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A specific case of a four-order non-collinear light scattering in anisotropic media is presented. Compared to our previous studies, an
innovation lies in the fact that now we consider passing just the quartet of incident light waves through a single crystal that is perturbed
by a coherent stream of acoustic phonons. The exact and closed analytical model for describing this strongly nonlinear phenomenon is
developed. In fact, a specially designed regime of a four-order light scattering, when transitions of four input light beams into four output
light modes are allowed and electronically controlled, is examined. The feasibility of applying such an effect to perform an all-optical
switching is analyzed. An opportunity for arranging the digital 4-bit register is revealed and algorithmically analyzed.

Keywords: All-optical switching; logic-based data processing; acousto-optical device.

Se presenta el caso especı́fico de la dispersión de la luz no-colineal de cuarto orden en un medio anisotrópico. Comparado con nuestros
previos estudios, la innovación yace en la consideración de hacer pasar cuatro haces incidentes de ondas de luz a través de un cristal el
cuál es perturbado por una columna de fonones acústicos coherentes. La solución anaĺıtica y exacta al modelo que describen este fenómeno
fuertemente no lineal es desarrollada. De hecho, se examina el régimen especialmente diseñado de la dispersión de la luz de cuarto orden,
cuando las transiciones de cuatro ondas de luz de entrada hacia cuatro haces de luz de salida son permitidas y electrónicamente controladas.
Se describe también la posibilidad de aplicar tal efecto para desarrollar el proceso de un interruptor todo-óptico. Se presenta la posibilidad
de implementar un registro digital de 4 bits la cuál es analizada algorı́tmicamente.

Descriptores: Interruptores todo-́opticos, ĺogica basada en el procesamiento de datos; dispositivos acusto-ópticos.

PACS: 42.25.Fx; 42.65.Pc

1. Introduction

We present the current progress in both the theoretical in-
vestigations and the computer simulations in the field of
creating novel opto-electronic components for an all-optical
logic-based data processing, founded on special regimes of
acousto-optical interaction in bulk crystals [1,2]. Previously,
the results obtained due to studying all-optical logic gates
and switching via a two-phonon light scattering in single
crystals, had been reported [3-7]. The case at hand is the
opto-electronic component fulfilling an all-optical switch-
ing through the mechanism of a four-order light scattering
in optically anisotropic media. A special approach to the
Bragg regime of scattering the light in four modes by co-
herent acoustic phonons in single crystals is under examina-
tion. Because of the limitations by the phase-synchronism
conditions in uniaxial crystals, a four-order scattering man-
ifests itself due to transitions between the only neighboring
orders. Moreover, the peculiarity of a four-order scattering
consists in the fact that both normal and anomalous regimes
of acousto-optical interaction are involved in this process,
thus, relative efficiencies play a remarkable role. The pro-
posed regime is potentially suitable for realizing 100% effi-
ciency during the light scattering into each mode, so it gives
us an opportunity to fulfill switching all-optically with im-
proved efficiency. As this takes place, a certain amount of

the multi-beam regimes can be realized depending on the re-
lations between the intensities and the phases of incident light
waves. In doing so, particular attention is placed on search-
ing the points of extrema for the intensities of scattered light
beams that hold the greatest interest from the viewpoint of
controlling light by using light. A lot of combinations can
be created due to varying the intensity and the carrier fre-
quency of coherent acoustic phonons, which take part in the
process of light scattering on equal terms and shape some dy-
namic acoustic grating. One possibility to apply this effect is
connected with the design of all-optical logic-based switches.
The properties of a four-order scattering give us an oppor-
tunity to investigate both binary and even non-binary logic
operations. This opportunity has its origin in exploiting an
all-optical nonlinearity inherent in this phenomenon. Such
a nonlinearity can be varied electronically within wide lim-
its according to the power density of the incoming phonon
stream. The analysis permits realizing a few logic-based
switching operations with or without the optical pump, so
both possibilities: breaking and selecting switches can be
performed. Here, a four-order light scattering in an uniax-
ial single crystal is applied to design the all-optical digital
4-bit register, being interferometric in behavior. In Sec. 2,
we present the quantum approach to a four-order scattering
of light by acoustic phonons in optically uniaxial anisotropic
media, and introduce the diagrams of wave vectors that give
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clear view on the processes of non-collinear acousto-optical
interaction in crystals. Then, the exact and closed form of
amplitude equations for describing a four-order light scat-
tering is derived, analytically solved, and analyzed from the
viewpoint of possible applications in Sec. 3. Because the fi-
nal version of this analytical solution is too bulky, the corre-
sponding graphic representation for the results of numerical
simulation is given as well. Finally, in Sec. 4, we consider
one of the possible applications of the above-described phe-
nomenon to the design of an all-optical digital 4-bit register.

