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A Gauge-fixing procedure for the electroweak theory, based in the BRST symmetry and covariance under the electromagnetic group, is
proposed. It is found that in order to have a renormalizable theory, four—ghost interactions must be included in the BRST invariant action,
since in this class of gauges these couplings are induced at the one—loop level. This type of gauges allows us to remove several unphysical
vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like
Ward identities. Explicit expressions for the Lagrangian of the bosonic sector, including the corresponding ghost term, are presented.
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Se propone un procedimiento de fij@agide la norma para la tdarelectro@bil basado en la simé&rBRST y covariancia bajo el grupo elec-
tromagretico. Se encuentra que, a fin de tener undaa@normalizable, se deben incluir en la @cgiinvariante bajo BRST, interacciones

de cuatro ghosts, ya que en esta clase de normas estos acoplamientos se inducen a orden de un rizo. Este tipo de normas nos permite remoy
varios \ertices no fsicos que aparecen en las normas lineales convencionales, lo cual simplifica grandemeteltsde loop, ya que

la teoiia resultante satisface identidades de Ward tipo QED. Se presentan expresiotgimexara el lagrangiano del sector twoiso,

incluyendo el érmino correspondiente para Igsost

Descriptores: Teolia electroébil; normas no lineales.

PACS: 11.15.-g; 11.15.EXx; 12.15.-y

1. Introduction define the gauge—fixing functions for these massive gauge
fields in terms not of the ordinary derivative, as it is done
One very interesting feature of systems subject to first-clasg, the conventional lineaR;—gauges, but in terms of the co-
constraints [1] is the existence of many physically equivalentariant derivative associated with thé subgroup. In this
theories. These systems are known as gauge or degenergjgy, the gauge—fixing functions for these fields will trans-
systems. Yang-Mills theories, which play an important roleform covariantely under th& group, which would induce an
in the quantum description of the strong and electroweak ingrdered readjustment (dictated by tHesubgroup) between
teractions, are a special case of this type of systems. In ordefie Higgs kinetic energy terfD o, )t (D", ) (Which is re-
to quantize this class of systems, it is necessary to define gyonsible for the existence of unphysical vertices) and the
unique theory through a gauge—fixing procedure. The possyauge—fixing Lagrangian. Except by terms that fix the gauge
bility to quantize several physically equivalent Lagrangiansfor the fields of theH group, the gauge—fixing and the
could offer important advantages in practical loop calcula-ghost sectors will become separately invariant under this sub-
tions. To achieve that, the gauge—ﬁxing functions must b%roup, which in turn would lead to a more reduced num-
defined in the appropriate way. The simplest functions whicther of unphysical vertices. In the case of the EWT, which
can be defined are the linear ones, which can depend linearly the subject of this work, the gauge groups of interest are
on gauge and scalar fields [2, 3]. In this paper we are interg — SUL(2) x Uy (1) andH = U.(1), although we will

ested in studying the most general structure of a gauge—fixing|so extend the method to remove some unphysical vertices
procedure for the electroweak theory (EWT), nonlinear injnyolving the Z weak gauge boson.

