 y)is given by scattered wave. This field is composed of an infinite number
of plane waves dispersed by the slits, some of them are prop-
00 agating outgoing wave§a| < ko), while others are evanes-
ﬁ(a,y) _ / E(z,y) exp(—ioz)da. (3) centwaveg|a| > ko). These evanescent fields are necessary
Ver in order to coupling the upper-region and the bottom-region
- and their behavior are similar to that of the problem of the
A well potential encountered in quantum mechanics. Finally,
Observe that the spectral amplitudgc, y) of the electric  the total field below the screen given by Eq.(5) which is com-
field E(z, y) can be directly handle with the last transforma- posed of the coefficients(a) andD(«). BesidesA(«a) = 0
tion. for |a| > ko andD(«) = 0 for all , since the field should be
After substituting Eq.(2) into Eq. (1) we get an ordinary bounded fory — +oc. Observe that this solution satisfies the
second order differential equation E\(a, y) which solution  required outgoing wave condition or Sommerfeld’s radiation
is immediately obtained. For this, it is necessary to distin-condition. In conclusion, it follows from Egs.(2) to (5) that
guish among the upper-regiory £ 0) and the lower- the electric fieldsZ; andEs can be expressed by an infinite
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number of plane waves and evanescent waves as follow: Let F5(z,y = 0) be the electric field ay = 0, which
have be null at the screen in the model of infinite conduc-
Jeilas=By) tivity considered here. It is convenient to mention that this
Ei(z,y) = —= | Ala do X . . : ;
\/ model is valid for microwave and radio wave regions, there-
—ko fore, for the diffraction in the visible region it is necessary to
consider the finite conductivity of the screen. From this, it
/ )el@Tt8Y) o, (fory > 0), (6)  follows thatE; can be expressed as

O) = Z anlqbnl(x)

Es(x,y) = \/%/C el@r=Pev) g (for y < 0), (7)

these expressions correspond to the so called angular plane- + Z an2¢n2(z -+ Z anNdnn(7), (8)

wave expansions. We notice that the + sign at the exponen- n=1

tials means that we have up propagating waves, while the -

sigh means down propagating waves. \t/)vhere the functions,,,,(z) (withp = 1,2,..., V) are given
| y

sin[(z—(p-1Dd+0)%F] it (p-1)d+0)<z<l+(p—-1)(d+)
(bnp = ) (9)
0 elsewherex
the coefficients:,, are the so called modal coefficients. The
functionsg,,, () constitute a basis with the following orthog-
onality condition -
o] ¢ - Z a7z1(£n1(a)
<¢np7 ¢mq> = / (anpd):nqu = §5n'm5pq7 (10) n=1
- + Z an2¢n2 -+ Z a/nNd)nN )a (12)
withn,m =1,2,...0ccandp,q = 1,2,...,N. From EQq.(9) n=1
we see that functiong,,,(x) are sine functions over the slits . ) ) )
and null along the screen. where qbnp(a) is the Fourier transform ofp,,(x) with

From Egs. (6), (7), and (8) we have the expressions of th& = yooandp =1,2,..., N
total electric field at the upper-region, at the lower-region, and In add|t|on the continuity Of the normal derivative &t
on the screen. To finish completely our diffraction problematy = 0, andz within the slits, and the fact that,,, () is
it is necessary to determine the functioB$a), C(a), and null on the screen give us the following relationship:
the set of modal coefficients, 1, ano, . .., a,n. FOr this, we oF OF
have to use the boundary conditions given by the continuity <1(x, 0) — 2 —(2,0), Pmq( )> =0. (13)
of the tangential component and the normal derivative of the dy dy
electric field aty = 0. It is important to notice that this two-
dimensional problem requires only two boundary conditions.