2. Quantum approach to a four-order scatter-
ing of light by acoustic phonons in optically
uniaxial crystals

There is a good reason to take advantage of the quantum ap-
proach to the phenomenon of scattering of light by elastic
waves in crystals, which can be interpreted as scattering the
light quanta - photons by the quanta of the acoustic field -
phonons. When the phonons’ length of propagation is large
enough, it is reasonable to believe that phonons are pass-
ing through an infinite medium and, consequently, they have
well-determined magnitudes of the momentum. Under such
condition, each partial act of acousto-optical interaction rep-
resents a coherent three-particle process, so one may use the

conservation laws for both the momentum
→
p = ~

→
k , and the

energyE = ~ω and these laws determine, in fact, the wave

vectors
→
k and the angular frequenciesω of interacting par-

ticles. Because similar relations are true for photons as well
as for phonons, henceforward we will use small letters for
denoting the photons’ parameters and capital letters for the
phonons’ parameters. Thus, the conservation laws for partial
three-particle process can be written as

ω1 = ω0 ± Ω,
→
k1 =

→
k0 ±

→
K, (1)

whereω0 , ω1 and
→
k0 ,

→
k1 are the angular frequencies and wave

vectors for the incident and scattered photons, respectively;

while Ω and
→
K are the angular frequency and wave vector of

the injected phonons. In Eq.(1), the plus sign corresponds to
creating an anti-Stokes photon, whereas the minus sign meets
a Stokes photon. By this it is meant that there are two pro-
cesses, manifesting the annihilation of a phonon (anti-Stokes
process) or creation of a Stokes phonon. It is well known
from the quantum mechanics that the probabilities of anni-
hilating and creation the phonons are proportional toN (1/2)

and (N + 1)(1/2), respectively. Due to the contribution of
spontaneous process in the last case (hereN is the number
of acoustic phonons per unit volume in oscillation mode), the
numberN of heat phonons with the temperatureT in oscil-
lation mode is determined by the statistical mechanics as

N =
[
exp

[
~Ω
κT

− 1
]]−1

, (2)

whereκ is the Boltzmann constant. Substituting the parame-
ters for ultra-high frequency acoustic phonons in Eq.(2), we
arrive at the inequality

N ≈ κT

~Ω
À 1. (3)

