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Pinch technique prescription to compute the electroweak corrections
to the muon anomalous magnetic moment
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We apply a simple prescription derived from the framework of the Pinch Technique formalism to check the calculation of the gauge-invariant
one-loop bosonic electroweak corrections to the muon anomalous magnetic moment.
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Aplicamos la simple prescripción derivada en el marco de la Pinch Technique para corroborar la invariancia de norma en los cálculos a un
lazo de las correcciones electrodébiles al momento magnético ańomalo del múon.

Descriptores: Momento magńetico ańomalo del múon; pinch technique; invariancia de norma.
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A definition of the neutrino charge radius that satisfies good
physical requirements,i.e. it is a physical observable, has
been provided recently [1] in the framework of the Pinch
Technique (PT) formalism [2]. Usual gauge dependencies
encountered in the calculation of neutrino electromagnetic
form factors can be removed by adopting the PT philoso-
phy of defining the form factors from an observable (gauge-
invariant and gauge-independent) scattering amplitude in-
stead of using the (non-observable) one-loop vertex func-
tions alone [1,3]. We can summarize the results of Ref. 1 by
saying that theeffectivecharge form factor defined from the
‘pinched’ one-loop correctedνe scattering amplitude is the
same as the charge form factor obtained from the one-loop
corrections to theννγ vertex provided the Feynman rules
given below are used in the second case.

In the PT formalism, the construction of a gauge-
independent and gauge-invariant one-loop vertex and, in par-
ticular, of aneffectiveelectromagnetic form factor for the
neutrino amounts to compute [1] the one-loop vertex cor-
rections using a simple prescription in the linearRL

ξ gauge,
where gauge-boson propagators

P V

µν(q) =
− i

q2 −M 2
V

[
gµν + (1− ξ)

qµqν

ξq2 −M 2
V

]
(1)

are taken in the ’t Hooft-Feynman gaugeξ = 1, and the usual

three-boson vertex

Γαµν(q, k,−q − k) = (q − k)νgαµ

+ (2k + q)αgµν − (2q + k)µgαν (2)

is replaced by the truncated vertex [4]:

ΓF
αµν = (2k + q)α gµν + 2qνgαµ − 2qµgαν , (3)

which satisfies [1] a simple Ward identity:

qαΓF
αµν = (k + q)2 gµν − k2 gµν .

In this paper we argue that this prescription can be used
also to compute the electromagnetic form factors of other
fermions and, in particular, their static electromagnetic prop-
erties [5]. Since this prescription has been derived using
the PT rearrangement of one-loop corrections to theνe scat-
tering amplitude [1]a priori it is not a trivial issue that it
will give the correct results for the vertex corrections of other
fermions. In this note we apply the PT prescription to give an
alternative derivation of the well known one-loopW -boson
contribution to the anomalous magnetic moment of the muon,
aµ ≡ (g − 2)/2.

The complete one-loop electroweak corrections toaµ

were computed long time ago in Refs. 6 (the very small Higgs
boson contribution and subleading muon mass terms are ne-
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glected):

aweak
µ =

GF m2
µ

8π2
√

2

{
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3

+
1
3
[(1− 4 sin2

θW
)2 − 5]

}
. (4)

The first term in Eq. (4), which is the focus of our interest,
accounts for theW -boson (plus unphysical scalars) contribu-
tions, and the second term for theZ0-boson correction to the
vertex. Each one of these contributions is independent of the
ξ-gauge parameters (in the linearRL

ξ gauges) [6]. It is worth
mentioning that, in contradistinction with the Pinch Tech-
nique, the evaluation of the muon anomalous magnetic form
factor (for a non-vanishingq2 value) is gauge-dependent with
the methods used in Refs. 6.

Instead of performing an explicit evaluation of theW -
boson corrections to the vertex, we can take advantage of a re-
sult derived, in another context, by Brodsky and Sullivan, and
independently by Burnett and Levine in the late sixties [7].
Using theW -boson propagator of Eq. (1) and the electro-
magnetic vertex of theW -boson as proposed by Lee and
Yang [8] (all particles are incoming, namelyk1+k2+k3=0):

Vµαβ = ie{gαβ(k1 − k2)µ

− gαµ(k1 + κW k1 + ξk2 + κW k2)β

+ gβµ(k2 + κW k2 + ξk1 + κW k1)α}, (5)

it can be shown that the prescription of the PT formalism
for theW -boson propagator and electromagnetic vertex [see
Eqs. (1) and (3)] is obtained by choosing [The usual electro-

FIGURE 1. W -boson (and would-be Goldstone) contributions
to aµ.

magnetic vertex for theW -boson in gauge theories is recov-
ered for the special choiceξ = 0 andκW = 1 in Eq. (5)]:

ξ = 1 and κW = 1. (6)

TheW -boson contribution (Fig. 1a) toaweak
µ obtained in

Refs. 7 using the Feynman rules of Eqs. (1) and (5) is:

aWW
µ =

GF m2
µ

8π2
√

2

{
2(1− κW ) ln ξ +

10
3

}
. (7)

As it can be easily checked by inserting the values given
in Eq. (6), the PT prescription for this correction gives the
correct result for theW -boson contributions toaµ (first term
in Eq. (4)). The contribution from theZ0-boson correspond-
ing to the PT prescription (ξ = 1) computed in [6] must
be added to Eq. (7) in order to complete the evaluation of
the electroweak contributions. Therefore, we recover, in the
leading muon mass approximation, the usual result for the
electroweak corrections toaµ at the one-loop level. In ad-
dition, we can address the following interesting remark: our
derivation ofaWW

µ shows that the old-fashioned quantization
ξ-procedure of Lee and Yang [8] makes sense only in the limit
defined by Eq. (6).

In summary, the application of the prescription given in
Eqs. (1) (withξ = 1) and (3), shows the robustness and sim-
plicity of the PT formalism. In particular, the PT could be
useful to verify the independence of the result with respect to
the gauge-parameter in a given gauge structure, and to clar-
ify the evaluation of the complete contributions to the two-
loop electroweak corrections toaµ, since it has been proved
that gauge invariance is satisfied to all orders [9, 10] using
this method. Note that the two-loop electroweak contribu-
tions to aµ were computed in Ref. 11. These corrections
were computed using the linearRξ gauge in the ’t Hooft-
Feynman gauge and also a nonlinear gauge structure, and
neglecting the contributions that involve two or more scalar
couplings [11] since they are supressed by additional powers
of m2

µ/m2
W . The two-loop electroweeak corrections amount

to a reduction of –22.6% with respect to the one-loop elec-
troweak result and it is at the level of the sentitivies expected
in current experiments. The PT formalism can therefore
provide an additional check of these results in a consistent,
gauge-invariant and gauge-parameter independent way.

Finally, we would like to emphasize that althought our
work only reproduces well known results for the muon
anomalous magnetic moment, it is interesting because it con-
firms the validity of the simple prescription derived in the
context of the Pinch technique formalism in the calculation
of an independent observable.
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