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We consider Dirac-supersymmetric interactions, which produce CP-conserving separation of positive and negative energy solutions in the
Dirac equation in order to investigate an alternative to the Kaluza-Klein mechanism. We review conditions under which separation is possible
into free particle and compactified behaviors in different dimensions, with attention to spin degrees of freedom. Wé/$hpaoastant

magnetic field produces such kind of behavior; an explicit treatment is given todhe 8- and 4+ to 2-d breaking cases and the spectrum

is obtained. A dynamical mass-creation mechanism is suggested from the procedure.
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Se consideran interacciones supegdincas de Dirac, las cuales producen la separade las soluciones de engxgositiva y negativa en la

ecuaobn de Dirac que conservan CP, con el objeto de investigar una alternativa para el mecanismo de Kaluza-Klein. Consideramos aquellas
condiciones bajo las cuales es posible la sepamaen paificula libre y comportamientos de compactifiéati con atenéin a grados de

libertad de esim. Mostramos que un campo magico constante produce este tipo de comportamiento; se da un tratamieftd@zrdbs

casos de rompimiento deda 4y 4-d a 2 y se obtiene el espectro. Este procedimiento sugiere un mecanisamicinde creadn de

masa.

Descriptores:Compactificadn, dimensiones, norma, Dirac, supersifizetr

PACS: 04.50.+h; 11.25.Mj; 11.10.Kk

1. Introduction pactification, which assumes dimensions become unobserv-
o . able by closing on themselves at a small length. However,
The Kglu;a-KIem idea ha}s been a promising a_md_ useful %he origin, dynamics, and range of applicability of this pro-
sumption in modern physical research whose aim is the unlfl(':ess have not been thoroughly pursued and clarified, as will
cation of forces. Although no experimental indication exists :

: . . : . be implied from the present work. Indeed, when considering
to presuppose its existence, it remains a useful working h

¥this mechanism, its existence has generally been taken for
pothesis in various theories. The original Kaluza-Klein idea ¥ g y

. ) . ranted but not the causes leading to it.

proposes a fifth dimension that accounts for the electromagg— - ] _ ]
netic interaction in the framework of an extended general N addition, several methods of dimensional reduction
relativity, and thus has succeeded in presenting gravity ang@nd compactification (see Ref. 3 for a review) are known
electromagnetism in a unified picture. Additional dimensionsPUt few account successfully for the particles’ spectrum, rep-
have been proposed to account for the other fundamental if€Sentations and, in particular, for the demand that chiral
teractions. Indeed, this is the underlying aim in applicationd€rmions be obtained to reproduce the quantum numbers of
in supergravity and string theory, where additional compactPhysical particles [4].
ified dimensions of space have been linked to gauge interac- Even when acceptable compactifications are found, there
tions. In fact, arguments based on the supersymmetry breakre multiple choices with similar four-dimensional physics,
ing scale [1] and recent developments in string theory [2)which points at the need of additional feasible restrictions
have opened up the possibility that unification occurs at théo reduce the number of possibilities and increase the pre-
electroweak scale, with the implication that the additional di-dictability. Gauge fields acting on particles is such a physical
mensions might be detected through its effect on gravity atmechanism, and it needs to be examined. The choice of these
millimeter scales. fields is motivated by the already known four-dimensional

Within an ampler view, the question why there are fourones. The self-consistency of these fields should be checked
and not any other number of physical dimensions remain# the next stage of the study of the problem.
unanswered. To investigate this question, one can check To investigate a possible dynamical process that gener-
whether itis possible to construct a model in which additionalates compactification is the main object of this work. We will
dimensions lead consistently to the same four-dimensionaxplore the idea that this compactification is generated by the
physics. gauge fields themselves, which we think more economical. It