both the vector and scalar sectors. The motivation to intro-
duce this type of gauges in theories with spontaneous symme- A nonlinear renormalizable gaugB4{—gauge) was intro-
try breaking (SSB) arises from the possibility of removing anduced by Fujikawa [4] three decades ago to remove the un-
important number of unphysical interactions involving gaugephysicalWiGEny vertex Gy, is the PGB associated with
bosons, pseudo—goldstone bosons (PGB), and physical Higgise W * weak gauge boson) of the EWT. This procedure was
bosons, always present in any linear gauge. As will be seefater extended to remove boti =G,y andW =Gy, Z ver-
below, such possibility exists and it is not arbitrary at all.  tices [5]. A more detailed study has been presented in [6].
The main idea concerning the definition of nonlinearThe procedure has been extended to includes certain mod-
R¢—gauges in theories with SSB can be explained as folels beyond the SM [7], and also in the context of effective
lows. In general, one has a gauge gradighat has been gauge theories [8]. In all these works the gauge—fixing func-
broken down to a subgrouff. After SSB, all or part of tions defined are nonlinear in the gauge fields, but linear in
the massive gauge bosons associated with the broken gendne scalar fields. The main goal of this work is to define
ators of G -and consequently, the corresponding PGB- maya R, gauge—fixing procedure nonlinear in both the gauge
become part of some representationfdf Then, we can and the scalar sectors. In particular, we are interested in
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the most general structure of nonlinear gauge—fixing funcef the nonlinear gauge that will be introduced in the next sec-
tions that respect the electromagnetic gauge symmetry. Thesen. A R, gauge—fixing procedure, linear or nonlinear, can
functions will be defined in terms of the electromagnetic co-only affect the structure of the Higgs and Yang—Mills sectors
variant derivative modified to include th& gauge boson. of the theory[The U-gauge is formally equivalent to the
With a gauge so defined, it will be possible to remove all un-gauge in the limit — 0. The equivalence here is formal, in
physical verticeWiG‘fﬂ, WiGEVZ, HWiG;FVy(Z) and the sense that Feynman amplitudes in the two formulations
GzW=*GT,v(Z), with Gz and H, the neutral PGB, and the are equal in the limit — 0 is taken before the Feynman
physical Higgs boson, respectively. It will be shown that, asintegral is performed. See in Ref. 3]. So, we only need to
a consequence of covariance under th¢l) group of the discuss these sectors. The Higgs sector of the EWT comprise
gauge—fixing functions, all charged particles satisfy QED-the Higgs kinetic energy term and the potential, which can be
like Ward identities. written as

A gauge of this class was used in a loop calculation in
Ref. 9. In this paper we take one step forward and present a Ly = (Due) (D) =V (', ), 1)
comprehensive study which comprise explicit expressions for . ey ) )
the Lagrangian of the Higgs and Yang—Mills sectors, includ-WNeré¢' = (¢, ™) is the Higgs doublet with hypercharge
ing the ghost one. Another point which will be treated with Y =1 D” is the covariant derivative in the_fundamental rep-
some detail in this paper is the most general structure of thEesentation of thé U (2) x Uy (1) group, given by
ghost sector that arises from the BRST symmetry [10]. As we ig .. g
will see the BRST symmetry play a fundamental role when Dy, =0, - 5T1WZL — 5 Y By, (2
one introduces a nonlinear gauge fixing procedure because
the Faddeev—Popov method does not work in this case. It revhere W and B,, are the gauge fields associated with the
sults that the Faddeev—Popov method [11] does not lead tgroupsSU; (2) andUy (1), respectivelyr* are the Pauli ma-
the most general renormalizable action, since it can not yieldrices, beingy andg’ the corresponding coupling constants.
four—ghost interactions, which are allowed by the BRST sym-The Higgs potential has the following renormalizable struc-
metry, and by the power counting criterion of renormaliza-ture
tion theory. It results that in linear gauges of the favty;, ; 2 4 ¢ 2
the Faddeev—Popov method works well because four—ghost Vel o) =u (o) + Me'e)”. 3)
interactions can not arise from loop effects due to the exis-

0 __ ; 1 p -
tence of antighost translation invariance, that is, invariance After SSB,¢” = (v + H + iGz)/v/2, with v the vac
under the transformatiofi® — C% & ¢ with & stands for  Yum expectation value of the Higgs doublet. For subsequent

antighost fields, and* arbitrary constant parameters. In this discussions, itis convenient to write the Higgs kinetic energy

case, the antighost fields appear only through their deriva'™m as follows:

tives, so translation is a symmetry of the theory. However, in

the case of nonlinear gauées, thi;/invariance iglost due to the (D“(’D)T(D%) = Luwr+ Luic, “)
presence of a term of the formeAb“ in the gauge—fixing \here

functions. That term would be responsible for the presence

at one—loop level of four—ghost interactions. This means that Lirl = 1[(13“ + DM)GMT[(DH + D“)G*V;,]
renormalizability become ruined if it is used the Faddeev— 4

Popov method with this type of gauge—fixing procedure. It g% . _

is, therefore, convenient to give up the Faddeev—Popov ap- * ?WM W (" + GwGiy), ®)

proach, and instead build up the most general action consis- 1 _ e o = ) o
tent with the BRST symmetry and renormalization theory. In Lz = 1[(D;L + D) T [(D* + DH1)"]
the following, we will adopt this point of view.