A A
2.2. Conditions of continuity (f(2),9(x)) = <f(0‘)79(04)> )
From the continuity of the electric fields, and £, and, of o0 Eq. (13), we get

the fieldsEy andE5 aty = 0, we obtain from Eqgs. (4), (5),
and (8) the following equations <3E1

A(Oé) + B(Oé) = Z anlqgnl(a)

By applying the Parseval-Plancherel theorem

O E,
8y (Q’O) ay (O& O) (bmq( )> = 0, (14)

withm =1,2,...,00y¢=1,2,...,N
Finally, if we obtain the derivative of Egs.(4) and (5), and

+ Z A2z + Z anndnn (o) (11)  substituting them into Eq.(14), the unknowBign) andC'(a)
n=1 n=1 can be eliminated by using Egs. (11) and (12). After these
calculations the following equations are obtained for the un-
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knowns modal coefficienis,,,: the N slits and the incident enerdy which is given by

ko
| B()|C()]* da

i ani <(5+ﬁc)<£n17 émq>
n=1

T= ™ , a7
> o | Ba)|A(e) da
+Zan2 <(/8+5c)¢n2a¢mq>+ . —ko
n=1 from which the theorem of conservation of energy is written
o0 . . ) as follows:
+ Gnp +Be)bnN, Omq ) =2 BA(Q), bpmg ), (15
> N {(B+B)dun s bima ) =2 (BA(@), dng ), (15) P as)

However, in the case where the substrate is conductor, the
He fractive index is complex, we will talk now of thé energy

With these computations we have been able to reduce t bed by th bstrat lized to the incident
problem of the diffraction of a beam wave by a finite gratinga sorbed by the substrateé normalized to the incident energy,
thus, the conservation of the energy is given by

made of N slits to a linear algebraic system with unknowns
given by the modal coefficients. We have to mention, that this R+ A=1, (19)
is not the only possible method of solution, since problems

within the vectorial region are frequently solved by means ofwhereR is given by Eq.(16).

Fredholm type integral equations. It is important to note that ) o .

the diffraction patterns are accurately determined from thesé-4-  The obliquely incident Gaussian beam

modals coefﬂm_ents, in fact, all the quantities of mte_rest_ €ahs an incident electromagnetic wave, the two-dimensional
be expressed in terms of these constants, thus, simplifyin

: . gersion of a Gaussian beam will be considered. On the
the numerical computations.

_ _ - . screen, and at normal incidence this field is given by [17]
The conservation of energy is satisfied with these values

of no within a precision of better than 1. The modal co-
efficientsa,,,, have been obtained numerically from Eqg. (15)
by using the Gauss-Seidel algorithm. From the modal coef-
ficients and Eq. (8) the electric field inside the slits can be ~ From this expression the beam spectral amplitude for an
calculated. After substituting these modal coefficients. ~ obliquely incident Gaussian beam can be obtained

withm =1,2,...,00,andg =1,2,..., N.

2
E(z,y=0) =exp [_2(:10—2())] . (20)

into Egs. (11) and (12) the spectral amplitudgsx) and I o

C(«) are also obtained. By inserting these expressions into Ale) = 5 (cosi + Esen@:)

Egs. (6) and (7) the scattered and diffracted fields are finally

calculated. Thus, the solution of the diffraction problem is x exp[i(—ab+ fh)]exp(—%/2),  (21)

formally and numerically given. wheref; is the angle of incidence with respect to thg-axis.

The position of the waist of the incident beam is givenbby
2.3. The theorem of conservation of energy (the alignment with respect to ti@y-axis) andh, with 2=0

from now on, (see Fig. 1). We denote ythe local (/e)-
In order to establish the theorem of conservation of energyntensity Gaussian beam diametérgpot diameter) which is
it is important to define the way the diffracted and scattered basic beam parameter, afd= (« cos0; — (sen6;)L/2.
energies are calculated. Due to the fact that above the finitd/here the intensity is defined by= cE?, with ¢ a constant.
grating we have vacuum, lgt be the reflection coefficient ~ Unless otherwise is stated, throughout the paper the beam
given by the ratio between the scattered energy and the inciosition will be kept fixed ab = A /2, whereA is the total
dent energyl,. From the complex Pointing vectdt takes  length of the system composed by slits and/N-1 separa-

