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Schrödinger–Pauli equation for spin-3/2 particles
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A non-relativistic equation for spin-3/2 particles is proposed and the gyromagnetic ratio for charged spin-3/2 particles is determined.
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1. Introduction

In the quantum-mechanical description of particles, there
are various, relativistic or non-relativistic wave equations
whose form depends on the spin of the particles. The usual
Schr̈odinger equation applies to the spin-0 particles in the
non-relativistic domain, while the Klein–Gordon equation
is the relativistic equation appropriate for spin-0 particles.
The spin-1/2 particles are governed by the relativistic Dirac
equation which, in the non-relativistic limit, leads to the
Schr̈odinger–Pauli equation (see,e.g., Refs. 1–3). In the case
of particles with spin 1 or higher, only relativistic equations
are usually considered (see,e.g., Ref. 4).

A charged particle with non-zero spin couples to an ex-
ternal magnetic field as if, in addition to its electric charge,
it had a magnetic dipole moment. In the case of a spin-1/2
charged particle, the relation between the magnitudes of the
magnetic dipole moment and of the intrinsic angular momen-
tum given by the Dirac or the Schrödinger–Pauli equation
does not coincide with that of a uniformly charged rotating
body given by classical physics, but somewhat surprisingly it
does coincide with that of a rotating charged black hole in the
Einstein–Maxwell theory (see,e.g., Refs. 5, 6).

In this paper we propose a non-relativistic wave equa-
tion for spin-3/2 particles directly by analogy with the
Schr̈odinger–Pauli equation, to obtain the gyromagnetic ratio
of a charged spin-3/2 particle. We find that the relation be-
tween the greatest eigenvalue of the magnetic dipole moment,
and the charge to mass ratio has a common value for spin-3/2
and spin-1/2 particles. In the relativistic case, there exist sev-
eral acceptable wave equations for spin-3/2 fields (see,e.g.,
Ref. 7 and the references cited therein), but we are not study-
ing their non-relativistic limits.

In Sec. 2 the Schrödinger–Pauli equation for spin-1/2 par-
ticles is written making use of the Pauli matrices and of the
two-component spinor notation which is employed in Sec. 3

to write the proposed equation for spin-3/2 particles. The no-
tation and conventions used throughout this paper are sum-
marized in Sec. 2; further details can be found in Refs. 8, 9.

2. Spin-1/2 particles

The usual Schr̈odinger equation for a spin-0 particle of mass
M in a potentialV (r),

− ~2

2M
∇2ψ + V (r)ψ = i~

∂ψ

∂t
, (1)

can be obtained from the classical Hamiltonian
H = p2/2M + V , using the fact that the momentum op-
erator in the coordinate representation is given by−i~∇. In
the case of a spin-1/2 particle, the wave function is not a
complex-valued function but atwo-component spinor

ψ(r, t) =
(

ψ1(r, t)
ψ2(r, t)

)
, (2)

which under a rotation through an angleα about the axis de-
fined by a unit vectorn transforms into (see,e.g., Refs. 10, 9)

ψ′ =
(
cos 1

2α I − i sin 1
2αn · σ)

ψ, (3)

whereI is the identity2 × 2 matrix andσ = (σ1, σ2, σ3) is
formed by the Pauli matrices

σ1 =
(

0 1
1 0

)
,

σ2 =
(

0 −i
i 0

)
,

σ3 =
(

1 0
0 −1

)
. (4)

Thus, for an infinitesimal rotation,

ψ′ ' ψ − iα 1
2n · σ ψ,
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which means thatn · S = (1/2)~n · σ is the operator cor-
responding to the component of the spin angular momentum
operator alongn.

The Pauli matrices satisfy

σiσj = δijI + iεijkσk, (5)

where εijk is totally antisymmetric with ε123 = 1, i,
j, . . . = 1, 2, 3, and there is summation over repeatedindices.
Since the entries of the Pauli matrices are constant, making
use of Eq. (5),

(σ·∇)2 = σi
∂

∂xi
σj

∂

∂xj
= σiσj

∂

∂xi

∂

∂xj
=

( ∇2 0
0 ∇2

)
,

where thexi are Cartesian coordinates; therefore, the equa-
tion

− ~2

2M
(σ · ∇)2ψ + V (r)ψ = i~

∂ψ

∂t
(6)

for the two-component spinor (2) implies that each compo-
nent ofψ (ψ1 andψ2) satisfies the Schrödinger equation (1),
and conversely. However, when there is a magnetic field
present this equivalence disappears and Eq. (6) leads to a cou-
pling between the two components of the spinorψ.