In particular, the idea of higher dimensions should pro-is natural to start by considering the Dirac equation, which
vide also for mechanisms in which an assumed larger dimerdescribes basic spin-1/2 fields. Thus, the mechanism pro-
sional universe transforms into the present one, with an exposed should allow for a description of the fermion fields in
pected explanation of the fate of other dimensions. The modhe presence of usual and compactifying interactions. We re-
popular related assumption for this is Klein's idea of com-quire that the latter should not affect the workings of the first
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and the Dirac fields. It is also expected that they conserv@. Separation of Dirac-supersymmetric equa-
the symmetry in the weight of positive and negative energies  tion
so that when these are turned on the vacuum should not be
altered asymmetrically. It is known that such interactions exOur main concern here is to study dynamical compactifi-
ist [5] and that they satisfy a restriction related to the presenceation as a dimensional reduction effect and, in particular,
of the Dirac supersymmetry [6]. the form of those interactions that not only satisfy Dirac-
In this paper we investigate Dirac-supersymmetric in-supersymmetric conditions but also allow for such a mech-
teractions which effectively lead to separation into physicalanism. Specifically, we need a mechanism in which an in-
and compactified dimensions and we find indeed a simpléeraction would confine particles in some dimensions and
instance in which this is possible. This material is orga-keep free-particle behavior in the unconfined (physical) di-
nized as follows: In Sec. Il we review Dirac supersymme-mensions. For this purpose we use as illustrative model the
try which defines some of the conditions for interactions in3+1 — 141 reduction case, studying separation of variables
which a dynamical dimension separation mechanism can bor H in Eq. (4). ThisH can be written in the form of Eq. (1)
possible. In Sec. Ill we investigate separation of the DiracWwith the association
supersymmetric equation using as example the 3+1 dimen-

sional case. In Sec. IV we consider a dimension separation A= b, )
mechanism in which & (1) magnetic field is assumed and 0 0
which produces an effective compactification in some dimen- Q= ( M 0 ) ’ ™
sions. This model is considered in both dtb 2+ (1+1) and ;
a 6 to 4-d (3+1) transitions. In Section V we draw some Qf = < 0 M ) ’ (8)
conclusions from this work. 0 0
2. Interactions in Dirac supersymmetry where

M=0c-(p+C)—iCs, 9)

The basic feature defining Dirac supersymmetric interac- .
tions is the possibility of applying a generalized Foldy- Cr = A; —iEy, I =1,2,3,5and we use here, unless other-
Wouthuysen transformation which brings the usual Diracwise stated, the standard representation for the Dirac matri-
Hamiltonian to a form in which positive and negative solu- ces [7]. The expression for the Hamiltonian in Eq. (4), after
tions separate with equal weight. Explicitly, we assume theapplication of the FWT and after using Egs. (6)-(8), is
initial Dirac HamiltonianH can be written in the form MM+ 2 0 1/2

H=Q+Q + (1) T
] . . o where the equation to solve is
where)\ is a Hermitian operator ar@ is a fermionic operator
such that it and its adjoir®’ satisfyQ? = 0 andQt” = 0, H'U = EV. (11)

and also the anticommutation relations . o .
The equality between positive and negative spectrum, except

o - for a sign, follows from the equal eigenvalues expected for

A} =0, A} =0.

(@A {@hA} @) both terms.

After applying the Foldy-Wouthuysen transformation (FWT) _ The square-operator form of the upper and lower terms of

H becomes [5] H’ on Eg. (10) suggests a simplification by considering the
action of single operators. Clearly, this is permitted whén

1/2 3) is hermitian. It is then is possible to reformulate Eqg. (11) in
' terms of another eigenvalue equation as alternative sufficient

) ] ) ) _condition, linear inM, and given by
An extensive analysis of the interactions that take the form in

Eq. (1) is given in Ref. 5. The resulting ones are given in the M = E., (12)
Hamiltonian (in 4+1 dimensions)

o
H = W({Q,QT} +2%)

wherey is the positive energy spinor componentiokince,

H=oa 7+ asms + ub, (4) ascan be proved, both the upper and lower sideHinn
Eqg. (11) have the same eigenvalues. In fact, this equation is
where valid also in the casé/ is not hermitian and thereforg,
complex, for we only requir€f,|?> = B2 — 2.
71 =pr+Ar(x) +iBEr(x) I=1,2,35, (5) The linear form of Eq. (12) hints at a possible sepa-

ration of degrees of freedom corresponding to different di-
«; are Dirac matrices with; = vov¢, a5 = i3vs, A7(x) and  mensions. The separation of this equation (in the stationary
E;(x) are external arbitrary fields, apds the mass constant, case) into independent components describing different di-
which multiplies the corresponding term. mensionsM = M; + M is limited, for the form of M
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implies that even if we use, say, ifi; potentials with re- the anticommutation relations
strained dependence on the coordinates we generally obtain

