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Compactification with U(1)U(1)U(1) magnetic field within Dirac supersymmetry
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We consider Dirac-supersymmetric interactions, which produce CP-conserving separation of positive and negative energy solutions in the
Dirac equation in order to investigate an alternative to the Kaluza-Klein mechanism. We review conditions under which separation is possible
into free particle and compactified behaviors in different dimensions, with attention to spin degrees of freedom. We show aU(1) constant
magnetic field produces such kind of behavior; an explicit treatment is given to the 6-d to 4-d and 4-d to 2-d breaking cases and the spectrum
is obtained. A dynamical mass-creation mechanism is suggested from the procedure.

Keywords:Compactification; dimensions; gauge; Dirac; supersymmetry.

Se consideran interacciones supersimétricas de Dirac, las cuales producen la separación de las soluciones de energı́a positiva y negativa en la
ecuacíon de Dirac que conservan CP, con el objeto de investigar una alternativa para el mecanismo de Kaluza-Klein. Consideramos aquellas
condiciones bajo las cuales es posible la separación en part́ıcula libre y comportamientos de compactificación, con atencíon a grados de
libertad de esṕın. Mostramos que un campo magnético constante produce este tipo de comportamiento; se da un tratamiento explı́cito a los
casos de rompimiento de 6-d a 4-d y 4-d a 2-d y se obtiene el espectro. Este procedimiento sugiere un mecanismo dinámico de creación de
masa.
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1. Introduction

The Kaluza-Klein idea has been a promising and useful as-
sumption in modern physical research whose aim is the unifi-
cation of forces. Although no experimental indication exists
to presuppose its existence, it remains a useful working hy-
pothesis in various theories. The original Kaluza-Klein idea
proposes a fifth dimension that accounts for the electromag-
netic interaction in the framework of an extended general
relativity, and thus has succeeded in presenting gravity and
electromagnetism in a unified picture. Additional dimensions
have been proposed to account for the other fundamental in-
teractions. Indeed, this is the underlying aim in applications
in supergravity and string theory, where additional compact-
ified dimensions of space have been linked to gauge interac-
tions. In fact, arguments based on the supersymmetry break-
ing scale [1] and recent developments in string theory [2]
have opened up the possibility that unification occurs at the
electroweak scale, with the implication that the additional di-
mensions might be detected through its effect on gravity at
millimeter scales.

Within an ampler view, the question why there are four
and not any other number of physical dimensions remains
unanswered. To investigate this question, one can check
whether it is possible to construct a model in which additional
dimensions lead consistently to the same four-dimensional
physics.

In particular, the idea of higher dimensions should pro-
vide also for mechanisms in which an assumed larger dimen-
sional universe transforms into the present one, with an ex-
pected explanation of the fate of other dimensions. The most
popular related assumption for this is Klein’s idea of com-

pactification, which assumes dimensions become unobserv-
able by closing on themselves at a small length. However,
the origin, dynamics, and range of applicability of this pro-
cess have not been thoroughly pursued and clarified, as will
be implied from the present work. Indeed, when considering
this mechanism, its existence has generally been taken for
granted but not the causes leading to it.

In addition, several methods of dimensional reduction
and compactification (see Ref. 3 for a review) are known
but few account successfully for the particles’ spectrum, rep-
resentations and, in particular, for the demand that chiral
fermions be obtained to reproduce the quantum numbers of
physical particles [4].

Even when acceptable compactifications are found, there
are multiple choices with similar four-dimensional physics,
which points at the need of additional feasible restrictions
to reduce the number of possibilities and increase the pre-
dictability. Gauge fields acting on particles is such a physical
mechanism, and it needs to be examined. The choice of these
fields is motivated by the already known four-dimensional
ones. The self-consistency of these fields should be checked
in the next stage of the study of the problem.

To investigate a possible dynamical process that gener-
ates compactification is the main object of this work. We will
explore the idea that this compactification is generated by the
gauge fields themselves, which we think more economical. It
is natural to start by considering the Dirac equation, which
describes basic spin-1/2 fields. Thus, the mechanism pro-
posed should allow for a description of the fermion fields in
the presence of usual and compactifying interactions. We re-
quire that the latter should not affect the workings of the first
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and the Dirac fields. It is also expected that they conserve
the symmetry in the weight of positive and negative energies
so that when these are turned on the vacuum should not be
altered asymmetrically. It is known that such interactions ex-
ist [5] and that they satisfy a restriction related to the presence
of the Dirac supersymmetry [6].

