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We show how the idea of coarse graining can be applied fruitfully to the area of genetic dynamics, both in the context of “effective” theories -
leading to more appropriate effective degrees of freedom with which to describe the dynamics - as well as in terms of integrating out degrees
of freedom, using the Renormalization Group as a systematic calculational scheme. Specializing to dynamics in the presence of selection
and mutation we show how the Renormalization Group can be implemented at the level of a transfer matrix-type description. Further, we
present an explicit exact RG transformation for the simple case of a one gene-two allele system, solving for its fixed points and the asymptotic
behaviour of the system in the vicinity of these fixed poinkenormalization Group, Genetic Dynamics, Coarse graining, Selection,
Mutation, Evolution.

Se muestra como la idea de “coarse graining” puede ser aplicado exitosamente al areaaaeita djedtica, tanto en el contexto de téas
“efectivas” - llevando a grados de libertad mas adecuados con que describiataichn como enérminos de la integragh de grados de
libertad, usando el grupo de renormaliZaccomo un esquema sistatito computacional. Particularizando la @mica en la presencia de
mutacbn y selecdn mostrando como el grupo de renormalibacpuede ser implementado al nivel de una des@ipde tipo matriz de
transferencia. Adicionalmente, se presenta una transfoomaei grupo de renormalizazi exacta y exfitita para el caso de un sistema de
un gen y dos alelos, solucionandola para obtener los puntos fijos correspondientes y el comportamiétito deinsistema cerca a estos
puntos fijos.

Descriptores:Grupo de renormaliza@gn, diramica ge#tica, seleccin, mutacbn, evolucon.

PACS: 05.10.Cc, 87.10.+e, 87.23.Kg, 89.75.-k

1. Introduction For instance, a typical protein h&¥10*) aminoacids. As

The Renormalization Group (RG) is arguably the most poW_there are 21 aminoacids the number of associated states is

4

erful tool developed to date for analysing, both qualitativerO(2110 )-
and quantitatively, systems with many degrees of freedom. Besides its calculational utility, coarse graining can also
Its value is manifest in the large spectrum of successful apbe of great utility in terms of identifying, qualitatively, the
plications associated with it, ranging from relativistic quan-collective, or “effective”, degrees of freedom of a system
tum field theory to the asymptotics of differential equations.which consists of very many “microscopic” degrees of free-
Recently, it has also been applied to the field of genetic dydom. This may often times help in seeking a more appro-
namics [1]. With a mainly physics audience in mind, in this priate “effective” theory with which to do calculations. Hy-
article we will further consider its application in this area. In drodynamics would be a case in point. It may also lead to
particular, we will present an explicit exact RG transforma-conceptual insights of great importance. One only need re-
tion and solve the associated RG equations in the context ghember that application of the RG in the context of criti-
a simple genetic model. cal phenomena leads to very deep insights, and “explains”

By genetic dynamics we mean the dynamics of popula—sca“ng and universality, without having to calculate explic-

tions of string-, or tree-like objects whose evolution is gov-1tly any number.

erned by a set of genetic operators. The most common opera- The structure of the paper will be as follows: in Sec. 2 we
tors, which one may think of as caricatures of the corresponawill give a brief introduction to the topic of genetic dynamics,
ing operators found in real biological systems, are: selectiondiscussing some basic features. In Sec. 3 we give an overview
mutation and recombination. Selection and mutation havef coarse graining in the context of genetic dynamics showing
been studied by physicists (see for example [2]). Recomhow different coarse grainings are naturally associated with
bination however remains relatively untouched, although ithe different genetic operators. In Sec. 4 we introduce, in a
has been intensively studied in biology (see for example [3])formal context, the RG as a framework within which to un-
The basics of genetic dynamics are relevant to different fieldgjerstand the different coarse grainings introduced. In Sec. 5
such as population genetics, and associated fields, and evolwe restrict attention to genetic dynamics with mutation and
tionary computation. However, the underlying nature of theselection only, putting the dynamics in the context of a trans-
systems being modelled in the different areas can be radfer matrix formalism. In Sec. 6, to illustrate the techniques
cally different. A common thread on the other hand is thatand concepts developed and discussed, we apply the RG to
one is in practice dealing with many, many degrees of freea simple genetic system consisting of one gene evolving un-
dom and hence the normal motivation for applying coarseder the effect of mutation and selection. Finally, in Sec. 7 we
graining methods, of reducing degrees of freedom, is validdraw some conclusions.
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2. Basics of Genetic Dynamics case the fitness matrix &;; = (fi/f(t))d:;, wheref(t) is
the average population fitness. It is usually considered as a