[My, M,] # 0. Still, we can find a partial separation of the aiaj + ajo = 2035, (18)
3+1 Eq. (12) into 1+1 dimensional terms and two additional\/vherei,j =0,1,...,d—1andd is an integer. The main re-
dimensional terms (1+1 scalar). We choose the 1+1 spatiahtion that we will use is a recursive formula that provides the
coordinate as, with x; = z, v = y, 3 = 2, and elements of the eved-algebra in terms of thé — 2 algebra.
This is
Ml = Uz[pz + Cz(z)]> (13)
ap=cos@i=( L Y (19)
MQZO'b'[pb—FCb(l‘,y)L (14) 0= o 0 —i ’
where b represents the (&,y) directions, and 0 = 0L ® Gy = < 0 & ) 1<i<d-2, (20)
Cy(z,y) = (Cu(z,y),Cy(z,y)), with dependences of, ’ ' & 0 )7 T ’
andC, as specified. The Anzats R 0 &
Ozd1=01®1=(A 00), (21)
92(2,y) f2(2) A 0 —ii

Oéd(72®1(m ); (22)

leads to the partial separation of Eq. (11) il 0

where the caret denotes the lower-dimensional algebra. The
M, ( }28 ) = ( 511,{;12((?) ) : (16) latter elementy, is obtéined from the definition

) ) ) ag=e HA7200 ayq, (23)
where we have used the diagonal character (in spin space)
of the M, component which allows for cancellation of the and it extends the algebra from ewéto oddd + 1.
gi(z,y) in Eq. (16). We further assume that the upper The Lorentz generator antisymmetric tensors, general-
and lower components share the same solutions, so thied to any dimension, can be deduced from Egs. (19)-(22)
f1(z) = f2(2). Then,E; = —E;’. We note the solutions can and the definition of the matricesy® = 3, 7 = a;. They
be interpreted as positive and negative chirality componentéan be shown to be
in 1+1 space. The other part of Eq. (11) has consequently theUW_ i

T 4
form 2[7 Y]
a (9@ )\ _( (Ee— Egi(z,y) (17 0 iy ®& iop®l 0
\gzy) ) \(B.+E)g(zy) ) = 1®6% o3@a; |, 1<i<d—1, (24)
0 d,

and thez dependence can be divided out. Thig part plays
the role of a scalar interaction in+ 1 space. The absence
of the f;(z) functions implies the eigenvaluds. depend on
the ; solutions only througtz, . Thus, this separation is only the transpose of those above).

partial yet sufficient for our purposes because it decouples at N general, by investigating the general structure of
least one group of dimensions. It is clear that the separd?!! Supersymmetric terms, one can also show all Dirac-
tion depends on the presence of a diagonalizable componefitPersSymmetric interactions have the form

as My, and on the specific spatial dependence of the poten- 1 , .

tials in M, M-, in accordance to the Lorentz index of the Q= 5(01 +io) ®4, (25)

«; matrices. In this case, it is the need to account for the

spin degree of freedom that requires the additional condition Qf = 5(‘71 — o) @, (26)

that M be diagonalizable. We also find that in passing fromwherecj represents any interaction in the— 2 space. With

the higher dimension to the lower, the original spin is reinter-, . L
preted and forms the chiral components in the lower dimen'E.hIS characterization one may proceed from the transforma-
sion tion that departs from Eq. (1), goes througlh in Eq. (3)
' and leads to Eqg. (10), an expression containing)of Qf
and)\, and use the preceding section to select interactions that

allow for dimensional separation.

where the rows’ labels are given and the column labels follow
the same order (the elements below the diagonal are minus

4. Dirac supersymmetry in higher dimensions

A thorough analysis of the process of Dirac-supersymmetric

Hamiltonians breaking into lower dimensional componentss. U(1) magnetic field as Dirac-supersymmetric
requires an understanding of a Dirac-matrix construction  jnteraction

which exhibits Dirac supersymmetry. This analysis is per-

formed in detail in Ref. [8] and here we reproduce some useA magnetic field derived from a gener&l(1) interaction

ful results. In general, a Clifford algebra is defined throughsatisfies both conditions of Dirac supersymmetry and
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separability. It is possible to describe it in any dimensionWhen ¥, is separated into cylindrical coordinates