In this paper we investigate Dirac-supersymmetric in-
teractions which effectively lead to separation into physical
and compactified dimensions and we find indeed a simple
instance in which this is possible. This material is orga-
nized as follows: In Sec. II we review Dirac supersymme-
try which defines some of the conditions for interactions in
which a dynamical dimension separation mechanism can be
possible. In Sec. III we investigate separation of the Dirac-
supersymmetric equation using as example the 3+1 dimen-
sional case. In Sec. IV we consider a dimension separation
mechanism in which aU(1) magnetic field is assumed and
which produces an effective compactification in some dimen-
sions. This model is considered in both a 4-d to 2-d (1+1) and
a 6-d to 4-d (3+1) transitions. In Section V we draw some
conclusions from this work.

2. Interactions in Dirac supersymmetry

The basic feature defining Dirac supersymmetric interac-
tions is the possibility of applying a generalized Foldy-
Wouthuysen transformation which brings the usual Dirac
Hamiltonian to a form in which positive and negative solu-
tions separate with equal weight. Explicitly, we assume the
initial Dirac HamiltonianH can be written in the form

H = Q + Q† + λ, (1)

whereλ is a Hermitian operator andQ is a fermionic operator
such that it and its adjointQ† satisfyQ2 = 0 andQ†2 = 0,
and also the anticommutation relations

{Q,λ} = 0, {Q†, λ} = 0. (2)

After applying the Foldy-Wouthuysen transformation (FWT)
H becomes [5]

H ′ =
λ

(λ2)1/2
({Q,Q†}+ λ2)

1/2
. (3)

An extensive analysis of the interactions that take the form in
Eq. (1) is given in Ref. 5. The resulting ones are given in the
Hamiltonian (in 4+1 dimensions)

H = α · π + α5π5 + µβ, (4)

where

πI = pI + AI(x) + iβEI(x) I = 1, 2, 3, 5, (5)

αi are Dirac matrices withαi = γ0γ
i, α5 = iβγ5, AI(x) and

EI(x) are external arbitrary fields, andµ is the mass constant,
which multiplies the corresponding term.

3. Separation of Dirac-supersymmetric equa-
tion

Our main concern here is to study dynamical compactifi-
cation as a dimensional reduction effect and, in particular,
the form of those interactions that not only satisfy Dirac-
supersymmetric conditions but also allow for such a mech-
anism. Specifically, we need a mechanism in which an in-
teraction would confine particles in some dimensions and
keep free-particle behavior in the unconfined (physical) di-
mensions. For this purpose we use as illustrative model the
3+1 → 1+1 reduction case, studying separation of variables
for H in Eq. (4). ThisH can be written in the form of Eq. (1)
with the association

λ = µβ, (6)

Q =
(

0 0
M 0

)
, (7)

Q† =
(

0 M†

0 0

)
, (8)

where

M = σ · (p + C)− iC5, (9)

CI = AI − iEI , I = 1, 2, 3, 5 and we use here, unless other-
wise stated, the standard representation for the Dirac matri-
ces [7]. The expression for the Hamiltonian in Eq. (4), after
application of the FWT and after using Eqs. (6)-(8), is

H ′ = β

[(
MM † + µ2 0

0 M†M + µ2

)]1/2

, (10)

where the equation to solve is

H ′Ψ = EΨ. (11)

The equality between positive and negative spectrum, except
for a sign, follows from the equal eigenvalues expected for
both terms.