the following form tions d, i.e. the beam will be focused at the center of the
finite grating. In addition, we call attention to the fact that
ko ) the present theory is valid not only for Gaussian beams, but
| B(@) |B(a)" da also for Hermite-Gaussian beams [19,20].
R = _::: (16) In order to assure accuracy of the numerical results, in
[ B() |A()|* dax all the simulations the energy-balance criterion has been al-
—ko ways satisfied within a precision of better thesT#, which

is the precision usually accepted in the literature. Before we
For the transmitted energy it is necessary to distinguisktontinue, we would like to point out that the numerical re-
between the cases when the substrate is either vacuum or caults reported below are illustrated for some particular wave-
ductor. In the first case, |6t be the transmission coefficient lengths\/¢; nevertheless conclusions will also be valid for
defined as the ratio between the transmitted energy througny value within the vectorial region, whekg/ > 0.2.
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3. Numerical results: angular transmitted show the diffraction from ten slits of normalized period
energy D/¢ = 2.0, illuminated by an obliquely incident Gaussian
beam(f; = 30°) of width L/¢ = 20/1/2, with wavelengths
In Ref. 21 the case of the diffraction of a normally incidentA\/¢ = 0.1, 0.8, 1.5 and2.5. The diffraction patterns of
TE polarized Gaussian beam by a finite grating was treatedsig. 2a shows the typical sharp orders resembling those of
where the substrate is vacuum. In this section we considahe diffraction of plane waves by a grating. However, as the
the same configuration but with an obliquely incident Gaus+atio A/¢ comes into the vectorial zone, the number of oscilla-
sian beam where the substrate is vacuum. It is interesting ttions decreases and the orders become wider. The maximum
compare among the results obtained here at oblique inciden@nergy transmitted occurs@t= 60° (see Fig.1) for any con-
with those at normal incidence from Ref. 21. This compari-sidered wavelength. Notice that the symmetry presented in
son shows us with surprise that the case at normal incidendeg. 3 of Ref. 21 at normal incidence is broken here. Further-
is very different to the case at oblique incidence. In all themore, we have found that the order positions agree very well
results the slit width will be taken a&1 and the angle of with the predictions given by the classical grating rule.
incidence ag; = 30°. . .
o . . In Fig. 3a we have plotted the energy diffracted nor-
As we have seen, it is possible to consider the reflected . ) .
. . ; mally £ as a function of the wavelength for the diffraction
energy and the transmitted energy by the grating, but in order ) o : N .
. of an obliquely incident Gaussian beafy & 30°) of width
to compare our results with those of Ref. 21 we only ana- . . ]
. . . L/t =5/v/2by 2, 4, andB slits of periodD /¢ = 1.5; unless
lyze the energy transmitted. However, in the next section the AT : . . .
. . Otherwise indicated, this period will be used in what follows.
reflected energy will be taken into account. . - ) )

It is surprising to verify that these results are very different
to those obtained at normal incidence in Fig.4 of Ref. 21. In
Fig.3b we have the transmission coefficient T as a function
First, the evolution of the far-field radiation pattern when theof the wavelength. Itis Interesing to see tha_t the maxima in

Fig.4a have the same positions that the maxima from Fig.4b,

wavelength increases is considered. Figures 2 (semilog pIOtSé?similar conclusion can be obtained from Fig.4(a) of Ref. 21.

