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A non-relativistic equation for spin-3/2 particles is proposed and the gyromagnetic ratio for charged spin-3/2 particles is determined.
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1. Introduction to write the proposed equation for spin-3/2 particles. The no-
tation and conventions used throughout this paper are sum-
In the quantum-mechanical description of particles, thergnarized in Sec. 2; further details can be found in Refs. 8, 9.
are various, relativistic or non-relativistic wave equations
whose form depends on the spin of the particles. The usuai
Schibdinger equation applies to the spin-0 particles in the™
non-relativistic domain, while the Klein—Gordon equation The ysual Sclirdinger equation for a spin-0 particle of mass
is the relativistic equation appropriate for spin-0 particles.y in a potentiall/ (r)
The spin-1/2 particles are governed by the relativistic Dirac
equation which, in the non-relativistic limit, leads to the —LQV%-FV(PW _ maj 1)
Schiddinger—Pauli equation (semg, Refs. 1-3). In the case 2M ot’
of particles with spin 1 or higher, only relativistic equationscan be obtained from the classical Hamiltonian
are usually considered (seeg, Ref. 4). H = p2/2M + V, using the fact that the momentum op-
A charged particle with non-zero spin couples to an ex-erator in the coordinate representation is given-igVv. In
ternal magnetic field as if, in addition to its electric charge,the case of a spin-1/2 particle, the wave function is not a
it had a magnetic dipole moment. In the case of a spin-1/Zomplex-valued function buttavo-component spinor
charged particle, the relation between the magnitudes of the 1
charged pa ) _(Mnt))
gnetic dipole moment and of the intrinsic angular momen P(r,t) = 5 , 2
tum given by the Dirac or the Sdbdinger—Pauli equation ¥ (r, )
does not coincide with that of a uniformly charged rotatingwhich under a rotation through an anglebout the axis de-
body given by classical physics, but somewhat surprisingly ifined by a unit vecton transforms into (see,.g, Refs. 10, 9)
does coincide with that of a rotating charged black hole in the , L o
Einstein—-Maxwell theory (see.g, Refs. 5, 6). ¥ = (cosgal —isingan- o), ®)
In this paper we propose a non-relativistic wave equayheref is the identity2 x 2 matrix ande = (01, o2, 073) is
tion for spin-3/2 particles directly by analogy with the formed by the Pauli matrices
Schibdinger—Pauli equation, to obtain the gyromagnetic ratio

Spin-1/2 particles

of a charged spin-3/2 particle. We find that the relation be- oy = ( 0 1 )
tween the greatest eigenvalue of the magnetic dipole moment, o)’
and the charge to mass ratio has a common value for spin-3/2 0

and spin-1/2 particles. In the relativistic case, there exist sev- o2 = < i )

—1
eral acceptable wave equations for spin-3/2 fields (seg, 0
Ref. 7 and the references cited therein), but we are not study- oo — ( 1 0 )
ing their non-relativistic limits. 37Vo -1

In Sec. 2 the Sclidinger—Pauli equation for spin-1/2 par- Thus, for an infinitesimal rotation,
ticles is written making use of the Pauli matrices and of the
two-component spinor notation which is employed in Sec. 3 P~ —ia %n SO,

)

(4)
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which means thah - S = (1/2)4n - o is the operator cor- (By contrast with the electric charge, which is a “c-number”,
responding to the component of the spin angular momenturthe magnetic dipole moment associated with the particle is an

operator along. operator.) Equation (9) shows that the ratio of the magnetic
The Pauli matrices satisfy dipole moment to the intrinsic angular momentum is equal to
0i0; = 841 + iei0m, (5) a4 (10)
Mc
where ¢;;;, is totally antisymmetric with 123 = 1,7, o )
j,...=1,2,3, and there is summation over repeatedindices. Before considering an analog of Eq. (6) applicable to
Since the entries of the Pauli matrices are constant, makingPin-3/2 particles, it will be convenient to write Eq. (6) mak-
use of Eq. (5), ing use of the two-component spinor notation that will be em-
5 5 , ployed in the treatment of spin-3/2 particles (see also Refs. 8
0 0
(0V) =0ig—0j5— =010 -7~ = ( v 02 )’ and 9). . , . :
Ox; 7 O0x; Ox; Ox; 0 Vv The entries of the Pauli matrices (4) will be denoted by