The square-operator form of the upper and lower terms of
H ′ on Eq. (10) suggests a simplification by considering the
action of single operators. Clearly, this is permitted whenM
is hermitian. It is then is possible to reformulate Eq. (11) in
terms of another eigenvalue equation as alternative sufficient
condition, linear inM , and given by

Mψ = Ecψ, (12)

whereψ is the positive energy spinor component ofΨ since,
as can be proved, both the upper and lower sides inH ′ in
Eq. (11) have the same eigenvalues. In fact, this equation is
valid also in the caseM is not hermitian and thereforeEc

complex, for we only require|Ec|2 = E2 − µ2.
The linear form of Eq. (12) hints at a possible sepa-

ration of degrees of freedom corresponding to different di-
mensions. The separation of this equation (in the stationary
case) into independent components describing different di-
mensionsM = M1 + M2 is limited, for the form ofM
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implies that even if we use, say, inH1 potentials with re-
strained dependence on the coordinates we generally obtain
[M1,M2] 6= 0. Still, we can find a partial separation of the
3+1 Eq. (12) into 1+1 dimensional terms and two additional
dimensional terms (1+1 scalar). We choose the 1+1 spatial
coordinate asz, with x1 = x, x2 = y, x3 = z, and

M1 = σz[pz + Cz(z)], (13)

M2 = σb · [pb + Cb(x, y)], (14)

where b represents the (x̂, ŷ) directions, and
Cb(x, y) = (Cx(x, y), Cy(x, y)), with dependences ofCb

andCz as specified. The Anzats

ψ =
(

g1(x, y)f1(z)
g2(x, y)f2(z)

)
(15)

leads to the partial separation of Eq. (11)

M1

(
f1(z)
f2(z)

)
=

(
E1f1(z)
E1

′f2(z)

)
, (16)

where we have used the diagonal character (in spin space)
of the M1 component which allows for cancellation of the
gi(x, y) in Eq. (16). We further assume that the upper
and lower components share the same solutions, so that
f1(z) = f2(z). Then,E1 = −E1

′. We note the solutions can
be interpreted as positive and negative chirality components
in 1+1 space. The other part of Eq. (11) has consequently the
form

M2

(
g1(x, y)
g2(x, y)

)
=

(
(Ec − E1)g1(x, y)
(Ec + E1)g2(x, y)

)
, (17)

and thez dependence can be divided out. TheM2 part plays
the role of a scalar interaction in1 + 1 space. The absence
of thefi(z) functions implies the eigenvaluesEc depend on
thefi solutions only throughE1. Thus, this separation is only
partial yet sufficient for our purposes because it decouples at
least one group of dimensions. It is clear that the separa-
tion depends on the presence of a diagonalizable component
asM1, and on the specific spatial dependence of the poten-
tials in M1, M2, in accordance to the Lorentz index of the
αi matrices. In this case, it is the need to account for the
spin degree of freedom that requires the additional condition
thatM1 be diagonalizable. We also find that in passing from
the higher dimension to the lower, the original spin is reinter-
preted and forms the chiral components in the lower dimen-
sion.

4. Dirac supersymmetry in higher dimensions

A thorough analysis of the process of Dirac-supersymmetric
Hamiltonians breaking into lower dimensional components
requires an understanding of a Dirac-matrix construction
which exhibits Dirac supersymmetry. This analysis is per-
formed in detail in Ref. [8] and here we reproduce some use-
ful results. In general, a Clifford algebra is defined through

the anticommutation relations

αiαj + αjαi = 2δij , (18)

wherei, j = 0, 1, . . . , d− 1 andd is an integer. The main re-
lation that we will use is a recursive formula that provides the
elements of the even-d algebra in terms of thed− 2 algebra.
This is

α0 = σ3 ⊗ 1̂ =
(

1̂ 0
0 −1̂

)
, (19)

αi = σ1 ⊗ α̂i =
(

0 α̂i

α̂i 0

)
, 1 ≤ i ≤ d− 2, (20)

αd−1 = σ1 ⊗ 1̂ =
(

0 α̂0

α̂0 0

)
, (21)

αd = σ2 ⊗ 1̂ =
(

0 −i1̂
i1̂ 0

)
, (22)

where the caret denotes the lower-dimensional algebra. The
latter elementαd is obtained from the definition

αd = e−i(d/2)π/2α0 . . . αd−1, (23)

and it extends the algebra from evend to oddd + 1.
The Lorentz generator antisymmetric tensors, general-

ized to any dimension, can be deduced from Eqs. (19)-(22)
and the definition of theγ matricesγ0 = β, γi = βαi. They
can be shown to be

σµν=
i

2
[γµ, γν ]

=




0 iσ1 ⊗ α̂i iσ2 ⊗ 1̂
1⊗ σ̂ij σ3 ⊗ α̂i

0


 ,

0
1 ≤ i ≤ d− 1,

d,
(24)

where the rows’ labels are given and the column labels follow
the same order (the elements below the diagonal are minus
the transpose of those above).

