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Possible cosmological implications in electrodynamics due to variations
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Astronomical observations are suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences
that these variations might induce on the electromagnetic field as a whole. We show that under these circumstances the electrodynamics in
vacuum could be described by two fields, the “standard” Maxwell’s field and a new scalar field. We provide a generalised Lorentz force
which can be used to test our results experimentally.
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Observaciones astronómicas sugieren que la constante de estructura fina presenta variaciones cosmológicas. En este artı́culo hacemos un
ańalisis sobre las consecuencias que estas variaciones posiblemente inducen en el campo electromagnético. Mostramos que bajo estas
circunstancias la electrodinámica del vaćıo puede ser descrita por dos campos, el campo “estándar” de Maxwell y un nuevo campo escalar.
Además, proponemos una fuerza de Lorentz generalizada que puede utilizarse para confirmar nuestros resultados de manera experimental.
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1. Introduction

Since the first half of the 20th century different re-
searchers [1–3] began to put forward the idea that the fine
structure constantα could present cosmological variations.
Today, recent observations of quasars have suggested [4–6]
that the fine structure constantα ≡ e2/~c might present vari-
ations with respect to cosmic time. Here,e represent the
electron charge,c the speed of light and~ Planck’s constant.
These observations imply that the fluctuations∆α/α of this
fundamental constant are given by

∆α

α
= −0.72± 0.18× 10−5, (1)

in the interval of redshiftsz given by0.5 < z < 3.5.
Because the constants~, e andc that defineα might vary

in different ways [7] so as to give the value given by Eq.(1),
one may assume that the electromagnetic fields and the elec-
tric charges are coupled in different forms that depend on
cosmic time. Since the electric charge could have variations
of cosmological origin, possibly the continuity equation no
longer holds and/or part of the electric charge is not generat-
ing electromagnetic field, or alternatively, it generates an ex-
tra electromagnetic field. In this letter we explore these pos-
sibilities and some of its immediate consequences on space–
time.

Previous research has been conducted on this topic. Most
notably the work by Bekenstein [8] and Chodos & De-

tweiler [9] had given in the past theoretical clues as to why
the fine structure constant might vary in time or position as
the universe expands. Bekenstein developed a complete anal-
ysis using the principle of least action. Chodos & Detweiler
analysedα variations using a five dimensional (4+1) space–
time based on ideas first proposed by Kaluza and Klein.

It is well known that one can decompose a vector field as
the sum of one solenoidal component plus a non–rotational
one (cf. Helmholtz decomposition theorem). A generali-
sation in terms of differential forms is given by the Hodge
decomposition theorem for Riemannian manifolds. Also, an
n–dimensional manifold can be foliated with submanifolds
of smaller dimensions. For the electromagnetic case that we
study in this letter, it is possible to foliate the space–time
(which a 3+1 Lorentzian metric) with 2–dimensional and
0–dimensional manifolds that “emerge” from vector fields
which represent the electric charge–current densities. It is
then natural to use the formalism of differential forms in or-
der to obtain a more general study of the problem through a
Hodge–like decomposition of the differential form that rep-
resents the electromagnetic charge–current distributions.

2. Electrodynamics

Let us take the 1–formJstd = ρstddx0 +
(
j(std)
k /c

)
dxk

representing the charge–current in the usual sense [10] with
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k = 1, 2, 3. Here the signature of the metric is given by
(−, +, +, +), ρstd is the charge density,j(std)

k are the com-
ponents of the current density,dxµ is a basis for the cotan-
gent space with coordinates (x0 = ct, x1, x2, x3) and greek
indices have values0, 1, 2, 3. Jstd satisfies Maxwell’s equa-
tions

dF = 0, δF = 4πJstd, (2)

which imply naturally the continuity equation

δJstd = 0. (3)

In the previous equationsF is a 2–form that builds up the
standard electromagnetic field and is given [10] by

F ≡ E1dx1 ∧ dx0 + E2dx2 ∧ dx0 + . . . + B3dx1 ∧ dx2.

E andB represent the electric and magnetic components of
the electromagnetic field.δ ≡? d? is the co–differential op-
erator and? is the Hodge star operator [10–13].

In a universe with varyingα, the continuity equation is
not necessarily valid. This can be interpreted as if a universal
“total charge–current” 1–formJe given by

Je ≡ Jstd + Jn + Jh, (4)

is associated to the “global electrodynamics” of the universe
at all cosmological times. In Eq. (4), the 1–formJe is such
that it accepts a Hodge–like decomposition (cf. Hodge de-
composition theorem in [12,13]). With this assumption, the
differential 1–formsJstd, Jn andJh are coexact, exact and
harmonic 1–forms respectively.

Equation (4) is a natural generalisation of the re-
sult expressed by Eq. (1). Indeed, Eq. (1) means that
α ≈ (

1− 0.72× 10−5
)
αtoday. If the total charge–currentJe

obeys a similar relation, that is

Je = (1 + η)Jstd, (5)

where η is a scalar 0–form, then it follows that
Jn + Jh = ηJstd. To simplify things it is possible to assume
thatη can be decomposed in to two additive terms,ηn andηh

such thatη = ηn + ηh. These terms satisfy

Jn = ηnJstd, and Jh = ηhJstd. (6)

From the previous considerations it follows that the
1–formJe does not satisfy a continuity–like equation when
ηn 6= 0.