The standard procedure to take into account the interac-
tion of a particle of electric chargeq with an electromagnetic
field consists in replacing the partial derivatives∂/∂xi and
∂/∂t by ∂/∂xi− iqAi/(~c) and∂/∂t+ iqφ/~, respectively,
whereA = (A1, A2, A3), andφ are potentials of the electro-
magnetic field. In this manner, for a spin-0 charged particle,
from Eq. (1) one obtains (see,e.g., Ref. 10)

− ~2

2M

[
∇2ψ−2iq

~c
A · ∇ψ− iq

~c
(∇ ·A) ψ

−
( q

~c

)2

A2ψ

]
+V (r)ψ+qφψ = i~

∂ψ

∂t
(7)

and, similarly, making use of Eqs. (5), Eq. (6) yields

− ~2

2M

[
∇2ψ−2iq

~c
A · ∇ψ− iq

~c
(∇ ·A)ψ−

( q

~c

)2

A2ψ

+
q

~c
B · σψ

]
+V (r)ψ+qφψ = i~

∂ψ

∂t
. (8)

WhenB = 0, Eq. (8) reduces to two independent equations
of the form (7), one for each component of the spinorψ.
However, whenB 6= 0, the components ofψ are coupled
through the term

−B · q

Mc

1
2
~σψ.

Recalling that the energy of a magnetic dipole momentµ in a
magnetic fieldB is equal to−µ ·B, it follows that a charged
spin-1/2 particle obeying Eq. (8)behavesas if it had a mag-
netic dipole moment represented by the operator

µ =
q

Mc

1
2
~σ =

q

Mc
S. (9)

(By contrast with the electric charge, which is a “c-number”,
the magnetic dipole moment associated with the particle is an
operator.) Equation (9) shows that the ratio of the magnetic
dipole moment to the intrinsic angular momentum is equal to

q

Mc
. (10)

Before considering an analog of Eq. (6) applicable to
spin-3/2 particles, it will be convenient to write Eq. (6) mak-
ing use of the two-component spinor notation that will be em-
ployed in the treatment of spin-3/2 particles (see also Refs. 8
and 9).

The entries of the Pauli matrices (4) will be denoted by
σi

A
B (A,B, . . . = 1, 2), so thatσi

A
B stands for the entry in

theA-th row andB-th column of the matrixσi. The spinor
indices, such as those of the spinor (2), and of the Pauli ma-
trices, will be lowered or raised following the convention

φA = εABφB , φA = φBεBA, (11)

where

(εAB) ≡
(

0 1
−1 0

)
≡ (εAB). (12)

(Thus,φ1 = φ2, φ2 = −φ1.) Hence,εA
B = δA

B and

φAψA = εABφBψA = −φBεBAψA = −φBψB

= −φAψA. (13)

Any tensor with Cartesian componentstij···k has aspinor
equivalentdefined by

tABCD···MN ≡ 1√
2
σi

AB
1√
2
σj

CD · · ·

× 1√
2
σk

MN tij···k, (14)

where, following the conventions stated above,
σiAB = εACσi

C
B . (Since we are considering here Cartesian

coordinates only, the tensor indices are lowered or raised by
means of the metric tensorδij and its inverseδij ; hence,
σiAB = σi

AB .) An explicit computation shows that

σiAB = σiBA. (15)

Furthermore, since the Pauli matrices have a vanishing
trace, from Eq. (5) we obtaintr (σiσj) = 2δij , i.e.,
σi

A
Bσj

B
A = 2δij or, equivalently [see Eq. (13)]

σi
ABσjAB = −2δij . (16)

Hence, from Eqs. (14) and (16) we find that, iftAB andsAB

are the spinor equivalents ofti andsi, respectively

tABsAB = −tisi. (17)
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According to the definition (14), we shall write

∂AB =
1√
2
σi

AB∂i, (18)

where∂i ≡ ∂/∂xi. Thus, the Schr̈odinger–Pauli equation (6)
can be expressed as

− ~
2

M
∂A

C∂C
BψB + V (r)ψA = i~

∂ψA

∂t
. (19)

We can see that Eq. (19) is equivalent to two decoupled
Schr̈odinger equations using the fact that ifφAB = −φBA,
then

φAB = 1
2φR

RεAB . (20)

Indeed, any2× 2 antisymmetric matrix must be proportional
to (εAB) [see Eq. (12)] and, as can be readily seen,

φAB = φ12 εAB =
1
2
(φ12 − φ21) εAB

=
1
2
(φ2

2 + φ1
1) εAB =

1
2
φR

R εAB .

