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The Lagrangians of a one-dimensional mechanical system
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Starting from the fact that for an arbitrary autonomous mechanical system any constant of motion can be used as Hamiltonian, the expression
for the Lagrangians of a one-dimensional mechanical system previously found by other authors is derived.
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Partiendo del hecho de que para un sistema mecánico aut́onomo arbitrario cualquier constante de movimiento puede usarse como hamiltoni-
ana, se deduce la expresión para las lagrangianas de un sistema mecánico unidimensional previamente hallada por otros autores.

Descriptores: Lagrangianas; ecuaciones de Hamilton.

PACS: 45.05.+x; 45.20.-d

1. Introduction

For a given one-dimensional autonomous dynamical system
in classical mechanics, there are infinitely many Lagrangians;
in fact, from each constant of motion of the system a La-
grangian can be obtained. Specifically, ifK(q, q̇) is a con-
stant of motion of the system, a Lagrangian is explicitly given
by [1-4]

L(q, q̇) = q̇

q̇∫
K(q, y)

y2
dy (1)

and, as can be readily verified, the corresponding Hamilto-
nian isH(q, p) = K(q, q̇(q, p)), assuming that the relation
between the canonical momentum andq̇ can be inverted,i.e.,
the constant of motion employed in the construction of the
Lagrangian is essentially the Hamiltonian.

In a recent paper [5] a somewhat similar result has been
established. For an autonomous system withn degrees of
freedom, and forces derivable from a potential, any constant
of motion can be employed as Hamiltonian of the system,
provided that the Poisson bracket is suitably defined, and if
n > 1, there are infinitely many suitable Poisson brackets for
each Hamiltonian. The aim of this paper is to show that in
the case wheren = 1 these two approaches are equivalent to
each other; following the procedure given in Ref. 5 we derive
Eq. (1).

Expression (1) is also closely related to the results of
Ref. 6, where it is shown that for a one-dimensional, possibly
time-dependent, mechanical system, two Lagrangians yield
the same equations of motion if and only if they are related
by means of a constant of motion (see Eq. (2) below). One
can easily derive the main result of Ref. 6, in the case of an
autonomous system. Indeed, a straightforward computation
using Eq. (1) yields

E(L) ≡ d

dt

∂L

∂q̇
− ∂L

∂q
=

∂K

∂q
+

q̈

q̇

∂K

∂q̇
=

1
q̇

dK

dt
,

which is equal to zero ifK is a constant of motion. A second
Lagrangian,L′, will also have the form (1) withK replaced

by another constant of motion,K ′, which must be some func-
tion of K, K ′ = f(K), since for a mechanical system with
one degree of freedom there is only one functionally inde-
pendent constant of motion; hence

E(L′) =
1
q̇

dK ′

dt
=

1
q̇

df(K)
dK

dK

dt
=

df(K)
dK

E(L), (2)

the factordf(K)/dK, being a function ofK only, is a con-
stant of motion. (Note also that the relation betweenL andL′

that follows from Eq. (1) is much simpler than that found in
Ref. 6.)

In Sec. 2 we summarize the results of Ref. 5, apply-
ing them to the specific case of a one-dimensional mechan-
ical system. In Sec. 3 we show that in the case of a one-
dimensional system, a simple expression for the momentum
canonically conjugate to a given coordinate can be obtained,
which allows us to find explicitly the Lagrangian correspond-
ing to a given Hamiltonian. A simple example is given in the
Appendix which, at the same time, shows that the formalism
is also applicable to dissipative systems (see also Ref. 7).

2. Hamiltonians and Poisson brackets

The Hamilton equations expressed in terms of canonical co-
ordinatesq, p for a one-dimensional mechanical system are

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
, (3)

whereH is the Hamiltonian function. Instead of canoni-
cal coordinates we can employ arbitrary coordinatesx1, x2,
in terms of which the Hamilton equations are given by
[see Eqs. (3)]

dxµ

dt
=

∂xµ

∂q

∂H

∂p
− ∂xµ

∂p

∂H

∂q

=
(

∂xµ

∂q

∂xν

∂p
−∂xµ

∂p

∂xν

∂q

)
∂H

∂xν
={xµ, xν} ∂H

∂xν
(4)
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(µ, ν, . . . = 1, 2), where{ , } is the Poisson bracket. Letting
σ ≡ {x1, x2}, the Hamilton equations in an arbitrary coordi-
nate system (4) amount to

dx1

dt
= σ

∂H

∂x2
,

dx2

dt
= −σ

∂H

∂x1
. (5)

The equations of motion of a given one-dimensional au-
tonomous mechanical system have the form

dx1

dt
= f(x1, x2),

dx2

dt
= g(x1, x2), (6)

wheref andg are some functions of two variables only. As
shown in Ref. 5, we can takeH in Eqs. (5) as any constant of
motion and then look for the functionσ that satisfies Eqs. (5).
In fact, according to Eqs. (6), a functionH(x1, x2) is a con-
stant of motion if and only if

0 =
∂H

∂x1

dx1

dt
+

∂H

∂x2

dx2

dt
= f

∂H

∂x1
+ g

∂H

∂x2
, (7)

while from Eqs. (5) and (6) we find thatσ must be such that

σ
∂H

∂x2
= f, σ

∂H

∂x1
= −g. (8)

These equations forσ are compatible as a consequence of
Eq. (7).