3.1. Influence of the wavelength

100
107 (q Ne=0.1
01 T % 1
1E-3 + : fo.8
! i1k ﬂ g
1E5 \ B 0.6
> 1 (b) ! M0=0.8 %
| i
g) 0%_1 : =>O.4
Q’ .
£ 1E3 (W | §0-2 '
1E-4 | 4
§ 1E5 ﬂ : {\/\ 0
= | T
g 1% (0 | Me=15 =
5 o1 | $0.7
Z 001 I 5
1E-3 | §o.6
1E4 /\ 1 s
1E5 : 20.5
17 @ ’ Wi=25 I
0.1 | c 0.4 7
0.01 i 2
1E-3 | 0.3 '
{4 ﬂ | 0 0.5 1 1.5 2
1E-5 A ' ) Wavelength/Slit Width (W/7)
0 30 60 90 120 150 180

Angle (degree
gle (degree) FIGURE 3. (a) Intensity diffracted at normal direction normalized

FIGURE 2. Logarithm of the diffracted intensity normalized to the total incident energy, and (b) transmission coefficient as a
to the total incident energiog(1(0)/Io) for 10 slits of period function of the normalized wavelength for a finite grating com-
D/t =2.0. With §; = 30°, L/¢ = 20/v/2, b/t = 9.5, and  posed of 2, 4, and 8 slits of peridd/¢ = 1.5. With L/¢ = 5/+/2
wavelengths: (a)\/¢ = 0.1, (b) \/¢ = 0.8, (c) A/¢ = 1.5, and and@; = 30°, the beam waist is located at the middle of the finite
(d)A/€=2.5. grating.
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FIGURE 5. Intensity diffracted at normal direction normalized to
FIGURE 4. Transmission coefficient as a function of the normal- the total incident energYE/]O) as a function of the normalized
ized beam WIdtf‘(L/f) for a finite gl’ating of (a) 2,4,6 SlitS, and beam Wldth(L/é) Parameters are set as in F|g 4.
(b) 3,5,7 slits of periodD/¢ = 1.5 with wavelength\/¢ = 0.9.
The beam waist is located at the middle of the finite grating.

10

3.2. Influence of the beam width 11 (a) | L/6=7/42
1E2 § i

In Figs. 4 and 5 the transmission coefficient and the normal- 1E-4 R |

. . . = k- ‘

ized diffracted energy are plotted as a function of the beam ] |

width L/¢. An obliquely incident Gaussian beafy & 30°) 1-E6 ‘

of wavelength\/¢ = 0.9 is assumed. In these cases the re- 1+ (b) : L/0=10/2

sults are very similar to those shown in Ref. 21 at normal 2 4ED !

incidence, except in Fig. 5b where a very important discrep- @ "~ |

ancy is present. 1E-4 |

The evolution of the diffraction patterns when the beam - 1-E6 i /\AM | puast Ao
width increases is depicted in Fig. 6, for an obliquely in- 1+ (© L/0=50/2

cident Gaussian beam 8t = 30°, with a wavelength of
A/¢ = 0.9, and a finite grating made of 15 slits. Firstly,
Fig. 6a shows the far-field pattern for a narrow incident beam
of width L/¢ = 7/+/2 (note that the beam waist covers not
even half of the finite grating). Wide orders can be observed 1-E6
and, instead of secondary maxima, broad and very deep min: 14 @
ima occur. In Fig. 6b a beam of width/¢ = 10/+/2 covers
almost half of the finite grating making secondary maxima
be visible. In Fig. 6c the finite grating is completely covered 1E-4
by a spot of width./¢ = 50/+/2. Finally, in Fig. 6d a very 166 |
wide incident beam of./¢ = 500/+/2 (resembling a plane 0 30 60 90 120 150 180
wave) makes the half-width of primary and secondary max-
ima become more narrow. It is remarkable to note that the
angular position of the orders remains fixed, no matter WhahGURE 6. Logarithm of the normalized diffracted intensity
the beam width is given. On comparing Fig.6 with the corre-,.(1(9) /1,) for a finite grating with 15 slits of perio® /¢ = 1.5.
sponding Fig. 7 of Ref. 21 at normal incidence, we can segyjith o, = 30° ,wavelength\/¢ = 0.9, beam positiorb/¢ = 11.0,
that the zero order is locatedat= 60° (30° measured from  and beam widths (@f./¢ = 7/v/2, (b) L/¢ = 10/v/2, (c)
the normal) and the symmetry of these figures is lost. L/t =50/+/2,and (d)L/¢ = 5000/+/2.