Owing to Eq. (13), and the fact that∂AB = ∂BA [see
Eqs. (15) and (18)]

∂AC∂C
B=−∂A

C∂CB=−∂CB∂A
C=−∂BC∂C

A,

hence [see Eqs. (20), (13), and (17)],

∂AC∂C
B = 1

2εAB∂R
C∂C

R = − 1
2εAB∂RC∂RC

= 1
2εAB∇2,

which is equivalent to

∂A
C∂C

B = 1
2δA

B∇2, (21)

so that, in effect, Eq. (19) amounts to

− ~2

2M
∇2ψA + V (r)ψA = i~

∂ψA

∂t
.

When there is an electromagnetic field present, we
replace ∂A

B by ∂A
B − (iq/~c)AA

B and ∂/∂t by
∂/∂t + (iq/~)φ in Eq. (19), and we obtain

− ~
2

M

(
∂A

C − iq

~c
AA

C

) (
∂C

B − iq

~c
AC

B

)
ψB

+V (r)ψA + qφψA = i~
∂ψA

∂t
,

which is equivalent to

− ~
2

M

[
∂A

C∂C
BψB− iq

~c
(∂A

CAC
B)ψB

− iq

~c
AC

B∂A
CψB− iq

~c
AA

C∂C
BψB

−
( q

~c

)2

AA
CAC

BψB

]
+V (r)ψA+qφψA

= i~
∂ψA

∂t
. (22)

In order to reduce this last expression we begin by noticing
that [see Eq. (20)]

∂ACAC
B = 1

2 (∂ACAC
B + ∂BCAC

A)

+ 1
2 (∂ACAC

B − ∂BCAC
A)

= ∂(A|C|AC
B) + εAB∂R

CAC
R,

where the parenthesis denotes symmetrization on the indices
enclosed (e.g., M(AB) = (1/2)(MAB + MBA)), and the in-
dices between bars are excluded from the symmetrization.
The first term in the right-hand side of the last equality is the
spinor equivalent of(i/

√
2)∇ ×A, which follows from the

fact that the spinor equivalent of the Levi-Civita symbolεijk

is εABCDEG = (i/
√

2)(εACεBEεDG +εBDεAGεCE) [8,9],
while the last term is equal to(1/2)εAB∇ ·A [see Eqs. (13)
and (17)]. Making use of Eqs. (13) and (20) we find that

AC
B∂AC + AAC∂C

B = AC
B∂AC −AC

A∂BC

= εBAACR∂RC = εABA · ∇.

Finally, by analogy with Eq. (21),AA
CAC

B = (1/2)δA
BA2.

Thus, Eq. (22) can be also be written as

− ~2

2M

[
∇2ψA +

√
2 q

~c
BA

BψB − iq

~c
(∇ ·A)ψA

−2iq

~c
A · ∇ψA −

( q

~c

)2

A2ψA

]
+ V (r)ψA

+qφ ψA = i~
∂ψA

∂t
, (23)

whereBAB denotes the spinor equivalent ofB, and one can
verify that this expression coincides with Eq. (8).

3. Spin-3/2 particles

A spin-3/2 particle is described by a totally symmetric three-
index spinor field,ψABC [see Eq. (25) below], which under
rotations transforms according to

ψ′ABC = UA
RUB

SUC
T ψRST ,

where (UA
B) is the SU(2) matrix appearing in Eq. (3),

namely

UA
B = cos 1

2α δA
B − i

√
2 sin 1

2α nA
B (24)

andnAB is the spinor equivalent of the unit vectorn. Hence,
for an infinitesimal rotation,

ψ′ABC '
(

δA
R −

iα√
2

nA
R

)(
δB
S − iα√

2
nB

S

)

×
(

δC
T −

iα√
2

nC
T

)
ψRST

' ψABC − 3i√
2

α n(A
RψBC)R,
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which implies that the operatorn · S given by

(n · Sψ)ABC =
3~√

2
n(A

RψBC)R (25)

corresponds to the component of the spin alongn.

By analogy with the Schrödinger–Pauli equation (19), for
a spin-3/2 particle we propose the equation

− ~
2

M
∂(A

R∂|RSψS|BC) + V (r)ψABC = i~
∂ψABC

∂t
(26)

which, owing to Eq. (21), means that, in the absence of
an electromagnetic field, each component ofψABC satis-
fies the Schr̈odinger equation (1). (It should be noticed that,
even in the absence of an electromagnetic field, the com-
ponents of the spinor fieldψABC may be coupled among
themselves if a non-Cartesian basis is employed, in which
case the partial derivatives appearing in Eq. (26) have to
be replaced by covariant derivatives [8, 9].) Instead of the
symmetrized second derivatives∂(A

R∂|RSψS|BC) appear-
ing in Eq. (26), one could also consider∂(A

Rχ|R|BC), with
χRBC ≡ ∂(R

Sψ|S|BC); however, in the latter case, each
componentψABC would not satisfy the Schrödinger equa-
tion.