in terms of an expression far of the form of Eq. (5). U, = u(p)et*=*¢"™m? the radial component(p) satisfies
: 1 2 B2
5.1. 341 — 1+ 1reduction u U — m—Qu _C pPu
p p 4
Inthe3 + 1 dimensional case a constant magnetic field along + (2uE,, — k% —eBm)u =0, (37)

the Z direction
with corresponding energy

1
A=—-—-rxB (27) k2 eB
2 Epr = o=+ =200 + 14 |m|+m),
corresponds to the real elements in Eq. &) = eAj, a a
I = 1,2,3, wheree is the U(1) coupling constant (corre- n,=0,1,..., (38)

sponding to the electric charge) and thecomponents are wherem, n, are quantum numbers relatedfg and the ra-

1 1 dial motion, respectively. The Landau levels emerge not sur-
A1:Ax:—§yB, AQ:AyzixB, A3=A,=0. (28)

prisingly.
o ) The solution of the relativistic Eq. (35) follows from
The Hamiltonian’ (Eq. (3)) results in Eqg. (36), which differs from the former, up to factors, by the
1/2 spin operator. Eq. (35) constitutes only a necessary condition

H' = a|(ex- 7")2 + MQ] (29)  and has in fact more freedom in the solutions than the orig-

inal Eq. (11) (albeit the energies are the same, for the latter

That the magnetic field interaction chosen in Eq. (28) Sepaéquation is obtained from the modified Foldy-Wouthuysen

rates in the sens/e. of Egs. (16) ‘:’l,nd (17) can be seen from trl‘ﬁitary transformation). The eigenfunctions from the orig-
congtrugtlon Ot n Eg. ,(29)'H is composed from a term inal equations are worked out in the Appendix. The results
multiplying the unit matrix and the term can be obtained by using the eigenfunctions of the total angu-
lar momentum componetit, + S, which leads to equations

of the form of the massless (= 0) (A.7)-(A.8) or massive
(A.25)-(A.28). The energy eigenvalues are

(- m)? = ayamm; (30)

1 1
= (Glaw, az} + o, ag])mim; (31)

E = \/k2 +2eB(n, + m+ 1) + 2, m >0
n,=0,1,... (39)

=TT+ io;;mm;, (32)

where use has been made of Egs. (18) and (24). The term
E=+k242eBn,+pu2, m<0 n.=1,2... (40)
1035 = 11 ® 047575, (33) )
e e 5.2. 54+ 1 — 3+ 1reduction
where Eg. (24) has been used, gives rise to a separable equa- ) , )
tion, which will be shown explicitly in the Appendix. fﬁ‘e pro dc,ed“re_ we Iha‘(’je f°,”°""|ed n Eqi- (29)-(34) is valid
Squaring ofH’ of Eqg. (29) in Eq. (11) and further reduc- or any dimensional reduction. In the 5+1 case

tion lead to the equation A=A, =0, Ay=A3=0, A;3=A, =0,
(p-p—2i6A~V+62A-A+2€SZB)\I’ZEQ\I/, (34) A=A :—EUB As = A, = luB (41)
U 2 i v 2 b

whereS, = (i/2)y172 is the spin along:. This equation \here we have chosen &- coordinate labels
can also be written in terms of the orbital angular MoMentuN .y, uy, us, ug, us) = (x,v, 2, u,v). Generalized terms;
z-component., = —i(J,x — 0,y) as are then obtained from Eq. (5), using the corresponding

1 terms defined above and tlig = 0. The HamiltonianX’

[-V? + 1623%2 +eB(L, +2S.)]W = E>¥, (35) [EQ. (3)] results in
1/2

wherep? = z2 + 32 is the radial cylindrical coordinate. As H' = aol(ec-m)* + (armn)? + )"/
can be seen in the Appendix, the separation of this equation (I summed over 4,5). (42)
is manifest within these coordinates. This equation has the
well-known non-relativistic¢r) Schivdinger-equation coun- Theb + 1 — 3 + 1 case equation, counterpart to Eq. (34),
terpart of a scalar particle in a magnetic field of magnitudeWith the magnetic field in Eq. (41) has the form
B [9]1 [—VQ — 83 — 812) + 36232p2 +eB(Lys + 2545)]

1
—(=V?*+=e’B*? + eBL.)V,, = B, V. (36)