In general, by investigating the general structure of
all supersymmetric terms, one can also show all Dirac-
supersymmetric interactions have the form

Q =
1
2
(σ1 + iσ2)⊗ q̂, (25)

Q† =
1
2
(σ1 − iσ2)⊗ q̂†, (26)

whereq̂ represents any interaction in thed − 2 space. With
this characterization one may proceed from the transforma-
tion that departs from Eq. (1), goes throughH ′ in Eq. (3)
and leads to Eq. (10), an expression containing ofQ + Q†

andλ, and use the preceding section to select interactions that
allow for dimensional separation.

5. U(1)U(1)U(1) magnetic field as Dirac-supersymmetric
interaction

A magnetic field derived from a generalU(1) interaction
satisfies both conditions of Dirac supersymmetry and
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separability. It is possible to describe it in any dimension
in terms of an expression forπ of the form of Eq. (5).

5.1. 3 + 1 → 1 + 13 + 1 → 1 + 13 + 1 → 1 + 1 reduction

In the3+1 dimensional case a constant magnetic field along
the ẑ direction

A = −1
2
r×B (27)

corresponds to the real elements in Eq. (4)AI = eAI ,
I = 1, 2, 3, wheree is theU(1) coupling constant (corre-
sponding to the electric charge) and theA components are

A1=Ax=−1
2
yB, A2=Ay=

1
2
xB, A3=Az=0. (28)

The HamiltonianH ′ (Eq. (3)) results in

H ′ = α0[(α · π)2 + µ2]
1/2

. (29)

That the magnetic field interaction chosen in Eq. (28) sepa-
rates in the sense of Eqs. (16) and (17) can be seen from the
construction ofH ′ in Eq. (29).H ′ is composed from a term
multiplying the unit matrix and the term

(α · π)2 = αiαjπiπj (30)

= (
1
2
{αi, αj}+

1
2
[αi, αj ])πiπj (31)

= π · π + iσijπiπj , (32)

where use has been made of Eqs. (18) and (24). The term

iσijπiπj = i1⊗ σ̂ijπiπj , (33)

where Eq. (24) has been used, gives rise to a separable equa-
tion, which will be shown explicitly in the Appendix.

Squaring ofH ′ of Eq. (29) in Eq. (11) and further reduc-
tion lead to the equation

(p · p− 2ieA ·∇ + e2A ·A + 2eSzB)Ψ = E2Ψ, (34)

whereSz = (i/2)γ1γ2 is the spin alonĝz. This equation
can also be written in terms of the orbital angular momentum
z-componentLz = −i(∂yx− ∂xy) as

[−∇2 +
1
4
e2B2ρ2 + eB(Lz + 2Sz)]Ψ = E2Ψ, (35)

whereρ2 = x2 + y2 is the radial cylindrical coordinate. As
can be seen in the Appendix, the separation of this equation
is manifest within these coordinates. This equation has the
well-known non-relativistic (nr) Schr̈odinger-equation coun-
terpart of a scalar particle in a magnetic field of magnitude
B [9]

1
2µ

(−∇2 +
1
4
e2B2ρ2 + eBLz)Ψnr = EnrΨnr. (36)

When Ψnr is separated into cylindrical coordinates
Ψnr = u(ρ)eikzzeimφ the radial componentu(ρ) satisfies

u′′ +
1
ρ
u′ − m2

ρ2
u− e2B2

4
ρ2u

+
(
2µEnr − k2

z − eBm
)
u = 0, (37)

with corresponding energy

Enr =
k2

z

2µ
+

eB

2µ
(2nr + 1 + |m|+m),

nr = 0, 1, . . . , (38)

wherem, nr are quantum numbers related toLz and the ra-
dial motion, respectively. The Landau levels emerge not sur-
prisingly.