At its most basic level a genetic dynamics is a stochastic Prognary operator.
cess that takes as input a population of “objects” (strings,  Mutation, typically, is such that every string bit flips to its
trees etc.) - the “genotypes” - and a fitness function, at &omplement with probability every generation and is also
given time, and gives as output the population at a later timea unary operator. Recombination, however, is almost always
The objects live on a configuration spa&e of dimension-  a pinary operator (although higher cardinality can be con-
ality Nx, with elements € X. We denote a population by sjgered). Recombination is implemented by taking a certain
P = (n1,n,...,nn, ), Wheren; represents the proportion number of bits from one “parent” string and the complement
of objects of type in the population. Each object is assigned from another “parent” string to form a “child” string. For ex-
a quality or fitness via a fitness functigiy : X — R™.  ample, one can form111 from parentsl010 and 0101 by
Population flows take place oli. One may also consider taking the first and third bits frorh010 and the complemen-
the dynamics in the space of populations rather thatkon tary second and fourth bits fromi01. The bits taken from
the former being a simplex whose vertices correspond to thghe different parents can be specified using a recombination
totally uniform population states, of which there &% for  “mask”, m. For instance, in the above example the recombi-
binary strings, while the simplex center corresponds to th@ation mask isl010 which signifies take bits one and three
completely random state where all strings are representeglom the first parent (specified by the position of the ones)
equally. _ . and two and four from the second.

A dynamics is imposed via an evolution operator gener-  The resultant dynamical equation describing the evolu-
ated by the genetic operators and which can be written fortjon of the probability distribution for this system is

mally as
P(t+1) =7 (P(t),p) S (P(t),f) 1) Pi(t+1) = ;Wijpf(t) @)

whereT (P (), p) is a matrix andS (P(t),f) is avector. The  \yhere Pi(¢) is the probability to find strings of typeafter

transmission tern (P(t), p) describes the probability of gelection and crossover. The mutation matvix, has matrix
transforming one object into another by mutation, crossovelgiements/y )N=d} whered! is the Ham-
, ij

= st 1—
or other genetic operators, the explicit transmission mechaning distance beptwe(en the two strings. As in the case of the
nism being encoded by the parametersThe termsS(P.f)  more abstract (1), (2) also applies for a finite population if we
describes the selection forces actingBwith the parame- jnterpret the left hand side of (2) as the expected proportion
tersf determining the fitness function. For an infinite popula- of genotypei to be found at + 1, while any P;(t) on the
tion (1) describes the evolution of the probability distribution right hand side are to be considered as the actual proportions
while, for a finite system, it describes the relationship be<gnd att.
tween an actual population state at timand the expected | order to have a closed set of equations we need to spec-
population state at time+ 1. _ . _ ify P¢(t) in terms of the underlying®; (t). The relation is

In this paper, for simplicity, we will restrict attention to
the evolution of strings (“chromosomes/proteins”) of fixed pe(y) — (1— / iy / /
length, consisting ofV bits (“genes”). Also, for simplic- Fit) = (-po) Py (t)Jr;;;)\”k(m)P’(t)Pk(t) 3
ity, we will assume that the bits take only binary values
(“alleles”), though nothing we shall present depends on thigvherep, is the probability to implement recombination and
fact. In this case, the most natural representatiodkos P (t) is the probability to seleat P/ = (f;/f(t))FP; for pro-
a N-dimensional hypercube, where the natural metric isportional selection.\;;;(m) is an interaction term between
Hamming distance (The Hamming distance between twtrings, that depends on the particular crossover mask
strings is the number of bits that differ between the stringsand)_” _ is the sum over all possible recombination masks.
For example, the Hamming distance betwéed and010is  Note that the interaction constants; (m), are independent
two.), strings associated with adjacent vertices being Hamef the population. For a given target string,\;;x(m) is
ming distance one apart. Thé string loci are taken to be a a 2"V-dimensional matrix. The matrix is very sparse how-
complete orthonormal basis for the hypercube. ever, having onlyD(2"V) non-zero elements for a given target