Normalized Inten
m
N

1E-4

L/0=5000/2

1E-2

Angle (degree)
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3.3. Influence of the beam position 4. Numerical results: angular reflected energy

Figure 7 shows the normally diffracted energy and the trans!l S€C. 3 we have _analyzed the a_ngul_ar tran_sm|tted energy
mission coefficient as a function of the beam position forwhen the substrate is vacuum, and in this section we consider

a finite grating made of 5 slits. For an obliquely inci- the angular reflected energy when the substrate is either vac-
dent ¢; = 30°) Gaussian beam, with/¢ = 0.9, and beam  UUM or a conductor. The complex refractive index of the sub-

width L/¢ =50/v/2. In Ref. 21 we have shown that the 3z 0-25
corresponding results are described by a Gaussian function @ (a)
However, from the results of Fig. 7 we see that for oblique W Q=1
incidence we have no Gaussian function, in fact for the nor- ;§ 15 1
mally diffracted energy we have found a minimum instead of ®
the maximum usually encountered at normal incidence. E 0.1
>
g 0.05
3.4. Coupling between slits 3 o
The transmission coefficient as a function of the separa- .§ (b)
tion d/¢ between slits for the particular case of two slitswas & 0.6
already studied in Ref. 22 for a TE-polarized normally inci- §
dent Gaussian beam, and in Ref. 23 for a TM-polarized nor- g g 4 |
mally incident Gaussian beam, and the following results were '@
obtained: (1) coupling produces an oscillate-decreasing be-&
. - L a 02
havior as the separation between slits increases, and (2) thi &
period for these oscillations is exactly We have obtained
the same conclusion for a T.E.-polarized normally incident 0 4 1 2 5 é 11
gzﬁszsién beam on a finite grating as shown in Fig. 9 of Beam PositiorvSlit Width (5/¢)

Figure 8 shows the transmission coefficient as a functiorf'GURE 7. (a) Intensity diffracted at normal direction normal-
of the separatior/¢ for a finite grating made of 3 and 5 slits. 128d t0 the total incident energ¥/Io), and (b) transmission co-
An obliquely incident Gaussian bear; (= 30°) of wave- eﬁ'c.'entvaers‘l.L'S thfe nqrrgla)hzzed beam p0§;:lm1§) for a f'n't(ej
length /¢ = 0.9 was used. To uniformly illuminate every %;?'1958/\5/5”5 of periodD/£ = 1.5. With A/¢ = 0.9 an
each slit the beam width has been takerLgé = 500/+/2. '
From Fig.8 we observe with surprise that the conclusions ob- 0017
tained at normal incidence are no longer valid at oblique in-
cidence. We see an oscillating behavior but in this case the 0.016 |
period of oscillation i in place of\ (occurring at normal

incidence). This result motive us to analyze in detail other € o0.015 |
cases, but this will be done in a future publication. -%
& o0.014 §
3
3.5.  Non-periodic finite grating 2 0.013 -
-% 0.0096 {
Finally, we consider two finite gratings withv. = 6, é
d/¢=10.5, and D/¢ = 1.5, joined with a different metal % 0.0088 {
separationd/¢ = 0.1, 0.45, and 5.0. In Fig. 9 we show @ ]
the diffraction patterns obtained with an obliquely incident = 5 gos |

Gaussian beam & = 30°, with width L/¢ = 20/+/2, and
A = 0.9. The spot is located at the middle of the finite 0.0072
non-periodic grating. o 3 6 o