This result is true as well for coherent acoustic phonons,
injected into a crystal, because an effective temperature in-
herent in the oscillation mode under excitation of coherent
acoustic phonons is much higher than the temperature of
the crystal lattice [8]. Thus, at room temperature the con-
tribution of spontaneous processes may be neglected and,
consequently, the probabilities of annihilating and creat-
ing the acoustic phonons or, what is the same, the proba-
bilities of creating Stokes and anti-Stokes photons are al-
most equal to each other. An upper angular frequency
of acoustic phonons in the first Brillouin zone of solid
states may be estimated in approximation of line lattice as
Ωmax ≈ 2V�ζ ≈ 1013rad/s (hereV is the velocity of pass-
ing acoustic phonons in a low-frequency limit, andζ is the
lattice constant), while in usual practiceΩ ≤ 1010rad/s.
Comparing these estimations with the lowest photon’s an-
gular frequencies in the visible range, for instance, at the
wavelength ofλ = 633nm, we obtainω ≈ 3.1015rad/s
and, consequently,ω À Ωmax À Ω. By this it is meant
that leaving aside the cases when coherence of light is of the
first importance, one may assume that the angular frequency
of photons does not change with scattering and use, for in-
stance, an approximate relationω1 ≈ ω0 when finding the
coefficients for amplitude equations. Moreover, under con-
ventional experimental conditions, when the intensities of the
light and the acoustic beams are approximately equal to each
other, the number of phonons is 105 times more than the num-
ber of photons, and up to100% of photons can be scattered
due to three-particle processes without appreciable effect on
a stream of acoustic phonons. Consequently, the process of
light scattering by coherent acoustic phonons can be consid-
ered in the approximation of a prescribed phonon field.

In the long run, the linkage between wave vectors of inter-
acting particles can be expressed in the form of wave vector
diagrams on cross-sections of the wave vector surfaces inher-
ent in a crystal. Similar diagrams represent a graphic version
of the conservation laws, see Eq.(1), and they may be ex-
ploited for the analysis of scattering. For example, Fig. 1a) il-
lustrates an opportunity for one-fold scattering of the incident
photon by one acoustic phonon in a single-axis crystal, when
the initial and final states of polarization for these photons
are different. Then, under certain conditions,i.e. at set an-
gles of light incidence on the phonon beam and at fixed angu-
lar frequencies of phonons, one can observe the phenomenon
of three-fold scattering of light caused by three participating
acoustic phonons. The main peculiarity of this phenomenon
lies in conserving both the energy and the momentum for the
three transitions simultaneously. In turn, these laws deter-
mine the angular frequencies and wave vectors of
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FIGURE 1. The diagrams of wave vectors for the light scattering in

optically uniaxial crystal;
→
k p is the wave vector of the light wave

scattered in the p-th order: (a) the one fold scattering(p = 0, 1);
(b) the three-fold scattering(p = 0, 1, 2, 3).

all four interacting waves

ω1 = ω0 + Ω, ω2 = ω0 + 2Ω, ω3 = ω0 + 3Ω,

→
k1 =

→
k0 +

→
K,

→
k2 =

→
k0 +

→
2K,

→
k3 =

→
k0 +

→
3K, (4)

whereωp and
→
kp (p = 0, 1, 2, 3)are the angular frequen-

cies and wave vectors of the interacting photons. This fact
leads the creating of three orders scattering, besides the zero-
th one, each by satisfying itself the conservation laws. Again,
Fig. 1 presents the diagrams of wave vectors, dealing with
a one- and four-order light scattering quanta in an uniaxial
crystal.

Such a diagram offers rather small angles of deflection
and occurs at the specific angular frequency of acoustic
phonons and the angleθi of incidence

Ω = 2πλ−1V
√

2
∣∣n2

1
− n2

2

∣∣,

sin (θi) = 3
√(

8n2

1

)−1 ∣∣n2

1
− n2

2

∣∣. (5)

It follows from this diagram that the polarization of light in
the first and the second maxima of scattering is orthogonal to
the polarization of light in the zero-th and the third maxima.
Furthermore, the carrier frequencies of light in this first, sec-
ond, and third maxima are shifted byΩ, 2Ω, 3Ω, respectively,
with respect to the zero-th maximum.