A _ A H
where ther; are Cartesian coordinates; therefore, the equag’ 5 (4, B,... = 1,2), so thai;"  stands for the entry in

the A-th row andB-th column of the matrix;. The spinor

i
on ) indices, such as those of the spinor (2), and of the Pauli ma-
_L 2 _ % trices, will be lowered or raised following the convention
Wi (o - V)Y +V(r)yp =ih 5t (6)
A A
for the two-component spinor (2) implies that each compo- ¢4 = capd”, ¢ = ¢pe”l, (11)

nent ofy (1! andwy?) satisfies the Scbdinger equation (1),

and conversely. However, when there is a magnetic field"Nere

present this equivalence disappears and Eq. (6) leads to a cou- 0 1 B

pling between the two components of the spittor (caB) = ( 1 0 ) = (7). (12)
The standard procedure to take into account the interac-

tion of a particle of electric chargewith an electromagnetic (Thys,¢; = ¢2, ¢, = —¢'.) Henceg4 5 = 54 and

field consists in replacing the partial derivatives0z,; and

/0t by 0/0x; —iqA;/(kc) and8/8t+iq¢_/h, respectively, dath? = eapdPuy?d = —pPepav? = —¢pPup
whereA = (A1, As, A3z), and¢ are potentials of the electro- A
magnetic field. In this manner, for a spin-0 charged particle, =—¢"a. (13)
from Eq. (1) one obtains (see.g, Ref. 10)
) Any tensor with Cartesian compones.., has aspinor
T le 2ig iq equivalentdefined by
2M [V v he A-VY hc(v A)Y ) )
2 0 tABCD..MN = —=0'ap—=0’cp -
) T L ¢ 2" e
he ot L
— . . X — k ti ik 14
and, similarly, making use of Eqgs. (5), Eq. (6) yields \/50 MNVij--k (14)
2 . .
7 [v%_QWA VY-V Ay (i)2A2¢ where, following the conventions stated above,
2M he he he oiap = cac0:C 5. (Since we are considering here Cartesian

q oY coordinates only, the tensor indices are lowered or raised by
B ‘”/’} +V(r)¢ta¢p = ih—-. (8)  means of the metric tensd; and its inverses”’; hence,

; , iaB = o' ap.) An explicit computation shows that
WhenB = 0, Eq. (8) reduces to two independent equations’ *Z ~ 7 45 ) P P

of the form (7), one for each component of the spiror
However, whenB # 0, the components of are coupled
through the term

0iAB — O{BA- (15)

Furthermore, since the Pauli matrices have a vanishing
trace, from Eq. (5) we obtainr (c,0;) = 206, i.e,
o4 po;B 4 = 26, or, equivalently [see Eq. (13)]

qg 1
-B.- - .
Mz
Recalling that the energy of a magnetic dipole momeit a
magnetic fieldB is equal to—u - B, it follows that a charged
spin-1/2 particle obeying Eqg. (®&ehavess if it had a mag-
netic dipole moment represented by the operator

O'iABO'jAB = —251‘]‘. (16)

Hence, from Eqgs. (14) and (16) we find that; ifs ands a5
are the spinor equivalents tfands;, respectively
= iiha = 7CS (9) tABSAB = 7ti8i. (17)
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According to the definition (14), we shall write In order to reduce this last expression we begin by noticing
1 that [see Eq. (20)]
Oa = —=0"aB0;, (18)
V2 Oac A g = 1(0ac A% + Opc A 4)

whered; = 9/9z*. Thus, the Sclidinger—Pauli equation (6)

