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A Gauge–fixing procedure for the electroweak theory, based in the BRST symmetry and covariance under the electromagnetic group, is
proposed. It is found that in order to have a renormalizable theory, four–ghost interactions must be included in the BRST invariant action,
since in this class of gauges these couplings are induced at the one–loop level. This type of gauges allows us to remove several unphysical
vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED–like
Ward identities. Explicit expressions for the Lagrangian of the bosonic sector, including the corresponding ghost term, are presented.
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Se propone un procedimiento de fijación de la norma para la teorı́a electrod́ebil basado en la simetrı́a BRST y covariancia bajo el grupo elec-
tromagńetico. Se encuentra que, a fin de tener una teorı́a renormalizable, se deben incluir en la acción, invariante bajo BRST, interacciones
de cuatro ghosts, ya que en esta clase de normas estos acoplamientos se inducen a orden de un rizo. Este tipo de normas nos permite remover
varios v́ertices no f́ısicos que aparecen en las normas lineales convencionales, lo cual simplifica grandemente los cálculos de loop, ya que
la teoŕıa resultante satisface identidades de Ward tipo QED. Se presentan expresiones explı́citas para el lagrangiano del sector bosónico,
incluyendo el t́ermino correspondiente para losghost.

Descriptores: Teoŕıa electrod́ebil; normas no lineales.

PACS: 11.15.-q; 11.15.Ex; 12.15.-y

1. Introduction

One very interesting feature of systems subject to first–class
constraints [1] is the existence of many physically equivalent
theories. These systems are known as gauge or degenerate
systems. Yang–Mills theories, which play an important role
in the quantum description of the strong and electroweak in-
teractions, are a special case of this type of systems. In order
to quantize this class of systems, it is necessary to define a
unique theory through a gauge–fixing procedure. The possi-
bility to quantize several physically equivalent Lagrangians
could offer important advantages in practical loop calcula-
tions. To achieve that, the gauge–fixing functions must be
defined in the appropriate way. The simplest functions which
can be defined are the linear ones, which can depend linearly
on gauge and scalar fields [2, 3]. In this paper we are inter-
ested in studying the most general structure of a gauge–fixing
procedure for the electroweak theory (EWT), nonlinear in
both the vector and scalar sectors. The motivation to intro-
duce this type of gauges in theories with spontaneous symme-
try breaking (SSB) arises from the possibility of removing an
important number of unphysical interactions involving gauge
bosons, pseudo–goldstone bosons (PGB), and physical Higgs
bosons, always present in any linear gauge. As will be seen
below, such possibility exists and it is not arbitrary at all.

The main idea concerning the definition of nonlinear
Rξ–gauges in theories with SSB can be explained as fol-
lows. In general, one has a gauge groupG that has been
broken down to a subgroupH. After SSB, all or part of
the massive gauge bosons associated with the broken gener-
ators ofG -and consequently, the corresponding PGB- may
become part of some representation ofH. Then, we can

define the gauge–fixing functions for these massive gauge
fields in terms not of the ordinary derivative, as it is done
in the conventional linearRξ–gauges, but in terms of the co-
variant derivative associated with theH subgroup. In this
way, the gauge–fixing functions for these fields will trans-
form covariantely under theH group, which would induce an
ordered readjustment (dictated by theH subgroup) between
the Higgs kinetic energy term(Dµϕa)†(Dµϕa) (which is re-
sponsible for the existence of unphysical vertices) and the
gauge–fixing Lagrangian. Except by terms that fix the gauge
for the fields of theH group, the gauge–fixing and the
ghost sectors will become separately invariant under this sub-
group, which in turn would lead to a more reduced num-
ber of unphysical vertices. In the case of the EWT, which
is the subject of this work, the gauge groups of interest are
G = SUL(2) × UY (1) andH = Ue(1), although we will
also extend the method to remove some unphysical vertices
involving theZ weak gauge boson.