24 4 xU = E*¥, (43)
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where now still needs further generalization to relate it to a universal in-
teraction. Fields generated by the hypercharge interaction to-
gether with non-abelian ones as the electroweak interaction
Lys = —i(8yu — Oyv), or gravitational fields are feasible candidates. Some ideas on
) possible constraints on allowed dimensions and interactions
Sys = iﬁws, are found in Ref. 10. In addition, there is room for addi-
2 tional types of interaction producing compactificaction. The
and the spectrum has a similar form to Egs. (39)-(40), withl7(1) magnetic field chosen here preserves translational sym-
the transformatiork? — k2, k representing the 3-mo-  metry which implies the choice of coordinate around which
mentum, which gives a contribution to the energy as a freeparticles rotate in the extra dimensions is arbitrary. Further
particle kinetic term. This is but a consequence ofdbeou-  characterization of the interaction may lead, for example, to
pling caused by the fact that the interaction acts purely ora choice of this point in the compactification plane, which
the u, v dimensions but leaves the other free. This in turnwould violate Poincdr invariance in the extra dimensions,
results from the form of the interaction which separates thavithout direct influence in the “real” ones, just as occurs for
equations corresponding to Egs. (13) and (14). branes in string theory.

Thus, we obtain a tower of states, similarly to the Kaluza-  Another outcome of this work is a possible mass-creation
Klein mechanism, but with different associated radii (up tomechanism. We have shown that a mass of a free particle
degeneracy), the minimum being occupied by the groundn 4-d space can be generated through an interaction acting
state. on 5 and 6 dimensions.

The form of Egs. (39)-(40) suggests that the magnetic The main lesson from this paper is that it is possible to
field extra-dimensional parameter may be interpreted as eonstruct a compactifying interaction which features dimen-
mass term in “real” dimensions. Therefore, we note that aional decoupling, at least for the “real” dimensions, and
mass-creation mechanism emerges here, with the masses ayhich may have consequences in terms of parameters as the
pearing with a characteristic spectrum. This mechanism isnass, but otherwise leave the same physics for free physical
possible only in a reduction from evehno d — 2 dimensions.  particles. It should be interesting to consider the presence of

Although other Dirac-supersymmetric interactions leadinteractions inside “real” space.
to compactification, they elude a simple solution treatment  Further work should then deal with non-abelian fields,
as obtained with the magnetic field. consider other separable interactions, additional multipoles
of the magnetic field, and gravitation, and try to relate them
to cosmological models, for these fields should appear self-
consistently.

In this work we have presented a mechanism for compact-

ification through gauge fields. This mechanism allows forAcknowIedgments

independent behavior in some dimensions but forces motion

of particles in the other dimensions to be confined, whichThe authors acknowledge support from DGAPA-UNAM

amounts to an effective compactification (driven by a physthrough projects IN127298, and IN118600, and CONACYT

ical process). Simplicity and succinctness are gained fothrough projects 32723-E, and 42026-F. One of us (J.B.)

compactification can be ascribed to a field rather than beinghanks A. de la Macorra for helpful discussions.

assumed. Also, the familiar gauge fields can produce this

mechanism, without need to invoke others. Although in thiSAppendiX

work we have concentrated on the didaétic1 — 1+ 1 and

novel5+1 — 3+1 cases, this mechanismis applicable to any|n this Appendix we solve directly Dirac’s equation

even-dimension reductiafi+ 2 — d. In addition, this mech- 5y — £ for a particle in a constant magnetic field in the

anism is general in the sense that it is valid for fundamentalj case as a complement to Egs. (35) and (43), for the mass-

spin-1/2 matter fields. This mechanism is generic in the sensgss and massive cases.

that a homogeneous field with a constant direction in space

will lead to the same confining effect, and free behavior inmassless case

the parallel direction, albeit the orbits may be different from

the Landau ones. We use the chiral representation for the Dirac matrices. Then,
The results obtained are general for the compactificatioithe 3 + 1 component of the Hamiltonian in Eq. (4) leads to

presented can be relevant both independently of or in relation o (=iV — A) 0

to curved space. In the latter case, it is assumed that these( 0 o

. X oo o-(—iV—-A)

interactions could be eventually related to the gravitational

field acting in the additional dimensions. where, from Eq. (28), a constant magnetic alénig given
However, this work remains exploratory for it concen- by A = (1/2)B(—y, z,0). We use the constants of the mo-

trates more in showing such a mechanism is possible and ori®n to obtain and classify the solutions. These comprise a