The solution of the relativistic Eq. (35) follows from
Eq. (36), which differs from the former, up to factors, by the
spin operator. Eq. (35) constitutes only a necessary condition
and has in fact more freedom in the solutions than the orig-
inal Eq. (11) (albeit the energies are the same, for the latter
equation is obtained from the modified Foldy-Wouthuysen
unitary transformation). The eigenfunctions from the orig-
inal equations are worked out in the Appendix. The results
can be obtained by using the eigenfunctions of the total angu-
lar momentum componentLz +Sz, which leads to equations
of the form of the massless (µ = 0) (A.7)-(A.8) or massive
(A.25)-(A.28). The energy eigenvalues are

E =
√

k2
z + 2eB(nr + m + 1) + µ2, m ≥ 0

nr = 0, 1, . . . (39)

E =
√

k2
z + 2eBnr + µ2, m < 0 nr = 1, 2, . . . (40)

5.2. 5 + 1 → 3 + 15 + 1 → 3 + 15 + 1 → 3 + 1 reduction

The procedure we have followed in Eqs. (29)-(34) is valid
for any dimensional reduction. In the 5+1 case

A1 = Ax = 0, A2 = A3 = 0, A3 = Az = 0,

A4 = Au = −1
2
vB, A5 = Av =

1
2
uB, (41)

where we have chosen 5-d coordinate labels
(u1, u2, u3, u4, u5) = (x, y, z, u, v). Generalized termsπI

are then obtained from Eq. (5), using the correspondingAI

terms defined above and theEI = 0. The HamiltonianH ′

[Eq. (3)] results in

H ′ = α0[(α · π)2 + (αIπI)2 + µ2]
1/2

(I summed over 4, 5). (42)

The5 + 1 → 3 + 1 case equation, counterpart to Eq. (34),
with the magnetic field in Eq. (41) has the form

[−∇2 − ∂2
u − ∂2

v +
1
4
e2B2ρ2 + eB(L45 + 2S45)]

×Ψ = E2Ψ, (43)
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where now

ρ2 = u2 + v2,

L45 = −i(∂vu− ∂uv),

S45 =
i

2
γ4γ5,

and the spectrum has a similar form to Eqs. (39)-(40), with
the transformationk2

z → k2, k representing the 3-d mo-
mentum, which gives a contribution to the energy as a free-
particle kinetic term. This is but a consequence of thedecou-
pling caused by the fact that the interaction acts purely on
the u, v dimensions but leaves the other free. This in turn
results from the form of the interaction which separates the
equations corresponding to Eqs. (13) and (14).

Thus, we obtain a tower of states, similarly to the Kaluza-
Klein mechanism, but with different associated radii (up to
degeneracy), the minimum being occupied by the ground
state.

The form of Eqs. (39)-(40) suggests that the magnetic
field extra-dimensional parameter may be interpreted as a
mass term in “real” dimensions. Therefore, we note that a
mass-creation mechanism emerges here, with the masses ap-
pearing with a characteristic spectrum. This mechanism is
possible only in a reduction from evend to d−2 dimensions.

Although other Dirac-supersymmetric interactions lead
to compactification, they elude a simple solution treatment
as obtained with the magnetic field.

6. Conclusions

In this work we have presented a mechanism for compact-
ification through gauge fields. This mechanism allows for
independent behavior in some dimensions but forces motion
of particles in the other dimensions to be confined, which
amounts to an effective compactification (driven by a phys-
ical process). Simplicity and succinctness are gained for
compactification can be ascribed to a field rather than being
assumed. Also, the familiar gauge fields can produce this
mechanism, without need to invoke others. Although in this
work we have concentrated on the didactic3+1 → 1+1 and
novel5+1 → 3+1 cases, this mechanism is applicable to any
even-dimension reductiond+2 → d. In addition, this mech-
anism is general in the sense that it is valid for fundamental
spin-1/2 matter fields. This mechanism is generic in the sense
that a homogeneous field with a constant direction in space
will lead to the same confining effect, and free behavior in
the parallel direction, albeit the orbits may be different from
the Landau ones.

The results obtained are general for the compactification
presented can be relevant both independently of or in relation
to curved space. In the latter case, it is assumed that these
interactions could be eventually related to the gravitational
field acting in the additional dimensions.