We note that the diffraction patterns resemble more a Separation/Slit Width (d/?)
rough surface than the corresponding spectra of a finite graticure 8. Coupling between slits. Transmission coefficient as a
ing. Itis interesting to note that the highest maximum is lo-function of the normalized separati¢d/¢) for a finite grating with
cated aty = 60°, where must be located the order zero of N = 3 andN = 5 slits of periodD/¢ = 1.5. With A/¢ = 0.9,
a grating. The results of Fig.9 have drastically changed with./¢ = 500/+v/2, andb/¢ = 0.5.
respect to those given in Fig. 10 of Ref. 21.
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10 I 1) We can say that for an incident Gaussian beam the grat-
1 % d’1¢t=0.1 ing equation in reflection predicts the angular positions
01 4 of the orders of a finite grating with good precisias,,
0.01
100
152 | I
154 TRANY A
ZEs | L ——
o e 1E3+ /1 1y i ST R TN
S 1 | d’1t=0.45 > \ Wm W{YWHM I
o <) /AR [ 1 | ! |
3 001 § | W 10 | A
N [ ® | [ \ |
§1E—3 1 @ 0.1 | |
P | 8 1e3 | |
= 1E5 2 ' 1 ‘ s 1 !
1 o S 1E5 ! '
11 © d’1t=5.0 =
2 10
0.1 <
0.01 01
1E-3 1E-3
1E-4 1E5 |
1E-5 0 30 60 90 120 150 180

0 30 60 90 120 150 180 Angle (degree)

Angle (degree)

FIGURE 10. Angular scattered energy when the substrate is vac-

FIGURE 9. Diffracted intensity normalized to the total incident en- ,um, For a finite grating made with 10 slits with width li& 1m
grgy(] (_0) /Io) for a finite nonperiodic grgting with 6 slits of orig-  and periodD = 2um. The angle of incidence & = 30°, the
|n§1I penodD_/Z = 1.5 and metal separatiody¢ = 0.5 where the wavelength\ = 0.8um, and the width spak = 20/v/2um. In (a)
mid-separation has been replaceddly¢ = 0.1, 0.45, and5.0. the spot is centered at the finite grating{ = 9.5), in (b) the cen-
For L/l = 20/v/2, /¢ = 0.9. The beam walist is placed at the tre of the spot is located at the edge of the finite grating & 0),
middle of the finite non-periodic gratings. and in (c) we have superimposed (a) and (b).

straten has been obtained by interpolation frddandbook
of optical constants of solidsy Edward D. Palik [24]. 100

| A 1 | |
CEACHE
‘ | |
4.1. Influence of the beam position 0.1 /lr\ IIE\/ '?\ ]A p{\
. T L e 1 P (R
In all the cases considered in this Sec.4.1 we plotted the an-3; 159 N\ WWM(‘: W‘(” W{W l\ Wﬂ \’(\W
gular scattered energy for a finite grating made of 10 slits @ 1E-5 =/ ? ‘l bl L1

with width slit £ = 1um and periodD = 2um. We also
have an obliquely incident Gaussian beam with= 30°,
wavelength\ = 0.8um, and width spof, = 20/+/2um.
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1E-3
when the substrate is vacuum. In Fig. 10a the spot is centere

at the finite grating, 4/¢ = 9.5, see Fig. 1), and in Fig.10b 155{
the centre of the spot is located at the edge of the finite grat-2 ¢ }
0

ula

A

ing (b/¢ = 0, see Fig. 1). These two figures show us the in-
fluence of the beam position in the angular distribution of the 0.1
energy. In both of them, we notice the presence of five or-
ders predicted by the grating equation for reflection given by
cos B, = sinf; + nA/D, see Fig.1. The maximum relative 1E-5
error between the positions of the orders given by our calcu-
lation and those from the grating equation is 1.3%.

From the results of Figs.10a and 10b two important gen+icure 11. Same parameters as in Fig.10 but the substrate is
eral facts can be obtained: lithium.