The paper has been organized as follows. In Sec. 2 we + i[lewo*(Dﬂ + ﬁH)G%
present a brief review of the bosonic sector of the EWT. We 2V2
will take advantages of this to present our notation and con- — WO (DM + DHT)G—
. . . . o w
ventions. Sec. 3 is dedicated to discuss the structure of a ~ A
nonlinear gauge for the EWT, as well as its dynamical impli- + W:[G;V(D“ + DHTY0

cations on the gauge invariant Lagrangian of the theory. In

_ -+ (put BYAWACLS
Sec. 4 conclusions are presented. W, Gy (D*T + D). (6)

On the other hand, the Higgs potential can be conveniently

2. Preliminaries written as

To begin with, we present a brief review of the bosonic sector V(') = Ap? — (™" + Gy, G)]

of the EWT. This is necessary not only to define our notation 0s 0 o

and conventions, but also to analyze the impact on this sector x (7" + Gy Gyy). )
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In the above expressions we have introduced the following hat method is known as the antifield—antibracket formal-

definitions ism, in which the extended BRST symmetry play a funda-
~ mental role [13]. The starting point of this method is the
D, = 0, —ig'By, (8) introduction of an antifield for each field in the theory. It is
D —a —iaw? ) assumed that the dynamical degree of freedom of the gauge
i w W system are characterized by the matter, gauge, glagst (

@_ntighost C%), and auxiliary B¢) fields. The original action,
which will denoted bySy, is a functional of matter and gauge
Igj]elds only, but this configuration is extended to include the
ghost fields because they are necessary to quantize the theory.
A ghost for each gauge parameter is introduced. The ghost
fields have opposite statistic to that of the gauge parameters.
To gauge fix the theory and also to quantize it, it is necessary
to introduce the so—called trivial pairs, namely the antighost

Notice that these operators contain the electromagnetic ¢
variant derivativeD;, = 0, — ieA,. The combinations of
these operators that appear in the Higgs kinetic energy ter
are given by: D* + D* = 2DF — (igeaw /ew)Z* and
Dt 4+ Dt = 201 — (ig/cw ) Z", wherecy = cos Oy and
cow = cos20y,. This means that any term containing the
first of this combinations will transform covariantely under
theU.(1) group. Notice that th&€ 5 - Lagrangian contains . - .
a bilinear term in the weak gauge bosons and the PGB. It ignd auxn|a£y f|elds.. .We Ifﬁ).A un over all these f|eIQS.

a well known fact that one of the main purposes of the lin- °f_e?‘0h‘b ,Aan antifield®’, is introduced, with gpposne
ear gauge—fixing procedure [3] is to eliminate these terms vigratistics toﬁ gnd a ghost number equAaI @}.L((I). ) -1,

a surface term. The main goal of this work is to introduceWheregh(@ ) Is the ghqst ngmber ob~, which is 0 for

a nonlinear gauge—fixing procedure that allows to eIiminaté“aFter’ gauge, a_nd auxiliary f|eld§1 for_ghosts and-1 for .
not only these bilinear terms, but also the maximum numbe?nt'ghos'@' !n this extended conﬂguraﬂoq space a symp!ecﬂc
of unphysical vertices appearing in the; » Lagrangian. structure is introduced through left and right differentiation,

We now turn our attention to the Yang-Mills sector. In defined for two functional§” andG as:
terms of the operatab,,, the corresponding Lagrangian can (F,G) = oF 9G  o.F 9G (11)
be written as follows: ’ IPA 90% 0% 0PA

1. 1 i i i
Lyns = —ZW,LW“W _ ZBMVBIW In particular, the fundamental antibrackets are given by

(@4, 05) =65, (24, @°)=0=(23,2%). (12

1 . . . .
= —=(DW,f = DLW HH(DrWH — DYW ) o : . ,
2 The extended action is a bosonic functional on fields and

1 1 ) antifields, S[®, ®*], with ghost number zero, which satisfy
I [ Hy

15mZ 1 Fw " =g [SWF/‘” tewZuy the master equation defined by

-+ -t —pyptv
W =W W W, (10) (5.5) =225 a8 _, 13)