However, this work remains exploratory for it concen-
trates more in showing such a mechanism is possible and one

still needs further generalization to relate it to a universal in-
teraction. Fields generated by the hypercharge interaction to-
gether with non-abelian ones as the electroweak interaction
or gravitational fields are feasible candidates. Some ideas on
possible constraints on allowed dimensions and interactions
are found in Ref. 10. In addition, there is room for addi-
tional types of interaction producing compactificaction. The
U(1) magnetic field chosen here preserves translational sym-
metry which implies the choice of coordinate around which
particles rotate in the extra dimensions is arbitrary. Further
characterization of the interaction may lead, for example, to
a choice of this point in the compactification plane, which
would violate Poincaŕe invariance in the extra dimensions,
without direct influence in the “real” ones, just as occurs for
branes in string theory.

Another outcome of this work is a possible mass-creation
mechanism. We have shown that a mass of a free particle
in 4-d space can be generated through an interaction acting
on 5 and 6 dimensions.

The main lesson from this paper is that it is possible to
construct a compactifying interaction which features dimen-
sional decoupling, at least for the “real” dimensions, and
which may have consequences in terms of parameters as the
mass, but otherwise leave the same physics for free physical
particles. It should be interesting to consider the presence of
interactions inside “real” space.

Further work should then deal with non-abelian fields,
consider other separable interactions, additional multipoles
of the magnetic field, and gravitation, and try to relate them
to cosmological models, for these fields should appear self-
consistently.
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Appendix

In this Appendix we solve directly Dirac’s equation
HΨ = EΨ for a particle in a constant magnetic field in the
4-d case as a complement to Eqs. (35) and (43), for the mass-
less and massive cases.

Massless case

We use the chiral representation for the Dirac matrices. Then,
the3 + 1 component of the Hamiltonian in Eq. (4) leads to

(
σ · (−i∇−A) 0

0 −σ · (−i∇−A)

)
Ψ = EΨ, (A.1)

where, from Eq. (28), a constant magnetic alongẑ is given
by A = (1/2)B(−y, x, 0). We use the constants of the mo-
tion to obtain and classify the solutions. These comprise a
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component of the total angular momentum, the momentum,
both in theẑ direction, and, of course, the Hamiltonian. In
the massless case the chirality is also a constant of the motion
and we use it to separate Eq. (A.1) into its chiral components.
From the form ofγ5 in the chiral representation

γ5 =
(

I 0
0 −I

)
(A.2)

the upper and lower parts ofΨ

Ψ =
(

Ψ1

Ψ2

)
(A.3)

correspond to its positive and negative chirality components,
respectively. We now consider the upper, positive chirality
part while it is clear that the other part is obtained with the
solution interchangeE → −E. Given the constants of the
motion we propose as Anzats forΨ1, using cylindrical co-
ordinates(ρ, φ, z), separation into a plane wave along theẑ
direction with momentumkz, aJz eigenstate with associated
angular momentumm+1/2, and radial functionsf(ρ), g(ρ)
along thexy plane

Ψ1 =
(

f(ρ)eikzzeimφ

ig(ρ)eikzzei(m+1)φ

)
. (A.4)

With this form forΨ1 Eq. (A.1) becomes

kzf + g′ +
m + 1

ρ
g + e

B

2
ρg = Ef (A.5)

−kzg − f ′ +
m

ρ
f + e

B

2
ρf = Eg. (A.6)

From Eq. (A.5)f can be expressed in termsg and its deriva-
tive. By substituting thisf into Eq. (A.6), and carrying out a
similar procedure forg from (A.6), one obtains the decoupled
equations

f ′′ +
1
ρ
f ′ − m2

ρ2
f − e2B2

4
ρ2f

+
(
E2 − k2

z − eB(m + 1)
)
f = 0, (A.7)

g′′ +
1
ρ
g′ − (m + 1)2

ρ2
g − e2B2

4
ρ2g

+
(
E2 − k2

z − eBm
)
g = 0. (A.8)

The solution of these equations is constructed with general-
ized Laguerre polynomials of the form