3. Amplitude equations for a four-order light
scattering

Let us consider an approach to the particular case of a four-
order light scattering by coherent acoustic phonons in an op-
tically anisotropic uniaxial medium. To deduce the amplitude
equations, describing a four-order light scattering, we use a
classical approach to the phenomenon under consideration,
based on the dispersion relation for the light waves in a crys-
talline medium, perturbed by elastic waves, with following
parabolic approximation. Let the perfectly polarized plane
light wave propagates through a crystal, wherein a plane elas-
tic wave with the angular frequencyΩ as well as with the
wave numberK, are passing along z-axis. Initially, the dis-

persion relation can be written as
→
k ·

→
k = k2 = ω2n2�c2,

wherec is the light velocity,
→
k = (kx, ky), andω are the

wave vector and angular frequency of the light wave passing

through a medium, whose perturbed refractive indexn is

n = n1 + ∆n2 sin (Kz − Ωt) . (6)

Here,n1 andn2 are perturbed and non-perturbed refractive
indices, respectively;∆n2 is the amplitude of perturbation.
We assumekz ¿ kx, sok ≈ kx + k2

z�2K, with kx ≈ k
in the denominator of the second summand. Thus, the dis-
persion relation can be rewritten in parabolic approximation
as

kx +
k2

z

2k
=

ω

c
[n1 + ∆n2 sin (Kz − Ωt)] . (7)

Equation (7) represents the linear dispersion relation, because
it does not contain any amplitude parameters of the optical
field. Consequently, the normalized optical field strength
E (x, z, t) can be expressed via the Fourier integral. In
this case the well-known correspondencesikx → ∂�∂x,
ikz → ∂�∂z, and−iω → ∂�∂t, which are applicable to
linear system, can be exploited, so we arrive at the following
partial differential equation for the optical field strength

∂E

∂x
− i

2k

∂
2
E

∂z2 +
n1

c

∂E

∂t

+
∆n2

c

∂

∂t
[E sin (Kz − Ωt)] = 0. (8)

The proposed solution to Eq.(8) is taken in the form of
Fourier series with partial amplitudesCp (x) as

E (x, z, t) =
∑

p

Cp (x) exp [i (kp,xx + kp,zz − ωpt)] . (9)

We substitute Eq.(9) into Eq.(8). In the resulting equation,
one can separate the approximate dispersion relation in terms
of partial light waves:

∑
p

(
kp,x +

k2
p,z

2k
− ωp

c

)
= 0.

While the remained terms give a set of the amplitude equa-
tions

dCp

dx
= qp {Cp−1 exp (iηp−1x)− Cp+1 exp (iηpx)} . (10)

Hereqp = ∆n2kp (2n1)
−1, andηp = kp,x − kp+1,x. It fol-

lows from Eq.(10) that the redistribution of energy in each p-
th order of scattering is governed by the only neighboring or-
der with numberp±1, p±2, p±3. In the case of a four-order
light scattering presented in Fig.1b), Eq.(10) can be consid-
erably simplified. First, one can disregard all the amplitudes
Cp (x) in Eq.(10) with the exception of the amplitudesC0,
C1, C2, andC3. And putting that the Bragg conditions are
fulfilled perfectly,θ ¿ 1, we obtain a set of equations for the
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three-fold Bragg scattering in the anisotropic medium

dC0

dx
= −qaC1 exp [−iη0x] ,

dC1

dx
= qaC0 exp [iη0x]− qnC2 exp [−iη1x] ,

dC2

dx
= qnC1 exp [iη1x]− qaC3 exp [−iη2x] ,

dC3

dx
= qaC2 exp [−iη2x] . (11)

Second, when a four-order light scattering is realized, it is
seen from the wave vector diagram in Fig.1b) thatηp = 0.
Consequently, in the case of stationary scattering we obtain
the following set of simplified ordinary differential equations
for the amplitudes of the light modes:

dC0

dx
= −qaC1,

dC1

dx
= qaC0 − qnC2,

dC2

dx
= qnC1 − qaC3,

dC3

dx
= qaC2. (12)

In the deduction of Eq.(12), the shifts in carrier frequencies
of light waves in different maxima were not taken into ac-
count. Then, the evident notations were introduced for the
parametersqp, namelyqa, andqn, indicating the scattering
with

and without the change of polarization in the light beams. In
the general caseqa 6= qn, even ifθi ¿ 1, because these two
types of the scattering processes are determined by different
photo-elastic constants.