004 00
This Lagrangian is manifestly invariant under the electro-
magneticU, (1) group. It should be remember that a linear
gauge—fixing procedure spoil such symmetry in the charge

The antibracket serves to define the extended BRST
Hansformations as follows:

sector, since it introduces the ted@pW*#, which does not SpdA = (S, 04) = — 95 (14)
transform covariantely. The main goal of this work is to ’ oP*’

define the propagator of tHéij field without spoiling the 9.5

U.(1)—-gauge symmetry of the charged sector. opPy = (5, 0%) = a:}ﬁa (15)

) ) We can see that the extended action is invariant under BRST
3. AU.(1)-covariant nonlinear R.—gauge symmetry as a consequence of the master equation, since its
variation is given by)S = (S, S). Not all the solutions of the
master equation are of interest, but only those called proper
80Iutions [13]. A proper solution must make contact with the
pitial theory, which means to impose the following boundary
ndition onS:

3.1. Structure of the BRST invariant action

The main goal in the classical study of a gauge system is t
find its gauge algebra, which consists of certain relations thd
must be satisfied by the gauge—structure tensors of the theoﬁ?
In s_imple gauge systems, as Ya_ng—MiIIs theori_es, itis easy to S[®, 3*]|p+—0 = So[, (16)
define the gauge algebra, but it can be a quite complicated

problem for most general gauge systems. In the last year, @here ¢ runs only over the original fields,e. matter and
powerful technique based on the antifields Batalin—Fradkin-gauge fields. The proper solutidh can be expanded in a
Vilkovisky formalism [12] has been developed to deal with power series in antifields:

this problem and also with the issue of covariant quantiza-
tion of gauge systems, which constitutes the ultimate goal.

S[®, d*] = So[¢] + (652D + ..., (17)
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where in the series appear all gauge—structure tensors chaeneral, the nilpotency afp, only is guaranteed on-shell,
acterizing the gauge system. In this sense the proper sae. only after using the equations of motion, but in the case
lution S is the generating functional of the gauge—structureof Yang-Mills theoriesé%w = 0 even off—shell.

tensors.S also generate the gauge algebra through the mas- We now proceed to define the most general fermionic
ter equation. So, classically a gauge system is completelfunctional & for the EWT, consistent with the renormaliza-
determined when it is established the proper solutipand  tion theory. In this case, the gauge grougig, (2) x Uy (1).
calculated the master equation, which gives the relations thathe most general renormalizable functionalwith ghost
must be satisfied by the gauge—structure tensors. In simplestimber—1 can be written as

gauge systems, as Yang—Mills theories, a solution of the mas- ¢

ter equation is given by \IJ:/d4$[éi(fi+§Bi+6ijkc_1jck)+é(f+§B)], (26)

2
S[@, "] = S[g] + (3527) @} (18) .
where f* and f are the gauge—fixing functions associated

This action is bosonic and has ghost number zero, as it iwith the groupsSU,(2) andUy (1), respectively. They are
required. It is easy to show that this action is a solutionrestricted by renormalizability to be, at most, quadratical
of the master equation, and that it reproduces correctly th&unctions of gauge and scalar fields. The bosonic congtiant
well-known gauge algebra of Yang—Mills theories. the so—called gauge parameter, in general one for each group,

We now turn our attention to the quantum analysis of thebut we have used the same for simplicity. Notice that the term
gauge system. To quantize the theory, one first needs to fik’*C*C7C* does not exist in the Faddeev—Popov method,
the gauge. Since the extended action is degenerate, it can rthbugh its presence is necessary to get renormalizability. Us-
be quantized in a direct way. Besides, the antifields do noing the above BRST transformations, we obtain for the action
represent true degrees of freedom, so they must be removég,, V:
before the quantization of the theory. They can not be simply _
equaled to zero, sinc8, is degenerate. However, one can Sp. U = / d41,{§BiBi + (fi + 2€ijkcjck)Bi + §BB
remove the antifields through a nontrivial procedure, and at 2 2
the same time lift the degeneration of the theory. Following
Batalin—Vilkovisky [14], the antifields can be eliminated by
introducing a fermionic functional of the fields only,[®],