2 2 2
PP =u? +07,

6. Conclusions

) U =EU, (Al
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component of the total angular momentum, the momentumyith energy
both in thez direction, and, of course, the Hamiltonian. In

1 L 1 _ 2
the massless case the chirality is also a constant of the motion E = /I +2eB(n. +m +1). (A.10)
and we use it to separate Eg. (A.1) into its chiral componentsThe global coefficients i, above and the wave functions

From the form ofys in the chiral representation

I 0
the upper and lower parts @f
(W
v (5) 9

correspond to its positive and negative chirality components,
respectively. We now consider the upper, positive chirality
part while it is clear that the other part is obtained with the

solution interchangd? — —FE. Given the constants of the
motion we propose as Anzats far;, using cylindrical co-
ordinates(p, ¢, z), separation into a plane wave along the
direction with momentunt,, a.J, eigenstate with associated
angular momentum + 1/2, and radial functiong (p), g(p)
along thery plane

_ fp)et=zetme
Uy = < ig(p)etkeilmis ) - (A4)
With this form for ¥, Eq. (A.1) becomes
+1 B
kof +9' + m79+65pg=Ef (A.5)
B
—kzg—f’+%f+e§pf:Eg. (A.6)

From Eg. (A.5)f can be expressed in termsand its deriva-
tive. By substituting thigf into Eqg. (A.6), and carrying out a
similar procedure fog from (A.6), one obtains the decoupled
equations

1 m? e2B?
'+ =f = —=f- p°f
p p 4
+(E? — k2 —eB(m+1)) f=0, (A7)
1 m+ 1)2 e’ B?
g// 4+ = /I ( > ) g— ,029
p p 4

+ (E2 — k2 - eBm) g=0. (A.8)

below are arbitrary. To normalize the wave function one uses
the cylindrical radial-component integral

oo

[dwre L)
0

0 n#n'
=10 4 m) ( n+m ) L (ALD)
n
Form+1<0
Fp) =almle= 2L (o)

op) =~ e L ),

n.=1,2,..., (A.l2)
with energy

E = \/k? + 2¢Bn, (A.13)

We see that in the latter case we have an increased degenerac
on them values which we ascribe to the cancelling contribu-
tions to the energy of the angular motion and its magnetic
moment opposite to the magnetic field. We give here the so-
lutions in more detail than in Refs. 11, and 12 in particular
for states with negativer + 1. An additional polarization op-
erator exists that commutes with the Hamiltonian, but it is not
different from the chirality in the massless case (see below).
The negative chirality componeiit,

The solution of these equations is constructed with generalwith energy

ized Laguerre polynomials of the form

L‘nn:l(xz)v = eB/Qp,

and each solution leads to the following eigenfunctions and

energy eigenvalues [9] (see also Egs. (37)-(38))skarl >
0

F(p) = almlem= PLpl(a)
V2eB

m+1| —z2/2 7 |m+1 2
V2D plmtt] a2 pjme1] (42)

g(p) = ET k.

(A.9)

h(p)@ikzzeim¢
\112 = ( ij(p)eikzzei(erl)d) (A14)
has the solutions farn +1 > 0
h(p) = almle==*/2Llm (22),
v2eB .
j(P) — ﬁx\m+lle—a,2/2L|nn:+1\($2)7
n,=0,1,..., (A.15)
E = \/k2 4+ 2eB(n, +m + 1). (A.16)
andform+1<0
hip) = almle=" 2L (22)
. 2€B m —z? m
3(p) = =gl e 2L @2),
nr=1,2,..., (A.17)
with energy
E = \/k? 4 2eBn, (A.18)
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Massive case only for f is obtained; by using similar procedures for the