1E-3

30 60 90 120 150 180
Angle (degree)
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100 | I ! ! the angular positions of these orders are independents
10 1@ | | ! of the beam width and the position of the spot on the
0.1 § | | : [ finite grating.
i [ [ ! |
| ! | |
S B3t | | | | | 2) In Fig. 10c we have superimposed the Figs. 10a
S Es 1 N | | AR AR and 10b. We get from Fig. 10c that the envelope of the
i 1 } ' : : : reflected energy is conserved constant when the posi-
- 101b | | ! } { tion of the spot is changed along the finite grating (ex-
% 0.1 : ! ‘I : | cept for the reflected orders).
S 3l N w/:\\ ] \ 3) The last conclusions are also true for a conductor sub-
? i : | i V/N : strate. Besides, the angular positions of these orders
S 1ES ' ‘ ‘ ' s are independents of the conductivity. These facts are
2 101 (@ shown in Figs.11 and 12 with the same parameters as
< in Fig. 10 but the substrate is lithium in Fig.11 and gold
0.1 in Fig. 12. Also, these plots show how the scattered en-
1E-3 ergy changes when the conductivity of the substrate is
A increased.
1E-5 fa
0 30 60 90 120 150 180
4.2. Influence of the wavelength
Angle (degree)
o _In Fig. 13 we show the influence of the wavelength on the
gold. consider a finite grating made of 10 slits of normalized pe-
riod D/¢ = 2.0, illuminated by an obliquely incident Gaus-
100
T @ 1=0.1 100 ¥ ;
01+ I 1 1@ } L/t=7/2
i i |
1E-3 + ﬁ i M M 1E-2 + }
1E5 | ! 1E-4 § E A
101 | . 1E6 LN :
> i | N£=0.8 T | 5
[e)) k3 | —
o 01+% i 5 11 ® , L/£=10/2
I ! I Qg2 § |
o 1 I -4 4
“G-J' 1E—5 F : AI\ /\j\ g 1E 4 h 3 :
® 3 9L 1-E6 YL
3 1 @ | V=15 I L/6=50A2
— C =
o© 01 + : . 1% 1
3 ¥ © 2 :: I
2 1E3 4 | 31'5.2 ] |
< . i A : Aa 4:: 1E-4 § | M
i ! 1-E6 1) I L] N\
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FIGURE 13. Influence of the wavelength on the angular reflected FIGURE 14. Influence of the beam width on the angular reflected
energy when the substrate is gold. For a finite grating with N=10 energy when the substrate is gold. For a finite grating made of 15
slits and periodD /¢ = 2.0, when is illuminated by an obliquely  slit of normalized period)/¢ = 1.5, illuminated by an obliquely
incident Gaussian beam;(= 30°) of width L/¢ = 20/+/2, for incident Gaussian bean;(= 30°) of wavelength\/¢ =0.9, and

the wavelengtha /¢ =0.1, 0.8, 1.5, and 2.5. spot widthL /¢ = 7/+/2, 10/+/2, 50//2, 5000/+/2.
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sian beam; = 30°) of width L/¢ = 20/+/2, for the wave-  the angular width of the orders increase when the rafib
lengthsA/¢ =0.1, 0.8, 1.5, and 2.5. increase.

It is interesting compare these plots of Fig.13 with those
given in transmission in Fig. 2, where the parameters are thS. Conclusions

same. From our calculations we get that the grating quax rigorous modal theory for solving the diffraction of Gaus-
tion in reflection predict very well the position of the or- ¢34 peams byV equally spaced slits (finite grating) on a
ders. We notice that the angular width of the orders is inyanar perfectly conducting screen was presented. We as-
creased when the ratio between the wavelength and the widd), e that the substrate is vacuum or conductor. The case of
spot increasei,e,, the angular width of the orders increase 1 g nojarization and oblique incidence was considered. The
when /L also increase. This is true also in transmission asy,dy has been especially carried out in the vectorial region,
can be seen from Fig. 2. where the polarization effects are important. The reflected
and transmitted energy are analyzed as a function of several
4.3. Influence of the beam width optogeometrical parameters: the wavelength, the beam width
Now we consider the influence of the beam width on the an@nd the beam position, as well as the separation between slits

gular reflected energy when the substrate is gold. In Fig. 14c0upling).

are plotted the results for a finite grating made of 15 slit °fAckn0WIedgments

normalized periodD/¢ = 1.5, illuminated by an obliquely
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