To make (1) more explicit one needs to specify thestring. Thus, this “microscopic” representation in terms of in-
particular “genetic” operators that generate the dynamicsdividual string states is very inefficient, there being very few
As mentioned we will restrict attention here to the threeways of creating a given target by recombination of strings.
canonical operators - selection, mutation and recombinatiorThe vast majority of string recombination events are neutral
In this case the evolution operator depends on the reprdn that they lead to no non-trivial interaction.
ductive fitness landscapé, the populationP and the set The sum over masks takes into account the different ways
of parametersp, that govern the other genetic operators;genetic material can be combined from the different parent
e.g.mutation and recombination probabilities. For selection strings to form a given child string. As an interaction;
P;(t+1) = P/(t) = F;; P;(t), whereF;; is the fitness matrix takes into account different interaction events that can result
and P;(¢) is the probability of finding the string at timet. in the gain of a given string. Taking as target the string,
A typical selection scheme is proportional selection. In thisfor example, recombiningl0 and001 with a maskl 10 leads
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to the formation ofl11. It is not difficult to write down ex-  graining - “integrating out” degrees of freedom - which is
plicit forms for the interaction constants - see for example [1].more directly associated with considerations of the RG. Once

Unlike mutation, for recombination Hamming distance again, a coarse graining may be exact or approximate, though
is not a natural metric. For example, consider two parenthe number of explicit exact coarse graining transformations
strings1111111111 and0000000000. A one-point crossover is very limited. An example would be the one-dimensional
implemented between the last two bits leads to offspringsing model [4]. The motivation behind this type of coarse
1111111110 and 0000000001, which are Hamming dis- graining is that if you can map a system onto an analogous
tance one from the respective parents. An equally probablsystem with fewer degrees of freedom then the latter should
crossover between the fifth and six bits, however, leads tbe easier to solve, or at least approximately solve. Both types
1111100000 and0000011111, which are Hamming distance of coarse graining naturally appear in genetic dynamics as we
five away from the parents. shall see.

The Egs. (2) and (3) yield an exact expression for the  We will start off with coarse grainings associated with
probability distribution governing the evolution for arbitrary more natural collective degrees of freedom. A very simple,
selection, mutation and crossover. It takes into account exbut relevant, example is that of phenotypic dynamics. Fit-
actly the effects of destruction and construction of strings. ness, almost by definition, acts at the level of the phenotype
(The observable manifestation of the genotype) hence if the
dynamics is engendered by nothing other than pure selection
it is natural to perform a coarse graining from genotype to
phenotype. As a concrete example consider a fitness land-

We have shown that the dynamics of our string system is de,?ﬁ:gfrigg?;esm]eprgrg)zsrzrfag'r\:sg bﬁr/] ttu?s r:;gg:%:;;:;fﬂgg
scribed by2 coupled, non-linear difference equations rep an be rewritten in terms of thi phenotypes rather thar’

resenting the microscopic degrees of freedom, i.e. the Stringrgenot es. The equation of motion for selection onlv is then
themselves. This is an exact representation. However, obtairy- ypes. q y

ing useful information from these equations is a highly non- P(t+1) = LP " 4
trivial undertaking. The field of population genetics has been n(t+1) n(t) n(t) @

concerned precisely with this task for over 80 years now, and

.Where we denote phenotypes by the number of ones,
there most progress has been at the level of toy models with_ 7~ . ) .
) . andn(t) is the average number of ones in the population at
very simple fitness landscapes or a small number of genetic

loci (string bits) - often at the level of only 2 or 3 bits. time¢. The solution of these difference equations is