3. Canonical coordinates and Lagrangians

Starting from arbitrary coordinatesx1, x2 in the phase space
we can look for a system of canonical coordinates formed
by x1, and another coordinatep1 to be determined. Thus,
we require that{x1, p1} = 1 (i.e., p1 will be a momentum
canonically conjugate tox1). From

1 = {x1, p1} = {x1, x2}∂p1

∂x2
= σ

∂p1

∂x2

it follows that

p1 =

x2∫
dy

σ(x1, y)
, (9)

which gives the canonical momentump1 as a function
of x1, x2. If ∂f/∂x2 6= 0 then the first equation in (6) can
be inverted, at least locally, to givex2 as a function ofx1 and
ẋ1.

The Lagrangian corresponding to a HamiltonianH is
given by the usual expressionL(x1, ẋ1) = p1ẋ

1 −H; there-
fore, making use of Eq. (9), the first equation in (8) and inte-

grating by parts, we obtain

L(x1, ẋ1) = ẋ1

x2(x1,ẋ1)∫
dy

σ(x1, y)
−H

= ẋ1

x2(x1,ẋ1)∫
1

f(x1, y)
∂H(x1, y)

∂y
dy −H

= ẋ1

[
H(x1, y)
f(x1, y)

∣∣∣∣
x2(x1,ẋ1)

+

x2(x1,ẋ1)∫
H(x1, y)

(f(x1, y))2
∂f(x1, y)

∂y
dy


−H. (10)

Using again the first equation in (6), and a change of variable
from Eq. (10) we obtain

L(x1, ẋ1) = ẋ1

ẋ1∫
K(x1, u)

u2
du, (11)

whereK(x1, u) ≡ H(x1, x2(x1, u)), which is just Eq. (1).

4. Concluding remarks

In the case of mechanical systems with a number of degrees
of freedom greater than 1, the main obstacle to find an expres-
sion analogous to Eq. (1) following the procedure employed
in this paper comes from the difficulty in finding an expres-
sion for the canonical momenta, analogous to Eq. (9); never-
theless, in each case where the Hamiltonian and the Poisson
bracket have been chosen, canonical coordinates and the La-
grangian can be obtained, at least in principle (see the exam-
ples in Ref. 5).

An important point that perhaps needs to be stressed is
that the evolution of a mechanical system in the phase space
(or in the configuration space) does not depend on the coor-
dinates employed to describe it. The different choices for the
Hamiltonian or the Lagrangian of a given mechanical sys-
tem lead to different definitions for the momenta canonically
conjugate to the coordinates in the configuration space, but
the curves traced by the evolution of the mechanical system
in the phase space do not depend on these choices. Thus, it is
erroneous to claim that, making use of two different Hamil-
tonians for the one-dimensional harmonic oscillator, “the dy-
namics must be different since the generalized momentum for
the HamiltonianH2 is much more complex and has different
units than the one related toH1” (Ref. 4, Sec. 3). Basically,
this error in Ref. 4 comes from calling always ‘p’ the momen-
tum canonically conjugate tox, without realizing that with
each Lagrangian one obtains a possibly different momentum
conjugate tox.
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A Appendix

As a simple example we consider a particle subjected to a
frictional force proportional to its velocity. Ifx1 represents
the position of the particle,d2x1/dt2 = −kdx1/dt, wherek
is a constant; hence, takingx2 ≡ dx1/dt, we have the system
of equations

dx1

dt
= x2,

dx2

dt
= −kx2, (A.1)

which is of the form (6). Equations (A.1) imply that
H ≡ kx1 + x2 is a constant of motion and Eqs. (8) yield

σ = x2. Substituting into Eq. (9) it follows that we can take
p1 = ln x2, i.e., x2 = exp p1. Then, the HamiltonianH,
expressed in terms of these canonical coordinates, is given
by

H = kx1 + exp p1.

Sinceẋ1 = x2 = exp p1, the corresponding Lagrangian is

L(x1, ẋ1) = p1ẋ
1 −H = ẋ1 ln ẋ1 − kx1 − ẋ1. (A.2)

On the other hand, substitutingK(x1, ẋ1) = kx1+ẋ1, which
is obtained fromH eliminatingp1 in favor of ẋ1, into Eq. (1)
one obtainsL(x1, ẋ1) = −kx1 + ẋ1 ln ẋ1, which differs
from (A.2) by the total derivative with respect to time of a
function ofx1 only and, therefore, yields the same equations
of motion.

1. J.A. Kobussen,Acta Phys. Austr.51 (1979) 293.

2. C. Leuber,Phys. Lett. A86 (1981) 2.
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