A nonlinear renormalizable gauge (Rξ–gauge) was intro-
duced by Fujikawa [4] three decades ago to remove the un-
physicalW±G∓W γ vertex (G∓W is the PGB associated with
theW± weak gauge boson) of the EWT. This procedure was
later extended to remove bothW±G∓W γ andW±G∓W Z ver-
tices [5]. A more detailed study has been presented in [6].
The procedure has been extended to includes certain mod-
els beyond the SM [7], and also in the context of effective
gauge theories [8]. In all these works the gauge–fixing func-
tions defined are nonlinear in the gauge fields, but linear in
the scalar fields. The main goal of this work is to define
a Rξ gauge–fixing procedure nonlinear in both the gauge
and the scalar sectors. In particular, we are interested in
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the most general structure of nonlinear gauge–fixing func-
tions that respect the electromagnetic gauge symmetry. These
functions will be defined in terms of the electromagnetic co-
variant derivative modified to include theZ gauge boson.
With a gauge so defined, it will be possible to remove all un-
physical verticesW±G∓W γ, W±G∓W Z, HW±G∓W γ(Z) and
GZW±G∓W γ(Z), with GZ andH, the neutral PGB, and the
physical Higgs boson, respectively. It will be shown that, as
a consequence of covariance under theUe(1) group of the
gauge–fixing functions, all charged particles satisfy QED–
like Ward identities.

A gauge of this class was used in a loop calculation in
Ref. 9. In this paper we take one step forward and present a
comprehensive study which comprise explicit expressions for
the Lagrangian of the Higgs and Yang–Mills sectors, includ-
ing the ghost one. Another point which will be treated with
some detail in this paper is the most general structure of the
ghost sector that arises from the BRST symmetry [10]. As we
will see the BRST symmetry play a fundamental role when
one introduces a nonlinear gauge fixing procedure because
the Faddeev–Popov method does not work in this case. It re-
sults that the Faddeev–Popov method [11] does not lead to
the most general renormalizable action, since it can not yield
four–ghost interactions, which are allowed by the BRST sym-
metry, and by the power counting criterion of renormaliza-
tion theory. It results that in linear gauges of the form∂µAa

µ,
the Faddeev–Popov method works well because four–ghost
interactions can not arise from loop effects due to the exis-
tence of antighost translation invariance, that is, invariance
under the transformation̄Ca → C̄a + ca, with C̄a stands for
antighost fields, andca arbitrary constant parameters. In this
case, the antighost fields appear only through their deriva-
tives, so translation is a symmetry of the theory. However, in
the case of nonlinear gauges, this invariance is lost due to the
presence of a term of the formAa

µAbµ in the gauge–fixing
functions. That term would be responsible for the presence
at one–loop level of four–ghost interactions. This means that
renormalizability become ruined if it is used the Faddeev–
Popov method with this type of gauge–fixing procedure. It
is, therefore, convenient to give up the Faddeev–Popov ap-
proach, and instead build up the most general action consis-
tent with the BRST symmetry and renormalization theory. In
the following, we will adopt this point of view.

The paper has been organized as follows. In Sec. 2 we
present a brief review of the bosonic sector of the EWT. We
will take advantages of this to present our notation and con-
ventions. Sec. 3 is dedicated to discuss the structure of a
nonlinear gauge for the EWT, as well as its dynamical impli-
cations on the gauge invariant Lagrangian of the theory. In
Sec. 4 conclusions are presented.

2. Preliminaries

To begin with, we present a brief review of the bosonic sector
of the EWT. This is necessary not only to define our notation
and conventions, but also to analyze the impact on this sector

of the nonlinear gauge that will be introduced in the next sec-
tion. A Rξ gauge–fixing procedure, linear or nonlinear, can
only affect the structure of the Higgs and Yang–Mills sectors
of the theory[The U–gauge is formally equivalent to theRξ

gauge in the limitξ → 0. The equivalence here is formal, in
the sense that Feynman amplitudes in the two formulations
are equal in the limitξ → 0 is taken before the Feynman
integral is performed. See in Ref. 3]. So, we only need to
discuss these sectors. The Higgs sector of the EWT comprise
the Higgs kinetic energy term and the potential, which can be
written as