L(040AC 5 — OpcAC
can be expressed as + 5(04cA” p — OcA™ 4)

oA = 0(a1c|A° By + €40 c AR,
——ﬁﬂﬁﬂw3+vuw ih (19) _ o o
ot where the parenthesis denotes symmetrization on the indices
We can see that Eq. (19) is equivalent to two decouple@nclosed€.q9, M apy = (1/2)(Map + Mp4)), and the in-
Schibdinger equations using the fact thavhifiz = —¢pa, dices between bars are excluded from the symmetrization.
then The first term in the right-hand side of the last equality is the
X
645 = 16" e ap. (20) spinor equivalent ofi//2)V x A, which follows from the

fact that the spinor equivalent of the Levi-Civita symbgl,

Indeed, any x 2 antisymmetric matrix must be proportional iscapcpee = (i/V2)(eaceprenc +eppeacecs) [8,9],
to (e4) [see Eq. (12)] and, as can be readily seen, while the last term is equal td /2)e 45V - A [see Egs. (13)
and (17)]. Making use of Egs. (13) and (20) we find that

1
= £ = - — £
0B = P12€48 2 (612 = ¢21) eap ACB(?AC + AAcacB = ACBBAC — ACA83C

1 1
= §(¢22 +¢'1)ean = §¢RR EAB- = epaA“ROrc = eapA - V.
Owing to Eq. (13), and the fact thauz = Op4 [see  Finally, by analogy with Eq. (21)44c A 5 = (1/2)6 5 A2
Egs. (15) and (18)] Thus, Eq. (22) can be also be written as
0400 p=—04°0cp=—00p0s“=—0pc0° 4, _% [Vzw L V24 \fq BA B — %(v CA)A
hence [see Egs. (20), (13), and (17)], ¢
0ac0°p = 3e4p0" 0" R = —3240"Orc —%A Vi <i)2 A2¢A} FV(r)pA
o 9 c ke
- 55143V ) A
A 1/1
which is equivalent to +qpv” =ih——, (23)
0400 = %5§V2, (21) whereB,p denotes the spinor equwalentBt and one can

verify that this expression coincides with Eq. (8).
so that, in effect, Eq. (19) amounts to fy P a- 8)

2 A , :
s e :i;ia;/’ . 3. Spin-3/2 particles
t
When there is an electromagnetic field present, weA Spin-3/2 particle is described by a totally symmetric three-
replace 045 by 845 — (ig/hc)A%p and 9/0t by  index spinor fieldy*2¢ [see Eq. (25) below], which under

d/0t + (iq/Rh)¢ in EQ. (19), and we obtain rotations transforms according to
_ﬁ (8140 _ Z.qAAC) <8CB o *AC > ’(/}B wlABC UA UBSUC ¢RST
M he he
¢ N where (U# ) is the SU(2) matrix appearing in Eq. (3),
A A_n oY namely
+V()® +qp” =i En L o o
which is equivalent to U'p =cosgadp —iv2singansp (24)

e O 5 andn 4 g is the spinor equivalent of the unit vectar Hence,
i {8 c0” Y —%(8 cA%B)Y for an infinitesimal rotation,
{ i IABC o nA o p
_%A0B8A0¢B_%AAcacBwB ) <§R \/5 > <5S — ﬁn S)
2 Q0
- (%) AAcACB%//B} +V (r)p gt x (5761 V2 nCT> i
wA ABC _ 3l (A4 BO)R
8t (22) > NG an'“ gy )
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which implies that the operater - S given by Following the same steps as in Eq. (22) we obtain
3h 2, ABC V24 4 BC)S
(n-§9)*7¢ = ZEntgypPOn (25) ~517 [V pAPC 4 2 B gy PO
. _iq ABc _ 2iq ABC
corresponds to the component of the spin alang hC(V “A)Y e A-Vy
By analogy with the Sclidinger—Pauli equation (19), for 9
a spin-3/2 particle we propose the equation — (%) AQwABC] + V (x)ypABC
2 ABC ] ) ABC
o R gy SIPO) v (e = i (26) oyt =in? . (29)