+ fB - Ci(sf') — C(sf) — éiéicicf}. 27)

with ghost number-1, such that Since the auxiliary field$3* and B appear quadratically,
they can be integrated out in the generating functional. Since
o+ - 2YIe] (19)  the coefficients of the quadratical terms do not depend of the
A folige fields, their integration is equivalent to use the corresponding

Notice that in this case it is not necessary to distin-€quations of motion in the gauge—fixed BRST action. After
guish between lefi— and right—differentiation. In defin- doing this, we obtain an effective action defined by the fol-

ing a gauge—fixing procedure, the presence of the trivialowing effective Lagrangian

pairs, C* and B®, is necessary since the only fields with

ghost number—1 are precisely the antighost ones. Not- Legf=Lewr +Lp+Lr, (28)

ing that (§p®4)®% = (659°)(0V[®]/004) = 65, VU[], _ o ,

the proper solution takes the form WhereL_EWT is the gauge mvanan_t glectroweak .Lagr_anglan,

and. 5 is the well-known gauge—fixing Lagrangian given by
S[®, 60 /06D] = S[p] + dp, V[D]. (20) ! 1
7 £ 2
This is the gauge—fixed BRST action, which is invariant un- Lo 28 7 2€f ' (9)

der the usual BRST transformation [10] defined by On the other handZy depends on the ghost and anitghost

g, A = DabCb (21) fields in the way
vt 7 ’

= —it? C? i i A 2 ik pigs
(53\1,1/),” ’Ltmnc Un,s (22) Lp=—C (5Bq,f')—c(5B\pf)_g€’ka C*Ck

1
dp, C* = —§f“”CC”CC, (23) D) o
~ + < — 1> ctercrer. (30)

65,0 = B, (24) ¢
Sy B =0, (25) It should be noticed that the last two terms in this expression

are not present when it is used the Faddeev—Popov method.
wherey,,, stands for matter fields, ambzéabau—gf“'b%ﬁ The third term arises as a consequence of integrating out the
is the covariant derivative in the adjoint representation of theauxiliary B* fields. We are ready now to discuss the structure
group, beingf*° the corresponding structure constants. Inof the gauge—fixing functiong’ and f.
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3.2. The gauge—fixing functions Using these expressions, we can write the gauge—fixing func-

] tions as follows:
We now turn to discuss the most general structure of the

gauge-fixing functiong’® and f. The general structure of

_ 7
the nondegenerate Lagrangian has been discussed in previous fr= DMWM - f%‘?o*G% (39)
section. Then, we only need to present explicitly the gauge— p
fixing functions and use the general expressions given by 7 =0,2" —EMzGz, (40)
Egs.(29) and (30) to construct ti; and £ Lagrangians. A= 8, A", (41)

Our main purpose is to define nonlinear gauge—fixing func-

tions that allow to remove the maximum number of the un- o

pysical vertices appearing in the Lagrangiy». Itis clear ~ Wheref™ = ,(fﬂT- We can see that in virtue that the opera-
that the sole type of gauge which allows to eliminate all thesd®r D, contains the electromagnetic covariant derivative, this
vertices is the unitarity gauge, but it is a not manifestly renor-dauge—fixing procedure is covariant under th&1) group.
malizable gauge. This gauge is defined for the massive gaudd'e LagrangiarC  takes then the form

fields using only the PGB as supplementary conditions. In

this procedure the gauge—fixing functions posses the Lorentz L =Lagrv +Lars + Larsv, (42)
andU. (1) symmetries. This is a relevant property which we

will adopt in order to define &:—gauge that allows us to re- \yhere

move the maximum number of unphysical vertices, we

adopt as fundamental criterion Lorentz and electromagnetic O T — 1 2
covariance to construct the gauge—fixing functions that de- Lorv = _E(DVW ) (D W) — i(auz )

fine the propagators of the charged massive gauge bosons, 1

Wui. Besides, these gauge—fixing functions must satisfy the — 7(31“4#)2, (43)
power counting criterion of renormalizability, which means 2¢

that they would depend, at most, quadratically on the gauge IR T VI P SR,

and scalar fields. Taking into account these considerations, Lors = 9 ¥ Gy Gy — §mZGZ’ (44)

we introduce the following gauge—fixing conditions: 09 0w O

, . ig o Lersv = ﬁ[@ Gy (D W) — o Gy (D, WTH)]
['= (890, — g ST BYWH 1 €[N — i) gy
) o L +mzGz0,2". (45)