LH = (Dµϕ)†(Dµϕ)− V (ϕ†, ϕ), (1)

whereϕ† = (ϕ−, ϕ0∗) is the Higgs doublet with hypercharge
Y = 1. Dµ is the covariant derivative in the fundamental rep-
resentation of theSUL(2)× UY (1) group, given by

Dµ = ∂µ − ig

2
τ iW i

µ −
ig′

2
Y Bµ, (2)

whereW i
µ andBµ are the gauge fields associated with the

groupsSUL(2) andUY (1), respectively.τ i are the Pauli ma-
trices, beingg andg′ the corresponding coupling constants.
The Higgs potential has the following renormalizable struc-
ture

V (ϕ†, ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2. (3)

After SSB,ϕ0 = (v + H + iGZ)/
√

2, with v the vac-
uum expectation value of the Higgs doublet. For subsequent
discussions, it is convenient to write the Higgs kinetic energy
term as follows:

(Dµϕ)†(Dµϕ) = LHK1 + LHK2, (4)

where

LHK1 =
1
4
[(D̄µ + D̂µ)G+

W ]†[(D̄µ + D̂µ)G+
W ]

+
g2

2
W−

µ W+µ(ϕ0∗ϕ0 + G−W G+
W ), (5)

LHK2 =
1
4
[(D̄µ + D̂†

µ)ϕ0]†[(D̄µ + D̂µ†)ϕ0]

+
ig

2
√

2
[W−

µ ϕ0∗(D̄µ + D̂µ)G+
W

−W+
µ ϕ0(D̄µ† + D̂µ†)G−W

+ W+
µ G−W (D̄µ + D̂µ†)ϕ0

−W−
µ G+

W (D̄µ† + D̂µ)ϕ0∗]. (6)

On the other hand, the Higgs potential can be conveniently
written as

−V (ϕ†, ϕ) = λ[v2 − (ϕ0∗ϕ0 + G−W G+
W )]

× (ϕ0∗ϕ0 + G−W G+
W ). (7)
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In the above expressions we have introduced the following
definitions

D̄µ = ∂µ − ig′Bµ, (8)

D̂µ = ∂µ − igW 3
µ . (9)

Notice that these operators contain the electromagnetic co-
variant derivativeDe

µ = ∂µ − ieAµ. The combinations of
these operators that appear in the Higgs kinetic energy term
are given by: D̄µ + D̂µ = 2Dµ

e − (igc2W /cW )Zµ and
D̄†µ + D̂µ = 2∂µ − (ig/cW )Zµ, wherecW = cos θW and
c2W = cos 2θW . This means that any term containing the
first of this combinations will transform covariantely under
theUe(1) group. Notice that theLHK2 Lagrangian contains
a bilinear term in the weak gauge bosons and the PGB. It is
a well known fact that one of the main purposes of the lin-
ear gauge–fixing procedure [3] is to eliminate these terms via
a surface term. The main goal of this work is to introduce
a nonlinear gauge–fixing procedure that allows to eliminate
not only these bilinear terms, but also the maximum number
of unphysical vertices appearing in theLHK2 Lagrangian.

We now turn our attention to the Yang–Mills sector. In
terms of the operator̂Dµ, the corresponding Lagrangian can
be written as follows:

LY M = −1
4
W i

µνW iµν − 1
4
BµνBµν

= −1
2
(D̂µW+

ν − D̂νW+
µ )†(D̂µW+ν − D̂νW+µ)

− 1
4
ZµνZµν − 1

4
FµνFµν − ig

[
sW Fµν + cW Zµν

+ i
g

2
(W−

µ W+
ν −W−

ν W+
µ )

]
W−µW+ν . (10)

This Lagrangian is manifestly invariant under the electro-
magneticUe(1) group. It should be remember that a linear
gauge–fixing procedure spoil such symmetry in the charged
sector, since it introduces the term∂µW±µ, which does not
transform covariantely. The main goal of this work is to
define the propagator of theW±

µ field without spoiling the
Ue(1)–gauge symmetry of the charged sector.