L|m|nr
(x2), x =

√
eB/2ρ,

and each solution leads to the following eigenfunctions and
energy eigenvalues [9] (see also Eqs. (37)-(38)): Form+1 ≥
0

f(ρ) = x|m|e−x2/2L|m|nr
(x2)

g(ρ) =
√

2eB

E + kz
x|m+1|e−x2/2L|m+1|

nr
(x2),

nr = 0, 1, . . . , (A.9)

with energy

E =
√

k2
z + 2eB(nr + m + 1). (A.10)

The global coefficients inΨ1 above and the wave functions
below are arbitrary. To normalize the wave function one uses
the cylindrical radial-component integral
∞∫

0

dyyme−yLm
n (y)Lm

n′(y)

=





0 n 6= n′

Γ(1 + m)
(

n + m
n

)
n = n′.

(A.11)

Form + 1 < 0

f(ρ) = x|m|e−x2/2L
|m|
nr−1(x

2)

g(ρ) = −
√

2eB

E + kz
nrx

|m+1|e−x2/2L|m+1|
nr

(x2),

nr = 1, 2, . . . , (A.12)

with energy

E =
√

k2
z + 2eBnr (A.13)

We see that in the latter case we have an increased degeneracy
on them values which we ascribe to the cancelling contribu-
tions to the energy of the angular motion and its magnetic
moment opposite to the magnetic field. We give here the so-
lutions in more detail than in Refs. 11, and 12 in particular
for states with negativem+1. An additional polarization op-
erator exists that commutes with the Hamiltonian, but it is not
different from the chirality in the massless case (see below).

The negative chirality componentΨ2

Ψ2 =
(

h(ρ)eikzzeimφ

ij(ρ)eikzzei(m+1)φ

)
(A.14)

has the solutions form + 1 ≥ 0

h(ρ) = x|m|e−x2/2L|m|nr
(x2),

j(ρ) =
√

2eB

kz − E
x|m+1|e−x2/2L|m+1|

nr
(x2),

nr = 0, 1, . . . , (A.15)

with energy

E =
√

k2
z + 2eB(nr + m + 1). (A.16)

and form + 1 < 0

h(ρ) = x|m|e−x2/2L
|m|
nr−1(x

2)

j(ρ) = −
√

2eB

kz − E
nrx

|m+1|e−x2/2L|m+1|
nr

(x2),

nr = 1, 2, . . . , (A.17)

with energy

E =
√

k2
z + 2eBnr (A.18)
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Massive case

The massive equation
[(

σ · (−i∇−A) 0
0 −σ · (−i∇−A)

)
+ µβ

]

×Ψ = EΨ. (A.19)

can be solved using the same quantum numbers except that
the mass term (in the chiral representation)

β = γ0 =
(

0 −I
−I 0

)
(A.20)

mixes the chirality components included inΨ: Ψ1 in
Eq. (A.4) andΨ2 in Eq. (A.4), which leads to the slightly
more complicated four coupled radial equations forf , g, h, j

kzf + g′ +
m + 1

ρ
g + e

B

2
ρg − µh = Ef, (A.21)

−kzg − f ′ +
m

ρ
f + e

B

2
ρf − µj = Eg, (A.22)

−kzh− j′ − m + 1
ρ

j − e
B

2
ρj − µf = Eh, (A.23)

kzj + h′ − m

ρ
h− e

B

2
ρh− µg = Ej. (A.24)

These equations decouple into four equations for each func-
tion. For example, by solving forg in Eq. (A.22) and forh in
Eq. (A.23) and substituting them into Eq. (A.21) an equation

only for f is obtained; by using similar procedures for the
other functions one gets for all

f ′′ +
1
ρ
f ′ − m2

ρ2
f − e2B2

4
ρ2f

+
(
E2 − k2

z − eB(m + 1)− µ2
)
f = 0, (A.25)

g′′ +
1
ρ
g′ − (m + 1)2

ρ2
g − e2B2

4
ρ2g

+
(
E2 − k2

z − eBm− µ2
)
g = 0, (A.26)

h′′ +
1
ρ
h′ − m2

ρ2
h− e2B2

4
ρ2h

+
(
E2 − k2

z − eB(m + 1)− µ2
)
h = 0, (A.27)

j′′ +
1
ρ
j′ − (m + 1)2

ρ2
j − e2B2

4
ρ2j

+
(
E2 − k2

z − eBm− µ2
)
j = 0. (A.28)

To further classify the solutions we choose the additional op-
erator commuting with the Hamiltonian [12]

1
µ
Σ · π, π = −i∇ + eA, Σ = γ5γ0γ,

which can be calculated fromΣ · πΨ=(Eγ5−µγ5γ0)Ψ and
eigenvalues

√
E2 − µ2Σ.