The exact and closed analytical solutions to Eq.(12), with
the stationary boundary conditions

C0 (x = 0) = A0 exp (iϕ0) ,

C1 (x = 0) = A1 exp (iϕ1) ,

C2 (x = 0) = A2 exp (iϕ2) ,

C3 (x = 0) = A3 exp (iϕ3) , (13)

whereA0 , A1 , A2 , A3 , andϕ0 , ϕ1 , ϕ2 , ϕ3 , are the amplitudes
and phases of the incident light waves on the planex = 0.
Additionally, we useβ =

√
1 + 4q2, α =

(√
2
)−1

, and two
simplified expressions for the roots as

P =
√

1 + 2q2 +
√

1 + 4q2,

S =
√

1 + 2q2 −
√

1 + 4q2, (14)

then we obtain

C0 (qnx) =
A0 exp (iϕ0)

2β

[(−2q2 + P 2
)
cos (αSqnx) +

(
2q2 − S2

)
cos (αPqnx)

]

− αA1 exp (iϕ1)
2qβ

[
S

(−2q2 + P 2
)
sin (αSqnx) + P

(
2q2 − S2

)
sin (αPqnx)

]

+
A2 exp (iϕ2)

β
[cos (αSqnx)− cos (αPqnx)]− αA3 exp (iϕ3)

2q2β

[
SP 2 sin (αSqnx)− PS2 sin (αPqnx)

]
, (15)

C1 (qnx) =
qαA0 exp (iϕ0)

SPβ

[
P

(
2q2 − S2

)
sin (αSqnx) + S

(−2q2 + P 2
)
sin (αPqnx)

]

+
A1 exp (iϕ1)

2β

[(
2q2 − S2

)
cos (αSqnx) +

(−2q2 + P 2
)
cos (αPqnx)

]

− αA2 exp (iϕ2)
SPβ

[
SP 2 sin (αPqnx)− PS2 sin (αSqnx)

]
+

A3 exp (iϕ3)
β

[cos (αSqnx)− cos (αPqnx)] , (16)

C2 (qnx) =
qA0 exp (iϕ0)

β
[cos (αSqnx)− cos (αPqnx)]− αA1 exp (iϕ1)

β
[S sin (αSqnx)− P sin (αPqnx)]

+
A2 exp (iϕ2)

2β

[(
2q2 − S2

)
cos (αSqnx) +

(−2q2 + P 2
)
cos (αPqnx)

]

− αA3 exp (iϕ3)
2qβ

[
S

(−2q2 + P 2
)
sin (αSqnx) + P

(
2q2 − S2

)
sin (αPqnx)

]
, (17)

C3 (qnx) =
q2αA0 exp (iϕ0)

SPβ
[P sin (αSqnx)− S sin (αPqnx)] +

qA1 exp (iϕ1)
β

[cos (αSqnx)− cos (αPqnx)]

+
qαA2 exp (iϕ2)

SPβ

[
P

(
2q2 − S2

)
sin (αSqnx) + S

(−2q2 + P 2
)
sin (αPqnx)

]

+
A3 exp (iϕ3)

2β

[(−2q2 + P 2
)
cos (αSqnx) +

(
2q2 − S2

)
cos (αPqnx)

]
. (18)
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Eqs.(15) - (18) make it possible to analyze a four-order
light scattering. The transition probabilities are electroni-
cally controllable, and they may be varied within wide limits
according to the level of incoming power density in elastic
waves. For further analysis Eqs.(15) - (18) can be performed
in terms of their intensities,i.e. we shall consider the in-
tensities|Cp (qnx)|2 as functions of the coordinateqnx, and
exploit the valueq as a parameter with the incoming light
intensitiesA2

p, and the initial phasesϕp chosen in a specific
way. For simplicity sake, the cases are chosen when the only
one incoming light intensity has a non-zero with magnitude.
If A2

i = 1, q = {1�2, 1.1, 2, 3}, and ϕp = 0, while
A2

j = A2
k = A2

l for k 6= i 6= j, j 6= l 6= i, j 6= k 6= l,
i, j, k, l = 0, 1, 2, 3, we arrive at a set of diagrams shown in
Figs.2-3.