3. A Ue(1)–covariant nonlinear Rξ–gauge

3.1. Structure of the BRST invariant action

The main goal in the classical study of a gauge system is to
find its gauge algebra, which consists of certain relations that
must be satisfied by the gauge–structure tensors of the theory.
In simple gauge systems, as Yang–Mills theories, it is easy to
define the gauge algebra, but it can be a quite complicated
problem for most general gauge systems. In the last year, a
powerful technique based on the antifields Batalin–Fradkin–
Vilkovisky formalism [12] has been developed to deal with
this problem and also with the issue of covariant quantiza-
tion of gauge systems, which constitutes the ultimate goal.

That method is known as the antifield–antibracket formal-
ism, in which the extended BRST symmetry play a funda-
mental role [13]. The starting point of this method is the
introduction of an antifield for each field in the theory. It is
assumed that the dynamical degree of freedom of the gauge
system are characterized by the matter, gauge, ghost (Ca),
antighost (̄Ca), and auxiliary (Ba) fields. The original action,
which will denoted byS0, is a functional of matter and gauge
fields only, but this configuration is extended to include the
ghost fields because they are necessary to quantize the theory.
A ghost for each gauge parameter is introduced. The ghost
fields have opposite statistic to that of the gauge parameters.
To gauge fix the theory and also to quantize it, it is necessary
to introduce the so–called trivial pairs, namely the antighost
and auxiliary fields. We letΦA run over all these fields.
For eachΦA, an antifieldΦ∗A is introduced, with opposite
statistics toΦA and a ghost number equal to−gh(ΦA) − 1,
wheregh(ΦA) is the ghost number ofΦA, which is 0 for
matter, gauge, and auxiliary fields,+1 for ghosts and−1 for
antighosts. In this extended configuration space a symplectic
structure is introduced through left and right differentiation,
defined for two functionalsF andG as:

(F,G) =
∂rF

∂ΦA

∂lG

∂Φ∗A
− ∂rF

∂Φ∗A

∂lG

∂ΦA
(11)

In particular, the fundamental antibrackets are given by

(ΦA, Φ∗B) = δA
B , (ΦA, ΦB) = 0 = (Φ∗A, Φ∗B). (12)

The extended action is a bosonic functional on fields and
antifields,S[Φ, Φ∗], with ghost number zero, which satisfy
the master equation defined by

(S, S) = 2
∂rS

∂ΦA

∂lS

∂Φ∗A
= 0, (13)

The antibracket serves to define the extended BRST
transformations as follows:

δBΦA = (S, ΦA) = − ∂rS

∂Φ∗A
, (14)

δBΦ∗A = (S, Φ∗A) =
∂rS

∂ΦA
, (15)

We can see that the extended action is invariant under BRST
symmetry as a consequence of the master equation, since its
variation is given byδS = (S, S). Not all the solutions of the
master equation are of interest, but only those called proper
solutions [13]. A proper solution must make contact with the
initial theory, which means to impose the following boundary
condition onS:

S[Φ,Φ∗]|Φ∗=0 = S0[φ], (16)

whereφ runs only over the original fields,i.e. matter and
gauge fields. The proper solutionS can be expanded in a
power series in antifields:

S[Φ, Φ∗] = S0[φ] + (δBΦA)Φ∗A + . . . , (17)
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where in the series appear all gauge–structure tensors char-
acterizing the gauge system. In this sense the proper so-
lution S is the generating functional of the gauge–structure
tensors.S also generate the gauge algebra through the mas-
ter equation. So, classically a gauge system is completely
determined when it is established the proper solutionS, and
calculated the master equation, which gives the relations that
must be satisfied by the gauge–structure tensors. In simplest
gauge systems, as Yang–Mills theories, a solution of the mas-
ter equation is given by

S[Φ, Φ∗] = S[φ] + (δBΦA)Φ∗A. (18)

This action is bosonic and has ghost number zero, as it is
required. It is easy to show that this action is a solution
of the master equation, and that it reproduces correctly the
well–known gauge algebra of Yang–Mills theories.