Thus, taking into account Eq. (25), one concludes that in the
Bresent case there is an interaction with the magnetic field of
the form—p - B, with

which, owing to Eg. (21), means that, in the absence o
an electromagnetic field, each componentydf®¢ satis-
fies the Schidinger equation (1). (It should be noticed that,
even in the absence of an electromagnetic field, the com- p= q (29)
ponents of the spinor fielgp“2¢ may be coupled among 3Mc

themselves if a non-Cartesian basis is employed, in WhiC|’[le' Eq. (9)] that corresponds to the gyromagnetic ratio
case the partial derivatives appearing in Eqg. (26) have to

be replaced by covariant derivatives [8, 9].) Instead of the q_ (30)
symmetrized second derivativés“ R0/ 34/515C¢) appear- 3Mc

ing in Eq. (26), one could also considg* z x5S with
YBBC = 9 ISIBC): however, in the latter case, each
component)42¢ would not satisfy the Scbdinger equa-

Owing to the difference between the gyromagnetic ratios (10)
and (30), in both cases, the greatest eigenvalue of the operator

’ w is given by
tion.
By combining Eq. (26) and its complex conjugate one ob- i = M ﬁ (31)
tains the continuity equation Mc?2
Equations (19) and (26) can be readily generalized for any
Q@ABC(/)ABC) + iaRS(wSBCaAR{/J\ABC value of the spin. A spin-particle would be represented by
ot iMoo a totally symmetric 2s-index spinor fielg/AZ L, satisfying
+ SBCOARY 4 pe) = 0, 52
A A 7M8(AR3|R51/}S|BWL) +V(I‘)1/JAB”'L
wherey spc = »ABC [9]; hence,pc?BC is real and DYAB-L
positive. =1ih (32)

ot
As in the case of the relativistic description of spin-3/2 ) ) ) )
particles, instead of three-index spinors, one can emplo?nd if the particle has electric chargethe gyromagnetic ra-
wave functions with one spinor index and one tensor in-i0 Would be given by

dex [4]. In the present case, we can define q
2sMec’
1
Yia = —ﬁochwABc, As pointed out above, under the rotation corresponding

to the SU(2) matriXU“ ), the Cartesian components of a

o o spinoryA 8L transform according to
then the symmetry of 4 ¢ in its three indices is expressed

by the conditionr*4 54, 4 = 0. YABL — UARUB, .. UL pypP R,
When there is an electromagnetic field present, we
replace 945 by 945 — (ig/hc)A*p and /0t by Since each term in Eq. (32) transforms in the same man-
8/0t + (iq/h)e, in Eq. (26), which yields ner asyy4 581 the validity of Eq. (32) in a given Cartesian
frame implies its validity in any Cartesian frame obtained

52 iq iq from the original one by means of a rotation. This can be
—F <8(ARFLA(AR) (8'RSEARS> SIBC) seen as a consequence of the fact that a contraction of the
¢ ¢ form 04 py 8L transforms as as-index spinor since
a,(/}ABC
ABC ABC __
HV ()™ +agd - th. (@7) UrmUR N = det(U*p) enys = enm
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[see Eq. (20)] and therefore

§A o RB-L
= (U2 pUrp®" MY URNUB - UL gpNO5
= UpnURNUApUB - UF @M N Q-5
— gNMUAPUBQ . ULSaPMdJNQmS

_ UAPUBQ . ULsaPN’l,Z)NQMS.

On the other hand, under the Galilean transformation

r =r—vt, t=t,

wherev is constant, using the chain rule, one finds that

0 0 0 ; 0 0
= v + =

or'i  or’ o~ " ar ot

then, assuming that

—_

2
JAB.., _  AB...L _.mv-r .mutt
P = exp( 1 n +1 o ),

G.F. TORRES DEL CASTILLO AND J. VEAZQUEZ CASTRO

a straightforward computation, making use of Eq. (21),
shows that Eq. (32) is form-invariant under Galilean trans-
formations.

4. Concluding remarks

The preceding equations show that a genuine spin-3/2
charged particle would behave in a different way than an as-
sembly of three charged spin-1/2 particles in a spin-3/2 state,
since in the latter case one would have a gyromagnetic ratio
equal to that of a single spin-1/2 particle, which differs from
(30).

The origin and physical significance of the coincidence
of the gyromagnetic ratios of a spin-1/2 charged particle, and
of a rotating charged black hole, mentioned in the Introduc-
tion are not evident; and the fact that the gyromagnetic ra-
tio derived from Eg. (32) depends on the spin of the particle
suggests that this coincidence is not a straightforward conse-
guence of some basic principle.
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