} ] other functions one gets for alll
The massive equation

o-(—iV—A) 0 g e? B2
[( 0 _U.<_N_A>>+uﬂ] '+ fffff o
x¥ = EW. (A.19) + (E2 — k2 —eB(m+1)—p®) f=0, (A.25)
can be solved using the same quantum numbers exceptthat, 1 |, (m 4 1)2 e?B? ,
the mass term (in the chiral representation) 9 +; T2 9= P9
P ( 0 —Of ) (A.20) + (E2 k2 —eBm— ) g =0, (A.26)
2 2
mixes the chirality components included #: W, in B+ h’ - —h — B p°h
Eq. (A.4) and¥, in Eg. (A.4), which leads to the slightly P’ 4
more complicated four coupled radial equationsffpg, h, j + (E2 —kZ—eB(m+1)—p*)h=0, (A27)
+1 B
sz+g’+Lg+e—pg—uh:Ef, (A.21) A (m+1)? -76232 2
p 2 J+-J ] p°J
5 p p 4
—k.g— '+ %f + eEpf —uj=Eg, (A22) + (E* -k —eBm — ) j =0. (A.28)

—k.h—j — Lﬂj — e§pj — uf = Eh, (A.23)  Tofurther classify the solutions we choose the additional op-
P

2 erator commuting with the Hamiltonian [12]

bt b = h—eBoh g = B (A24) ,
p 2 —XY-m, w=-V+4+eA 3=y,

These equations decouple into four equations for each func- M

tion. For example, by solving fgrin Eq. (A.22) and for in

Eg. (A.23) and substituting them into Eqg. (A.21) an equationwhich can be calculated frol - 7¥=(FE~5—puy570) ¥ and

| eigenvalues/E? — u2¥.

The solutions form + 1 > 0, with X = 1 are
g(p):&x‘m"‘”e—m2/2L|m+1‘(xz)
kz + \/ E2 - ,U/2 r ’

_ /T2, 2 V2Be (—E++/E2—
h(p)zwx‘we_ﬁﬂl)m'(ﬁ) ( ) lmle_f”z/QLll“:‘ (%), n,=0,1,..., (A.29)
H H (k/'z"" V EQ_MQ)

f(p) = emle= ALl (),

while for¥X = —1

fp) = almle P 2L ), g(p) = —YEBE pimitl etz il g2y,

k. —\/E?— u?
E 2,2 V2Be E+\/E2—,u2
)= P B ey, )= ( )x'%-m”%gfw%, n=0.1.... (A30)

i (ks + VE=12)
Form+1<0,Y=1
—z2 m
f(p) \m| /2L|n7‘_1(.132),

k., — Ry — 7 — 7 E? _:u’ \m+1| —332/2L|m+1| b — —E+ Vv E? _'u’2 [m| —332/2L|m‘ 2
g(p) \/ﬁ ( ) (p) L € € nr—l(‘r )’

B4+ 42+ k. \/E2 -2+ FE (sz +VE? — ;ﬂ)

2Bep

ilp) = almHle= s 2LmHl(02) o, =12, (A3D)
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and forY = -1

—z2 m
Fp) =almle==* 2L (a2),

T

g(p) _ k. + \/mx\nz+1|e—m2/2L|m+l|(x2)
V2Be r ’

) _ -F—/E? - M2x|m‘ef‘r2/2Lknl 1($2)
[ — )

h(p

B? 2 4 ke JE2 =2+ E (ke + B2 = 1) )
ilp) = — NTT glmttle=e 2LImHt 2y p, =1,2,..., (A.32)
ep

with energies as above, except that these are modified with a

mass 'Ferm, and th_ey are given in Egs. (39) and (40). the matrix which anticommutes with all6-,,’s. Each pro-
This 4« massive case can also serve to solve the 6-jected equation can be written in terms ofd4matrices.

massless equation with a generalized magnetic field. INag these satisfy the same relations as those contained in
deed, we divide the extended Dirac Hamiltonian equation=q, (A.19), with the mapping @-— 4-d with

into the 3- and 4- and B-components

Li4ap—a-m  (1+an)arm — b,
(a-p+am)¥ =EV (I summed over 4,5), (A.33) 2 2
one obtains the corresponding set of equations
wherer; = pr + Ay, and theA; are obtained from Eq. (41). as (A.21)-(A.24) (and similarly for the other chirality part).
The 34 space components appear with bold type. This mass- The equations solved here can also be useful to solve the
less equation can be projected into the two chiral componenistermediate Eq. (12), and reproduce in fact the separation of
by (1/2)(1 £ 77), with vz = —iagag [Egs. (19), (21)] being variables as described in Sec. 3.
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