We now turn our attention to the quantum analysis of the
gauge system. To quantize the theory, one first needs to fix
the gauge. Since the extended action is degenerate, it can not
be quantized in a direct way. Besides, the antifields do not
represent true degrees of freedom, so they must be removed
before the quantization of the theory. They can not be simply
equaled to zero, sinceS0 is degenerate. However, one can
remove the antifields through a nontrivial procedure, and at
the same time lift the degeneration of the theory. Following
Batalin–Vilkovisky [14], the antifields can be eliminated by
introducing a fermionic functional of the fields only,Ψ[Φ],
with ghost number−1, such that

Φ∗A =
∂Ψ[Φ]
∂ΦA

. (19)

Notice that in this case it is not necessary to distin-
guish between left– and right–differentiation. In defin-
ing a gauge–fixing procedure, the presence of the trivial
pairs, C̄a and Ba, is necessary since the only fields with
ghost number−1 are precisely the antighost ones. Not-
ing that (δBΦA)Φ∗A = (δBΦi)(∂Ψ[Φ]/∂ΦA) = δBΨΨ[Φ],
the proper solution takes the form

S[Φ, δΨ/δΦ] = S[φ] + δBΨΨ[Φ]. (20)

This is the gauge–fixed BRST action, which is invariant un-
der the usual BRST transformation [10] defined by

δBΨAa
µ = Dab

µ Cb, (21)

δBΨψm = −itamnCaψn, (22)

δBΨCa = −1
2
fabcCbCc, (23)

δBΨC̄a = Ba, (24)

δBΨBa = 0, (25)

whereψm stands for matter fields, andDab
µ =δab∂µ−gfabcAc

µ

is the covariant derivative in the adjoint representation of the
group, beingfabc the corresponding structure constants. In

general, the nilpotency ofδBΨ only is guaranteed on–shell,
i.e. only after using the equations of motion, but in the case
of Yang-Mills theories,δ2

BΨ
= 0 even off–shell.

We now proceed to define the most general fermionic
functionalΨ for the EWT, consistent with the renormaliza-
tion theory. In this case, the gauge group isSUL(2)×UY (1).
The most general renormalizable functionalΨ with ghost
number−1 can be written as

Ψ=
∫

d4x[C̄i(f i+
ξ

2
Bi+εijkC̄jCk)+C̄(f+

ξ

2
B)], (26)

wheref i and f are the gauge–fixing functions associated
with the groupsSUL(2) andUY (1), respectively. They are
restricted by renormalizability to be, at most, quadratical
functions of gauge and scalar fields. The bosonic constantξ is
the so–called gauge parameter, in general one for each group,
but we have used the same for simplicity. Notice that the term
εijkC̄iC̄jCk does not exist in the Faddeev–Popov method,
though its presence is necessary to get renormalizability. Us-
ing the above BRST transformations, we obtain for the action
δBΨΨ:

δBΨΨ =
∫

d4x
{ξ

2
BiBi + (f i + 2εijkC̄jCk)Bi +

ξ

2
BB

+ fB − C̄i(sf i)− C̄(sf)− C̄iC̄jCiCj
}

. (27)

Since the auxiliary fieldsBi andB appear quadratically,
they can be integrated out in the generating functional. Since
the coefficients of the quadratical terms do not depend of the
fields, their integration is equivalent to use the corresponding
equations of motion in the gauge–fixed BRST action. After
doing this, we obtain an effective action defined by the fol-
lowing effective Lagrangian

Leff = LEWT + LB + LF , (28)

whereLEWT is the gauge invariant electroweak Lagrangian,
andLB is the well–known gauge–fixing Lagrangian given by

LB = − 1
2ξ

f if i − 1
2ξ

f2. (29)

On the other hand,LF depends on the ghost and anitghost
fields in the way

LF = −C̄i(δBΨf i)− C̄(δBΨf)− 2
ξ
εijkf iC̄ ∗ Ck

+
(

2
ξ
− 1

)
C̄iC̄jCiCj . (30)

It should be noticed that the last two terms in this expression
are not present when it is used the Faddeev–Popov method.
The third term arises as a consequence of integrating out the
auxiliaryBi fields. We are ready now to discuss the structure
of the gauge–fixing functionsf i andf .
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3.2. The gauge–fixing functions