3. Coarse-Graining and Coordinate Transfor-
mations

There are two basic motivations for performing a coarse ntP,(0)
graining of a system with many degrees of freedom. One Po(t) = ZN nt P, (0) ®)
n=0 n

is: to write the dynamics in terms of more appropriate effec-
tive degrees of freedome. to write an “effective” dynam-  Another example is that of the Eigen model [5], where the
ics, while the other is to solve for the dynamics by considerd{itness landscape is degenerate for all genotypes except one,
ing a related system with fewer degrees of freedom. In thighe master sequence. At the level of selection only, given that
sense we are using the word coarse graining in what woulthere are only two phenotypes, there is a reduction in the size
normally be considered to be two different contexts. For in-of the configuration space frogl¥ to 2, i.e. a reduction in
stance, writing the dynamics of a set of coupled harmoniche number of degrees of freedom framto 1. However,
oscillators in terms of normal modes would be an exampléf we include in the effect of mutation we see there is an in-
of writing dynamics in terms of more appropriate degreesduced breaking of the genotype-phenotype symmetry due to
of freedom - the normal modes being collective (“coarsethe fact that strings close to the master sequence in Hamming
grained”) degrees of freedom composed from the underlydistance have a higher “effective” fitness [6, 7]. In both these
ing microscopic degrees of freedom - the oscillators themeases a natural coarse graining is suggested by the form of
selves. Of course, the normal way of thinking of this exactthe fitness landscape, which itself is intimately related to the
coarse graining is as a symplectic transformation. Here, theelection operator. Note that, although the genotype to phe-
word coarse graining is meant to indicate that it is a descripnotype mapping is a true coarse graining, in the sense that it
tion in terms of collective degrees of freedom. The mappings a projection onX,, it is a very simple one as it is an exact
between the two is exact. Another simple example wouldcoarse graining associated with a symmetry. Information is
be that of describing the dynamics of a macroscopic metdbst in the sense that after the projection we can no longer en-
sphere in terms of its position coordinates and Euler angleguire as to the dynamical evolution of a particular genotype.
Once again these degrees of freedom are collective degrees of In the case of selection and mutation the dynamical equa-
freedom relative to the underlying more fundamental atomidions are essentially linear, the apparently non-linear average
degrees of freedom. The mapping however in this case is affitness only acting as a normalization factor, and, as we will
proximate as we forego information about all atomic degreesee, the resulting selection/mutation problem can be recast
of freedom. Mathematically, this is described by a projectionin the guise of a two-dimensional, inhomogeneous statistical
rather than a symplectic transformation as above. mechanics problem, where powerful techniques such as the
It is this concept of a projection on the configuration transfer matrix approach can be invoked. In this case the nat-
space that is at the heart of the second meaning of coarseal effective degrees of freedom are the normal modes of the
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mutation-selection matrix, i.e. its eigenvectors. In the case ofn matrix form,f = W f, where the matriX@ has the Walsh
pure mutation a Walsh transformation (Fourier transform orfunctionsy x as its rows. As mentioned, the Walsh functions
binary numbers) yields the eignevectors. In both cases thare eigenfunctions of the mutation operatrthat satisfies
transformation is a coordinate transformation rather than 3V, = (1 — 2|I|/N)v; The mutation operator is therefore

projection and no information is lost. diagonal in the Walsh basis. Equation (2) reads in these co-
Explicitly, the Walsh basig), consists ofValsh functions  ordinates
dr(z) =1/ X[ ] 2, : _ c_ 1\ pe
= Pr(t+1) = Z(\I'W)HPZ- =\1-25 )P O

(2

wherel is a subset of1,..., N} andz; = £1. The Walsh ]

functions are normed and orthogonal andooder |I|, the ~ For example, in the case of one gene
number of loci that are multiplied. The Walsh-transforfy,

of a functionf is defined implicitly by W, = ( (1-p) p )

) p (1-p)
FG) =" f((i)
T 1 1

andvy, = VAU one finds

Multiplying with and summing over all € X we
Pying V(@) 9 Whtg = o andWi e = (1 — 2p)iho. The Walsh basis will

obtain R be particularly useful if the transformed selection-crossover
D F@w(i) =Y FI) D i) term P also has a simple form. The explicit Walsh matrix
i€ X I i€X for 3 bits is seen below (Note that although we have defined
P - above the Walsh functions in terms of an alphabet1 the
- 21: F)orx = f(K) ) Walsh matrix is the same for alphaliet) the only difference

for the latter being how the Walsh function is defined.). Note
| that the last row corresponds to the constant eigenvector.