The solutions form + 1 ≥ 0, with Σ = 1 are

f(ρ) = x|m|e−x2/2L|m|nr
(x2), g(ρ)=

√
2B e

kz +
√

E2 − µ2
x|m+1|e−x2/2L|m+1|

nr
(x2),

h(ρ)=
−E+

√
E2−µ2

µ
x|m|e−x2/2L|m|nr

(x2), j(ρ)=

√
2Be

(
−E+

√
E2−µ2

)

µ
(
kz+

√
E2−µ2

) x|m|e−x2/2L|m|nr
(x2), nr = 0, 1, . . . , (A.29)

while for Σ = −1

f(ρ) = x|m|e−x2/2L|m|nr
(x2), g(ρ) =

√
2B e

kz −
√

E2 − µ2
x|m+1|e−x2/2L|m+1|

nr
(x2),

h(ρ)=−E+
√

E2−µ2

µ
x|m|e−x2/2L|m|nr

(x2), j(ρ)=

√
2Be

(
E+

√
E2−µ2

)

µ
(
−kz +

√
E2−µ2

) x|m|e−x2/2L|m|nr
(x2), nr=0, 1, . . . (A.30)

Form + 1 < 0, Σ = 1

f(ρ) = x|m|e−x2/2L
|m|
nr−1(x

2),

g(ρ) =
kz −

√
E2 − µ2

√
2B e

x|m+1|e−x2/2L|m+1|
nr

(x2), h(ρ) =
−E +

√
E2 − µ2

µ
x|m|e−x2/2L

|m|
nr−1(x

2),

j(ρ) =
−E2 + µ2 + kz

√
E2 − µ2 + E

(
−kz +

√
E2 − µ2

)
√

2B e µ
x|m+1|e−x2/2L|m+1|

nr
(x2), nr = 1, 2, . . . , (A.31)
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and forΣ = −1

f(ρ) = x|m|e−x2/2L
|m|
nr−1(x

2),

g(ρ) =
kz +

√
E2 − µ2

√
2B e

x|m+1|e−x2/2L|m+1|
nr

(x2),

h(ρ) =
−E −

√
E2 − µ2

µ
x|m|e−x2/2L

|m|
nr−1(x

2),

j(ρ) = −
E2 − µ2 + kz

√
E2 − µ2 + E

(
kz +

√
E2 − µ2

)
√

2B e µ
x|m+1|e−x2/2L|m+1|

nr
(x2), nr = 1, 2, . . . , (A.32)

with energies as above, except that these are modified with a
mass term, and they are given in Eqs. (39) and (40).

This 4-d massive case can also serve to solve the 6-d
massless equation with a generalized magnetic field. In-
deed, we divide the extended Dirac Hamiltonian equation
into the 3- and 4- and 5-d components

(α · p + αIπI)Ψ = EΨ (I summed over 4, 5), (A.33)

whereπI = pI + AI , and theAI are obtained from Eq. (41).
The 3-d space components appear with bold type. This mass-
less equation can be projected into the two chiral components
by (1/2)(1± γ7), with γ7 = −iα0α6 [Eqs. (19), (21)] being

the matrix which anticommutes with all 6-d γµ
′s. Each pro-

jected equation can be written in terms of 4-d matrices.
As these satisfy the same relations as those contained in
Eq. (A.19), with the mapping 6-d → 4-d with

1
2
(1 + γ7)α · p → α · π,

1
2
(1 + γ7)αIπI → µβ,

one obtains the corresponding set of equations
as (A.21)-(A.24) (and similarly for the other chirality part).

The equations solved here can also be useful to solve the
intermediate Eq. (12), and reproduce in fact the separation of
variables as described in Sec. 3.
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