4. Application of a four-order light scattering

An opportunity to apply a four-order light scattering can be
connected with the design of an all-optical switch. The above
Eqs.(15) - (18) show us that for this purpose a set of specific
parameters should be taken into consideration. These pa-
rameters include four input amplitudes(A0 , A1 , A2 , A3) with
the corresponding phases(ϕ0 = ϕ1 = ϕ2 = ϕ3 = 0). This
means that together with the input amplitudes, we have the
following independent degrees of freedom: three phase dif-
ferences, the ratioq = qn�qa, and the normalized lengthqnx
of interaction. Initially, we can consider the acousto-optical
cell as a black box with four inputs and four outputs.

Analysis of the plots presented in Fig.2 shows that one
can realize the switching processes with1 ≤ q ≤ 3. In partic-
ular, one can chooseq=2, ϕ0=ϕ1=ϕ2=ϕ3=0, and assume
that the input amplitudes are normalized to unity, while the
normalized lengthx of interaction can be exploited as a vari-
able parameter. It follows from Fig.2 and Fig.3 that there is
a discrete sequence of values for the lengthqnx, which are
optimal from the viewpoint of switching. One of the most
appropriate lengths of interaction isqnx = 443�143. This
value makes it possible to reduce Eqs.(15) - (18) to

|C0 (443�143, q = 2)|2 = |A3 |2 ,

|C1 (443�143, q = 2)|2 = |A2 |2 ,

|C2 (443�143, q = 2)|2 = |A1 |2 ,

|C3 (443�143, q = 2)|2 = |A0 |2 . (19)

Because there are four inputs inherent in the above-
mentioned black box, Eq.(19) allow us to consider various
regimes of operation,i.e. four different possible combina-
tions relative to the input amplitudes.

The first regime will be realized, when the only one in-
put amplitude, for instance,Ai is equal to unity(Ai = 1),
while the three remaining input amplitudes are equal to

zero (Aj,k,l = 0). The second one is in operation, when
(Ai,j = 1), and(Ak,l = 0). The third regime will be with
andAi,j,k = 1, andAl = 0, finally, the fourth possibility ex-
ists withAi,j,k,l = 1. Here,k 6= i 6= j, j 6= l 6= i, j 6= k 6= l
andi = j = k = l = 0, 1, 2, 3.

Now we propose to apply the obtained relations to the
field of digital circuits. Digital logic circuits are usually made
up of combinational elements such as NAND and NOR logic
gates and memory elements, which might be single bit mem-
ory elements such as discrete flip-flops [9,10], and here we
meet the medium-scale integration (MSI) circuit that contains
storage cells within it, which is, by definition, a sequential
circuit. These MSI circuits are classified in one of three cat-
egories: registers, counters, or random-access memory. We
suggest applying a four-order light scattering in single crystal
to design a 4-bit digital register [11-13], see Fig. 4. Of course,
to manifest optical bistability any digital device should in-
clude a feedback, but here for the sake of simplicity we will
leave aside the problem of arranging an all-optical feedback.