111 110 101 011 100 010 001 000
111 -1 1 +1 +1 -1 -1 -1 41
110 41 +1 -1 -1 -1 -1 +1 41
101 41 -1 41 -1 -1 +1 -1 +1
011 +1 -1 -1 +1 41 -1 -1 41 ®)
100 -1 -1 -1 +1 -1 41 +1 41
010 -1 -1 41 -1 41 -1 +1 +1
001| -1 +1 -1 -1 41 +1 -1 41
000 +1 +1 41 +1 41 +1 +1 41

Sl

A third, and much more non-trivial example, is associated
with the recombination operator. The fact that the string rep

resentation for recombination is very inefficient, due to thedenote such a bit position bysa Thus, 11+ represents the

sparsity of the interaction matrix, is an indication that stringstWo strings111 and110. The number of definite bits of the
are not the natural effective degrees of freedom for recomg - Gefines its ordeN while the number of bits be-
bination. Insight into what are more appropriate ef'fectivef 2

S ~"“tween the outermost defining bits, including the latter, defines
degrees of freedom can _be gleaned by cons_ldenng a simp|g length. Thuss11 # %0 * * hasN, — 3 andl — 5.
example: To form the string11 with a recombination mask
100 one can join stringd11, 110, 101 and 100 with either Generally, if one picks, arbitrarily, a vertex i, as-
111 or 011. In other words, for the first parent the secondsociated with a string, one may perform a linear coordi-
and third bit values are unimportant and for the second th@ate transformationp : X — X, to a basis consisting
first bit value is unimportant. Thus, it is natural to coarseof all schemata that contain For instance, for two bits
grain over those strings that give rise to the desired target foX = {11,10,01,00}. Selecting the string1 as our “pre-
a given mask. Such coarse-grained variables are known 4grred” vertex, we have’ = {11, 1,1, x*}. The invertible
“schemata”, and are conceptually equivalent to, for instancenatrix A is such thatA,; = 1 <= i € . We denote the
“block spins” in traditional statistical mechanics RG applica-resulting basis the Building Block Basis (BBB) [1]. Given
tions, except in this case there are eminently good reasons #ie arbitrariness of the choice of vertex there are in #4ct
to why they need not be “local”. The marginal probability, €quivalent BBBs each transformable to any other by a per-
P, (t), represents the probability of finding the schemat mutation. For 3 bits the explicit transformation matrix for the
timet. A specific schema is determined by summing overbasis with preferred vertext 1 is

those bit positions that are not part of the schema. One may
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111 110 101 011 100 010 001 000
111 1 0 0 0 0 0 0 0
11x% 1 1 0 0 0 0 0 0
1x1 1 0 1 0 0 0 0 0
A= *11 1 0 0 1 0 0 0 0 9)
1% % 1 1 1 0 1 0 0 0
*1x 1 1 0 1 0 1 0 0
* % 1 1 0 1 1 0 0 1 0
* % % 1 1 1 1 1 1 1 1

The BBB is not orthonormal. Note that the verteky  disappear thus obtaining
construction is a fixed point of this transformation. Apart o
from the vertexi, the points inX, being schemata, corre- .
spond to higher dimensional objectsih For instance, con- Pit) = (1= pe)Pi(t) + ch(m)Pi/m (P, (1) (1)
sidering the two-dimensional case; andx1 are one-planes m=1
in X while xx is the whole space. In the BBB one may trans-where P/ (t) is the probability to select the BB, (note
form (3) to find that the mask uniquely specifies which elemenpt, of the
BBB to choose) and®; (t) is the probability to select the
BB i3, which is uniquely specified as the complement,pf
in 7. Bothi,, andi; are elements of the BBB associated
oN with i. The above equation clearly shows that recombination
3 D! () P/ is most naturally considered in terms of the BBB. In the stan-
+Z Z /\am(m)ﬂ HFD (19 dard basis there were of the order3f¥ elements ob\;;x
to be taken into account for a given In the BBB there is
only one term. Of course, the coarse grained averagges of
WhereS\am(m) = Aai)\ijkA[;le;lj. gndz’m contain2 terms, still, the reduction in complicatio_n
The advantage of this new representation is that the pro is enormous. Thus, crossover naturally introduces the idea