3. Mathematical relations between fields

In order to analyse the electrodynamics imposed by the con-
ditions of the previous section, let us multiply Eq. (4) by4π
and substitute Eq. (2) and (6) on this to obtain

4πJe = δF + dM + 4πηhJstd, (7)

in which the scalar 0–formM is such that

dM = 4πηnJstd, and δM = 0. (8)

Note that Eq. (7) reduces to the standard Maxwell’s equa-
tions when there is no cosmological variation ofJe. That
is, whenηn = ηh = 0 and soJe = Jstd. In the general
case, when this condition is not valid, the electromagnetic
field is such that it is represented by two mathematical ob-
jects, the Maxwell 2–formF and the 0–formM . F satis-
fies Maxwell’s equations, Eq. (2), andM satisfies a set of
Maxwell’s-like equations given by Eq. (8). In other words,
the cosmic time variations ofJe imply that the electrodynam-
ics of space–time are given by two fields. One field turns out
to be the standard Maxwell 2–formF . The other is a scalar
field M introduced by the cosmological variations ofJe.

According to Eq.(7), the 0–formM satisfies the follow-
ing “Poisson’s” equation

∆M ≡ (δ + d)2 M =?{dηn ∧ d?F } . (9)

In other words, the scalar fieldM is produced by the changes
in the 2–form fieldF and the scalarηn.

We can also give an expression for Dirac’s equation.
From Eq.(7), using again a Hodge–like decomposition, it fol-
lows that we can introduce a 1–formA that represents the
electromagnetic potential given by

A = Astd + AM + Ah, (10)

whereAstd, AM , andAh are co–exact, exact and harmonic
1–forms respectively. In Eq. (10) we have added the 1–form
Ah for mathematical completeness, despite the fact that it is
usually discarded in standard physics. With this, and because
e = (1 + η)estd, whereestd is the standard charge of an elec-
tron, then Dirac’s equation takes the form

(
i /d− α

(1 + η) estd
/A

)
Ψ =

mc

~
1Ψ. (11)

Here i2 = −1, /d = γµ∂µ, m is the electron’s rest mass,
/A = γµAµ, Ψ is Dirac’s spinor and1 is the identity element
of the algebra generated by Dirac’s matricesγµ that satisfy
the following equation

γµγν + γνγµ = 2gµν 1,

wheregµν are the metric components assigned to space–time.

4. Discussion

The previous analysis was made under the assumption that
the variations of the 1–formJe are time dependent. However,
all the presentation is still valid if the variations are not only
functions that depend on time, but also functions that could
vary on space. That is, the variations can equally occur on
space and/or time and the coupling of the two fieldsF andM
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will still occur in the same form. More generally, the re-
sults obtained in the previous section are also valid if space–
time variations on the “fundamental” constants~, e andc, or
even [14]m occur.

It is intriguing that our daily experiments do not show
any evidence of the physical properties that the fieldM
might induce on space–time. However, there has been a
report [15,16] in which such a field produces longitudinal
electrodynamic waves. One can also think that the reason
for a non–observable fieldM happens because it vanishes
at our present epoch. This is the same as saying that we
live in a very peculiar place or time in the universe, some-
thing that is difficult to believe. On the other hand, one can
think that we have constructed our standard Maxwell elec-
trodynamics in such a way that the properties of the fieldM
do not affect any of our experiments. This is also difficult to
believe. Another possible way in which the fieldM might
had been missed by our experiments is if its strength is tiny.
For example, since Eq. (1) suggests thatη is a small quan-
tity, then it follows that the fieldM is weak. Indeed, when
η = 0 then ηh = −ηn. This result together with Eq. (6)
and combined with the properties ofJn andJh imply that
ηh = ηn = 0. Thus, the trivial solution of Eq. (8) occurs
whenη = 0 and givesM = 0 becauseM is not harmonic.
Whenη is a small quantity, one has to proceed slightly dif-
ferently. The Lorentz force can be naturally generalised as
dP /dτ = ∗F · ∗Je + MJe = (1 + η) (∗F · ∗Jstd + MJstd),
whereτ is the proper time andP is the 1–form momentum.

So, if η is small andM is not negligible then we would had
already observed the properties of the fieldM in our laborato-
ries. However, this Lorentz force can be used in experiments
to test the validity of our reasoning.

On the other hand, whenηn = 0, thenM = 0, and the
Lorentz force is given by

dP

dτ
= (1 + ηh) ∗F · ∗Jstd. (12)

This means that the standard Lorentz force is changed by a
factor(1+ηh) because the variations ofηh produce deviations
in the intensities of the electromagnetic interactions.

However, Eq. (12) can be written as

1
(1 + ηh)

dP

dτ
= ∗F · ∗Jstd. (13)

This equation means that the electromagnetic forces are pro-
ducing deviations from the standard dynamics, sinceηh 6= 0
associates changes on the momentum which are not Newto-
nian.

The duality presented in Eqs.(12)-(13) is similar to that
presented by some researchers [17–20] for the gravitational
forces in order to explain the rotation curves of galaxies, and
other astronomical observations. These theories, the so called
Modified Newtonian Dynamics (MOND) theories, suggest
that our standard ideas of dynamics should be changed. For
the electromagnetic case considered in the present article, this
modification occurs naturally.
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