A circuit with flip-flops is considered a sequential cir-
cuit, even in the absence of combinational gates. Circuits
that include flip-flops are usually classified by the function
they perform, rather than the name of the sequential circuit.
Two examples of such sequential circuits are: registers and
counters. Binary information is stored in digital systems, in
devices such as flip-flops. Each cell can store 1 bit of data.
The content or state of the cell can be changed from 1 to 0
or from 0 to 1 by the signals on its inputs, while the content
of a cell is determined by sensing its outputs. A collection
of such storage cells is called a register. The number of bits
in the most often manipulated data unit in the system deter-
mines the word size of the system. Common word sizes are
powers of two; such as 4, 8, 16 or 32 bits. An n-bit regis-
ter is a group of n flip-flops and is capable of storing n-bits.
In addition to flip-flops, a register may have combinational
gates that control when and how new information is trans-
ferred into the register [9,10]. An all-optical version of the
device under proposal is shown in Fig.5, then the data stream
from the channelA0 (dotted line) is switched into the out-
putC3 , the data stream from the channelA1 (dashed line) is
switched into the outputC2, and so on. The device, presented
in Fig. 5, was simulated using the Workbench 4.0, which is
a simulation program for testing both analog and digital cir-
cuits. Table I indicates the results of such a simulation,i.e.
all the possible 4-input combinations for this device. Judg-
ing from the presented truth table, the proposed device repre-
sents a 4-bit digital register, which is capable of loading 4-bit
binary words. Moreover, this device realizes the functional
scheme displayed in Fig. 4.

To illustrate the principles of operation for such an all-
optical 4-bit register we can select a pair of combinations of
the input signals presented in Table I. For example, if we take
the rows 11 and 12 from Table I they give us the schemes of
the algorithmic realizations shown in Fig. 6.
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FIGURE 2. Plots of the intensities of light waves versus the normalized lengthqnx of interaction with a four order light scattering: (a)
A0 = 1, A1 = A2 = A3 =0, (b) A1 = 1, A0 = A2 = A3 = 0; the dotted line are for|C0 (x)|2 order, the dashed line is for|C1 (x)|2
order; the dot-dashed line is for|C2 (x)|2 order, the solid line is for|C3 (x)|2 order.
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FIGURE 3. Plots of the intensities of light waves versus the normalized lengthqnx of interaction with a four order light scattering: (a)
A2 = 1, A0 = A1 = A2 = 0, (b) A3 = 1, A0 = A1 = A2 = 0; the dotted line are for|C0 (x)|2 order, the dashed line is for|C1 (x)|2
order; the dot-dashed line is for|C2 (x)|2 order, the solid line is for|C3 (x)|2 order.
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TABLE I. An all-optical realization of the truth table for a 4-bit register via a four-order light scattering, see Fig. 5.

Inputs Outputs

|A0 |2 |A1 |2 |A2 |2 |A3 |2 |C3 (x)|2 |C2 (x)|2 |C1 (x)|2 |C0 (x)|2
0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0

0 0 1 1 0 0 1 1

0 1 0 0 0 1 0 0

0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0

0 1 1 1 0 1 1 1

1 0 0 0 1 0 0 0

1 0 0 1 1 0 0 1

1 0 1 0 1 0 1 0

1 0 1 1 1 0 1 1

1 1 0 0 1 1 0 0

1 1 0 1 1 1 0 1

1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1

FIGURE 4. Functional scheme of a 4-bit digital register.

FIGURE 5. An all-optical version of a 4-bit digital register.

FIGURE 6. Optical schemes of algorithmic realizations for all-
optical registering via a four-order light scattering in a single crys-
tal. The dotted lines represent the data stream for the transmis-
sion A2

0 → |C3|2, the dot-dashed lines are for the transmission
A2

2 → |C1|2, and the solid line is for the transmissionA2
3 → |C0|2:

a) the row 11, b) the row 12 in Table I.
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5. Conclusions

The possibility of applying the scheme of a four-order light
scattering to an all-optical switching has been examined. For
this purpose, an exact analytical solution describing this phe-
nomenon in uniaxial single crystals has been developed, ana-
lyzed, and numerically simulated. The results involve an all-
optical 4-bit digital register, which has been algorithmically
estimated. The above-mentioned 4-bit digital register makes

it possible to provide an all-optical switching at the efficiency
of close to 100% together with a high speed of operation.
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