By combining Eq. (26) and its complex conjugate one ob-
tains the continuity equation

∂

∂t
(ψ̂ABCψABC) +

~
iM

∂RS(ψSBC∂ARψ̂ABC

+ ψ̂SBC∂ARψABC) = 0,

whereψ̂ABC ≡ ψABC [9]; hence,ψ̂ABCψABC is real and
positive.

As in the case of the relativistic description of spin-3/2
particles, instead of three-index spinors, one can employ
wave functions with one spinor index and one tensor in-
dex [4]. In the present case, we can define

ψiA ≡ − 1√
2
σi

BCψABC ,

then the symmetry ofψABC in its three indices is expressed
by the conditionσiABψiA = 0.

When there is an electromagnetic field present, we
replace ∂A

B by ∂A
B − (iq/~c)AA

B and ∂/∂t by
∂/∂t + (iq/~)φ, in Eq. (26), which yields

− ~
2

M

(
∂(A

R− iq

~c
A(A

R

)(
∂|RS− iq

~c
A|RS

)
ψS|BC)

+V (r)ψABC+qφψABC = i~
∂ψABC

∂t
. (27)

Following the same steps as in Eq. (22) we obtain

− ~2

2M

[
∇2ψABC +

√
2 q

~c
B(A

SψBC)S

− iq

~c
(∇ ·A)ψABC − 2iq

~c
A · ∇ψABC

−
( q

~c

)2

A2ψABC

]
+ V (r)ψABC

+qφψABC = i~
∂ψABC

∂t
. (28)

Thus, taking into account Eq. (25), one concludes that in the
present case there is an interaction with the magnetic field of
the form−µ ·B, with

µ =
q

3Mc
S (29)

[cf. Eq. (9)] that corresponds to the gyromagnetic ratio

q

3Mc
. (30)

Owing to the difference between the gyromagnetic ratios (10)
and (30), in both cases, the greatest eigenvalue of the operator
µ is given by

µmax =
|q|
Mc

~
2
. (31)

Equations (19) and (26) can be readily generalized for any
value of the spin. A spin-s particle would be represented by
a totally symmetric 2s-index spinor field,ψAB···L, satisfying

− ~
2

M
∂(A

R∂|RSψS|B···L) + V (r)ψAB···L

= i~
∂ψAB···L

∂t
(32)

and if the particle has electric chargeq, the gyromagnetic ra-
tio would be given by

q

2sMc
.

As pointed out above, under the rotation corresponding
to the SU(2) matrix(UA

B), the Cartesian components of a
spinorψAB...L transform according to

ψ′AB...L = UA
P UB

Q · · ·UL
RψPQ...R.

Since each term in Eq. (32) transforms in the same man-
ner asψAB...L, the validity of Eq. (32) in a given Cartesian
frame implies its validity in any Cartesian frame obtained
from the original one by means of a rotation. This can be
seen as a consequence of the fact that a contraction of the
form ∂A

RψRB...L transforms as a2s-index spinor since

URMUR
N = det(UA

B) εNM = εNM
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[see Eq. (20)] and therefore

∂′ARψ′RB...L

= (UA
P URM∂PM )UR

NUB
Q · · ·UL

SψNQ...S

= URMUR
NUA

P UB
Q · · ·UL

S∂PMψNQ...S

= εNMUA
P UB

Q · · ·UL
S∂PMψNQ...S

= UA
P UB

Q · · ·UL
S∂P

NψNQ...S .

On the other hand, under the Galilean transformation

r′ = r− vt, t′ = t,

wherev is constant, using the chain rule, one finds that

∂

∂x′i
=

∂

∂xi
,

∂

∂t′
= vi ∂

∂xi
+

∂

∂t′

then, assuming that

ψ′AB...L = ψAB...L exp
(
−i

mv · r
~

+ i
mv2t

2~

)
,

a straightforward computation, making use of Eq. (21),
shows that Eq. (32) is form-invariant under Galilean trans-
formations.

4. Concluding remarks

The preceding equations show that a genuine spin-3/2
charged particle would behave in a different way than an as-
sembly of three charged spin-1/2 particles in a spin-3/2 state,
since in the latter case one would have a gyromagnetic ratio
equal to that of a single spin-1/2 particle, which differs from
(30).

The origin and physical significance of the coincidence
of the gyromagnetic ratios of a spin-1/2 charged particle, and
of a rotating charged black hole, mentioned in the Introduc-
tion are not evident; and the fact that the gyromagnetic ra-
tio derived from Eq. (32) depends on the spin of the particle
suggests that this coincidence is not a straightforward conse-
quence of some basic principle.
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