We now turn to discuss the most general structure of the
gauge–fixing functionsf i and f . The general structure of
the nondegenerate Lagrangian has been discussed in previous
section. Then, we only need to present explicitly the gauge–
fixing functions and use the general expressions given by
Eqs.(29) and (30) to construct theLB andLF Lagrangians.
Our main purpose is to define nonlinear gauge–fixing func-
tions that allow to remove the maximum number of the un-
pysical vertices appearing in the LagrangianLHK2. It is clear
that the sole type of gauge which allows to eliminate all these
vertices is the unitarity gauge, but it is a not manifestly renor-
malizable gauge. This gauge is defined for the massive gauge
fields using only the PGB as supplementary conditions. In
this procedure the gauge–fixing functions posses the Lorentz
andUe(1) symmetries. This is a relevant property which we
will adopt in order to define aRξ–gauge that allows us to re-
move the maximum number of unphysical vertices,i.e. we
adopt as fundamental criterion Lorentz and electromagnetic
covariance to construct the gauge–fixing functions that de-
fine the propagators of the charged massive gauge bosons,
W±

µ . Besides, these gauge–fixing functions must satisfy the
power counting criterion of renormalizability, which means
that they would depend, at most, quadratically on the gauge
and scalar fields. Taking into account these considerations,
we introduce the following gauge–fixing conditions:

f i = (δij∂µ − g′ε3ijBµ)W jµ + ξ
ig

2
[ϕ†(τ i − iε3ijτ j)φ0

− φ†0(τ
i + iε3ijτ j)ϕ + iε3ijϕ†τ jϕ], (31)

f = ∂µBµ + ξ
ig′

2
(ϕ†φ0 − φ†0ϕ), (32)

whereφ†0 = (0, v/
√

2). The conventional linear gauge is
obtained from these expressions by putting equal to zero all
terms proportional to the factorε3ij . Notice thatf is linear in
the fields, whilef i are nonlinear in both the vector and scalar
fields. Due to this, not only the vertices of the Yang–Mills
and Higgs kinetic energy term would be affected, but also the
Higgs potential. To clarify this point, it is convenient to write
the gauge–fixing functions in terms of mass eigenstate com-
ponents. For this purpose we define the mass eigenstate fields
as

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (33)

Zµ = cW W 3
µ − sW Bµ, (34)

Aµ = sW W 3
µ + cW Bµ. (35)

Then, we define

f± =
1√
2
(f1 ∓ if2), (36)

fZ = cW f3 − sW f, (37)

fA = sW f3 + cW f. (38)

Using these expressions, we can write the gauge–fixing func-
tions as follows:

f+ = D̄µW+µ − ξ
ig√
2
ϕ0∗G+

W , (39)

fZ = ∂µZµ − ξMZGZ , (40)

fA = ∂µAµ, (41)

wheref− = (f+)†. We can see that in virtue that the opera-
tor D̄µ contains the electromagnetic covariant derivative, this
gauge–fixing procedure is covariant under theUe(1) group.
The LagrangianLB takes then the form

LB = LGFV + LGFS + LGFSV , (42)

where

LGFV = −1
ξ
(D̄νW+ν)†(D̄µW+µ)− 1

2ξ
(∂µZµ)2

− 1
2ξ

(∂µAµ)2, (43)

LGFS = −ξ

2
g2ϕ0∗ϕ0G−W G+

W − ξ

2
m2

ZG2
Z , (44)

LGFSV =
ig√
2
[ϕ0∗G+

W (D̄µW+µ)† − ϕ0G−W (D̄µW+µ)]

+ mZGZ∂µZµ. (45)

Some remarks concerning the implications of this
gauge–fixing Lagrangian on the Yang–Mills and Higgs sec-
tors are in order. First of all, notice that the termLGFV not
only define the propagators of the gauge fields, but also intro-
duce nontrivial modifications in the Lorentz structure of the
trilinear and quartic vertices appearing in the Yang–Mills La-
grangian. Explicitly, the vector sector of the nondegenerate
theory takes the final form