- (Z)ZL)(TZ + 1979 + 0¥ ol I ), (31)

- " ig' 4 ; Some remarks concerning the implications of this
f=0.B" + 57(‘9 P — dop); (32) gauge—fixing Lagrangian on the Yang-Mills and Higgs sec-

tors are in order. First of all, notice that the teffp ry not

nly define the propagators of the gauge fields, but also intro-
aﬁuce nontrivial modifications in the Lorentz structure of the
trilinear and quartic vertices appearing in the Yang—Mills La-
grangian. Explicitly, the vector sector of the nondegenerate
éheory takes the final form

where ¢ = (0,u/v/2). The conventional linear gauge is
obtained from these expressions by putting equal to zero
terms proportional to the facte?/. Notice thatf is linear in

the fields, whilef? are nonlinear in both the vector and scalar
fields. Due to this, not only the vertices of the Yang—Mills
and Higgs kinetic energy term would be affected, but also th
Higgs potential. To clarify this point, it is convenient to write

the gauge—fixing functions in terms of mass eigenstate com£y; + Lory = —§(D#W,jr — Dl,VVljr)T
ponents. For this purpose we define the mass eigenstate fields ) )
as . X (DFWHY — DYWHH) — 122" = L Fu P
Wt =_—"—_(W!Fiw?), (33)
B \/ﬁ( w ) —ig sWFW—i—cWZW—I—ig(WJWj — W;W;)}
Zy = cwW, — swBy, (34) 1 B
X xWHFWT — (D, W) (D, W)
A, = swW2+ cwB,. (35) 3
Then, we define _2715(8“”)2 _ %(%Au)z_ (46)
1 .
fizﬁ(fljﬂjﬁ)’ (36)
Notice that the term that introduces modifications in these
fZ =cwf®—swf, (37)  vertices is covariant under the electromagnetic group. Due to
4 3 this, the trilinear electromagnetic vertices satisfy QED-like
[P=swf+ewf. (38)  ward identities. The Feynman rules for this sector are given

Rev. Mex. 5. 50 (4) (2004) 346-352
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by Let us now discuss the dynamical implications of the

N B o wwa Larsy term. This term has an important impact on the un-

Ay (k)W (k)W (k3) — —iel'y,, (ki k2, ks), (47)  physical Higgs sector of the theory. In fact, after an integra-
Zn(kl)Wj(kg)W;(kg) i eDWWYZ (k) ko ks), (48) tion by parts to remove the bilinear terms we obtain

Apn
+y— - 2NWWAA 2
AQABW/\ Wp — —1e Faﬁ/\p s (49) EHKQ"’EGFSV:(@M(PO*)(8#900)"’4i2 ZMZ#(PO*QOO
AaZsWiW, — —iegewTWHAZ, (50) ; v
+—7"(H09,Gz—Gz0,H
ZaZgWiW, — —ig?cy TV 22, (51) ey 2 HOuGz =G0, H)
WHWSWiW, — +ig T W W, (52) +iv2g(W,f Gy 0" =W, G0 "), (60)
where We can see that the unphysical vertid&s>y v, WGw Z,
1 HWGw’}/, HWGwZ, GzWGw’y, and G WGw Z ap-
FK‘;,E,VA(k‘h ko, k3)=(ks — k2)ngpr+(k1—ks—=k2)xgpn pearing inL g k2 have been removed of the theory. The ad-
§ vantages of using this nonlinear gauge can be appreciated
1 now. The absence of these unphysical vertices has impor-
ko — k1 + =k , 53 . ) i
+ (k2 vt £ 3)p9n (3) tant consequences in practical loop calculations where one or
2 more external photons are involved [6-9]. In particular, there
LYW 2 (k, k27kS):(kS_kQ)ngp)\"l‘(kl_kS"‘?WkQ)/\gpn is a considerable reduction in the number of Feynman dia-
grams. Besided/.(1) gauge invariance is transparent since
(ks — k t%”k; " (54) the theory satisfies QED-like Ward identities.
2 — K1 — ——K3)p9xrn;
§
WAL I 1 3.3. The ghost sector
Faﬁ)\p = Faﬁ)\p = 29(xﬁg>\p ({1~ E