LY M + LGFV = −1
2
(D̂µW+

ν − D̂νW+
µ )†

×(D̂µW+ν − D̂νW+µ)− 1
4
ZµνZµν − 1

4
FµνFµν

−ig
[
sW Fµν+cW Zµν+i

g

2
(W−

µ W+
ν −W−

ν W+
µ )

]

×W−µW+ν − 1
ξ
(D̄νW+ν)†(D̄µW+µ)

− 1
2ξ

(∂µZµ)2 − 1
2ξ

(∂µAµ)2. (46)

Notice that the term that introduces modifications in these
vertices is covariant under the electromagnetic group. Due to
this, the trilinear electromagnetic vertices satisfy QED–like
Ward identities. The Feynman rules for this sector are given
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by

Aη(k1)W+
λ (k2)W−

ρ (k3) → −ieΓWWA
λρη (k1, k2, k3), (47)

Zη(k1)W+
λ (k2)W−

ρ (k3) → −ieΓWWZ
λρη (k1, k2, k3), (48)

AαAβW+
λ W−

ρ → −ie2ΓWWAA
αβλρ , (49)

AαZβW+
λ W−

ρ → −iegcW ΓWWAZ
αβλρ , (50)

ZαZβW+
λ W−

ρ → −ig2c2
W ΓWWZZ

αβλρ , (51)

W+
α W−

β W+
λ W−

ρ → +ig2ΓWWWW
αβλρ , (52)

where

ΓWWA
λρη (k1, k2, k3)=(k3 − k2)ηgρλ+(k1−k3−1

ξ
k2)λgρη

+ (k2 − k1 +
1
ξ
k3)ρgλη, (53)

ΓWWZ
λρη (k1, k2, k3)=(k3−k2)ηgρλ+(k1−k3+

t2W
ξ

k2)λgρη

+ (k2 − k1 − t2W
ξ

k3)ρgλη, (54)

ΓWWAA
αβλρ = ΓWWZZ

αβλρ = 2gαβgλρ −
(

1− 1
ξ

)

× (gαλgβρ + gαρgβλ), (55)

ΓWWAZ
αβλρ = 2gαβgλρ −

(
1 +

t2W
ξ

)

× (gαλgβρ + gαρgβλ), (56)

ΓWWWW
αβλρ = 2gαλgβρ − gαρgβλ − gαβgλρ. (57)

In the above expressions, all momenta are token as incom-
ing. Using these Feynman rules, we can see that the vertex
functions of three and two points satisfy the Ward identity

kη
1ΓWWA

λρη (k1, k2, k3) = ΓWW
λρ (k2)− ΓWW

λρ (k3). (58)

Also notice that the only vertex which is not affected by this
gauge–fixing procedure is the quartic one,WWWW . It is
interesting to notice that the Eqs.(47-58) are quite similar to
those presented in Ref. 15 in Eqs.(A.29-A.34,39) within the
context of the Background Field Method technique [16].

As for theLGFS term, it defines the unphysical masses
of the PGB and introduce modifications in the couplings aris-
ing from the Higgs potential. These terms can be grouped as
follows:

−V (ϕ†, ϕ)+LGFS=λ(v2−ϕ0∗ϕ0)ϕ0∗ϕ0−1
2
ξm2

ZG2
Z

−λ(G−W G+
W )2+[λv2−(2λ+

ξg2

2
)ϕ0∗ϕ0]G−W G+

W . (59)

From this expression, it is clear that the gauge–fixing pro-
cedure introduces modifications in the unphysical vertices
HG−W G+

W ,H2G−W G+
W , andG2

ZG−W G+
W .

Let us now discuss the dynamical implications of the
LGFSV term. This term has an important impact on the un-
physical Higgs sector of the theory. In fact, after an integra-
tion by parts to remove the bilinear terms we obtain

LHK2+LGFSV =(∂µϕ0∗)(∂µϕ0)+
g2

4c2
W

ZµZµϕ0∗ϕ0

+
g

2cW
Zµ(H∂µGZ−GZ∂µH)

+i
√

2g(W+
µ G−W ∂µϕ0−W−

µ G+
W ∂µϕ0∗). (60)

We can see that the unphysical verticesWGW γ, WGW Z,
HWGW γ, HWGW Z, GZWGW γ, and GZWGW Z ap-
pearing inLHK2 have been removed of the theory. The ad-
vantages of using this nonlinear gauge can be appreciated
now. The absence of these unphysical vertices has impor-
tant consequences in practical loop calculations where one or
more external photons are involved [6–9]. In particular, there
is a considerable reduction in the number of Feynman dia-
grams. Besides,Ue(1) gauge invariance is transparent since
the theory satisfies QED–like Ward identities.

3.3. The ghost sector

Let us now discuss the implications of this nonlinear gauge
on the ghost sector characterized by the LagrangianLF . Us-
ing the following definitions for the ghost fields

C± =
1√
2
(C1 ∓ C2), (61)

CZ = cW C3 − sW C, (62)

CA = sW C3 + cW C (63)

and similar expressions for the antighost fields, we can write
this Lagrangian as a sum of two terms:

LF = LF1 + LF2, (64)

where

LF1 = −C̄−(δBΨf+)− C̄+(δBΨf−)

−C̄Z(δBΨfZ)− C̄A(δBΨfA) (65)

and

LF2 = −2i

ξ
[(f−C̄+ − f+C̄−)(cW CZ + sW CA)

+ (cW C̄Z + sW C̄A)(f+C− − f−C+)

+ (cW fZ + sW fA)(C̄−C+ − C̄+C−)]

+ 2(1− 2
ξ
)[C̄+C̄−C+C− + (cW C̄Z + sW C̄A)

× (C̄+C− + C̄−C+)(cW CZ + sW CA)]. (66)
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The termLF2 does not exist if it is used the Faddeev–Popov
method. The variations of the charged gauge–fixing functions
are given by

δBΨf+=D̄µD̂µc++ig(CW cZ + sW CA)(D̄µW+µ)

+
ig

cW
W+µ(∂µCZ)+

ξg2

2
[(ϕ0∗ϕ0−G−W G+

W )C+

+
√

2(cW CZ+sW CA)ϕ0∗G+
W ], (67)

with δBΨf− = (δBΨf+)†. Notices that these functions trans-
form covariantly under theUe(1) group. On the other hand,
the variations of the neutral functions are given by

δBΨfZ = ¤CZ + igcW ∂µ(W−µC+ −W+µC−)

− ξg

2
mZ(G+

W C− + G−W C+)

+
ξg

2
√

2cW

mZ(ϕ0∗ + ϕ0)CZ , (68)

δBΨfA = ¤CA + ie∂µ(W−µC+ −W+µC−). (69)

We can see that these Lagrangians are invariant under the
Ue(1) group. Due to this, they contain new vertices not
present in the linear gauges. For example, the presence
of the verticesC̄±C∓γγ is a direct consequence of the
Ue(1)–gauge invariance. It is clear that the charged anticom-
muting fields satisfy QED–like Ward identities. Indeed, all
charged particles of the theory satisfy this type of identities.

4. Summary

In this paper we have presented a nonlinearRξ–gauge for
the electroweak theory. This gauge–fixing procedure was de-
fined on the basis of the BRST symmetry. It was found that
this gauge modifies in a nontrivial way both the Yang–Mills
and the Higgs sectors. In contrast with the conventional linear
gauges, in this nonlinear gauge the ghost sector is manifestly
invariant under the electromagnetic gauge group and includes
four–ghost interactions. At one–loop, the four–ghost inter-
actions are only necessary for off–shell renormalization, but
in two–loop binary processes they would play an important
role in the determination of the correspondingS–matrix el-
ement. The method allows us to eliminate the unphysical
verticesW±G∓W γ, W±G∓W Z, HW±G∓W γ, HW±G∓W Z,
GZW±G∓W γ, andGZW±G∓W Z, which are always present
in conventional linear gauges. An important feature of this
procedure is that all charged particles of the theory satisfy
QED–like Ward identities, which greatly simplifies the loop
calculations.
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