Let us now discuss the implications of this nonlinear gauge
X (Gar9gsp + 9apdsnr), (55) on the ghost sector characterized by the LagrangianUs-

02 ing the following definitions for the ghost fields
Lo = 2gapgne — (1 + W)

1
‘ C* = (C' 5 C?) (61)

X (gaxgsp + Gopdpr), (56)
C? = e C3® — sy C, 62
Lo ™Y =29a798p — ap9sr — Gapgrp- (57) v W 62)
CA = swC? + e C (63)

In the above expressions, all momenta are token as incom-

ing. Using these Feynman rules, we can see that the verteyn similar expressions for the antighost fields, we can write
functions of three and two points satisfy the Ward identity g Lagrangian as a sum of two terms:

KT W Ak, ko, ks) = TV W (ko) = TX W (ks).  (58)

Apn Lr=Lr1+ Lra, (64)
Also notice that the only vertex which is not affected by this h
gauge—fixing procedure is the quartic oREWWW. ltis where
interesting to notice that the Eqs.(47-58) are quite similar to A n ~ _
those presented in Ref. 15 in Eqgs.(A.29-A.34,39) within the Lrr=-C" (05, f7) = C7 (054 f7)
context of the Background Field Method technique [16]. —C%(6py %) — CA(dpy f) (65)
As for the Lo g term, it defines the unphysical masses
of the PGB and introduce modifications in the couplings aris-and
ing from the Higgs potential. These terms can be grouped as o
follows: Ly = fzz[(f*(:+ — [ ) (ewCZ + sy CA)
* * 1
—V((PT,(P)+£GFS:)\(U2—LPO 800)4,00 ‘Po_gngZGQZ + (CWCvZ + SWCvA)(f-i-C— _ f—C+)
2 7 A AN— 1+ At o—
—/\(GQ,G*V},)QHML(2A+%)¢0*¢0}G1},G§,. (59) +lew [T +sw fH)(C7CT = CTCT)]

From this expression, it is clear that the gauge—fixing pro-
cedure introduces modifications in the unphysical vertices e A ” "

20— = _ _
+2(1 — Z)[0+C—C+c— + (ewC? + swCH)
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The termL -, does not exist if it is used the Faddeev—Popov4. Summary
method. The variations of the charged gauge—fixing functions

are given by
0y =D, D"ct +ig(Cwc? + swCA) (D, WHH)
; 2
+ (0,074 5 [0 -G GO
Cw 2
+V2(ew CZ 45w CH ™ G,

with 6z, f~ = (6B, fT)T. Notices that these functions trans-
form covariantly under thé&, (1) group. On the other hand,
the variations of the neutral functions are given by

0py [Z =00% +igewd, (W HCT — WHHC™)

(67)

- %gmz(G*V‘VC* + Gy C)

€9 0% 0\ ~Z
+ + o007, 68
2o mz(e™ +¢°) (68)
gy A =004 +ied, (W HCH —WHrC™).  (69)

In this paper we have presented a nonlinargauge for

the electroweak theory. This gauge—fixing procedure was de-
fined on the basis of the BRST symmetry. It was found that
this gauge modifies in a nontrivial way both the Yang—Mills
and the Higgs sectors. In contrast with the conventional linear
gauges, in this nonlinear gauge the ghost sector is manifestly
invariant under the electromagnetic gauge group and includes
four—ghost interactions. At one—loop, the four—ghost inter-
actions are only necessary for off—shell renormalization, but
in two—loop binary processes they would play an important
role in the determination of the correspondifigmatrix el-
ement. The method allows us to eliminate the unphysical
verticesW=GY,y, WG}, Z, HWGY,v, HW*GY, Z,
GZWiG‘ny, andGZWiG‘fVZ, which are always present

in conventional linear gauges. An important feature of this
procedure is that all charged particles of the theory satisfy
QED-like Ward identities, which greatly simplifies the loop
calculations.

We can see that these Lagrangians are invariant under the
U(1) group. Due to this, they contain new vertices notAcknowledgment

present in the linear gauges.
of the verticesC*CT~v is a direct consequence of the
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