. . of a coarse graining, the associated effective degrees of free-
erties and symmetries of crossover are much more transpal- 9 9 9

ent. For instancels, (m) is such that, for a given mask, dom being the BBs we have defined. This is an important

only interactions between BBs that construct the target strin oint as it shows that evolution is acting in thg presence of
3 rossover most naturally at the level of populations, the BBs

or schema are non-zerie., A,g,(m) = 0, unlessy corre- . . . . 1Y T
sponds to a schema which is the complemen ofith re- representing p(_)pulat|ons with a certain degree of “kinship
to the target object.

spect toa. Also, A3, (m) = 0 unless3 is equivalent tan, ; .
where equivalent means that, for anyn the mask, we have . Inserting (11) in (2) we can try to solve for the dynqm
ics. However, in order to do that we must know the time

a1 at the corresponding locus thand for any0 we have a. ; ) .
These two important properties mean that the summation%ependence ol andi. Although the number of BB basis

e . : .
over 3 and- in (10) disappear to leave only the sum oVerelements_@ we may generalize qnd consider the evolqtlon
; L . of an arbitrary schemay. To do this we need to sum with
masks with an “interaction” constapt (m) which depends on both sides of equation (2). This can simply be done
only on the mask. For example, for two bits, if we choose a%:)etﬁain [8-10] again th?a form (2) .where this tim?a)t/he index
vertex11, then11 may interact only withkx, while 1x may 9 N ' o
, , a runs only over the"2 elements of the schema partition and
interact only withs1. . g N_dH _
_ _ o _ where againV, g = p®es (1—p)~ ~%es. In this case however
In X this has the interesting interpretation that for a tar-4//, is the Hamming distance between the two schemata. For
get schemag, of dimensionality(\V — d), only geometric  instance, for strings with three loci the schemata partition as-
objects “dual” in thed-dimensional subspace of that cor-  sociated with the first and third loci {8 %1, 10, 0%1,0%0}.
responds tex may interact. In other words, /adimensional  |n this casel’l, = 1 andd, = 2. PS(t) = Sica PE() s
object recombines only with@V — d — k)-dimensional ob-  the probability of finding the schemaafter selection and re-
ject. Additionally, a(N — d)-dimensional object may only combination. Note the form invariance of the equation after
be formed by the interaction of higher dimensional objectscoarse graining. To complete the transformation to schema
In this sense interaction is via the geometric intersection ofiynamics we need the schema analog of (11). This also can

higher dimensional objects. For example, the pointan be  pe obtained by acting with._.. on both sides of the equa-
formed by the intersection of the two lings and«1. Simi-  tion. One obtains

larly, 1111 can be formed via intersection of the three-plane
1+ %+ with the line+111 or via the intersection of the two ~ P5(t)=(1 — pcNa)PL()+Y _ pe(m)Pl, ()P, (t) (12)
two-planest1 % x andx x 11. meM,.

PE(t+1) = (1 - pe) PL(t)

m=1 B,y

i€

As mentioned, one of the primary advantages of the BBBwvhereq,,, represents the part of the schemanherited from
representation is that the sums oyeand k& in equation (3) the first parent and.;, that part inherited from the second.
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N(«) is the number of crossover masks that affectelative
to the total number of masks wigh (m) # 0, the set of such
masks being denoted byt,.. Obviously, these quantities de- R(n',n)P(n,t) = P(1,t)
pend on the type of crossover implemented and on properties " . "
of the schema such as defining length. Note that the BBB RO mP@,1) = P(n",1) (13)
naturally coarse grains here to the BBB appropriate for th9-|owever, giventhaR (", ') P(f ,t) = P(y", t) we deduce
schemax as opposed to the string that
Thus, we see that the evolution equation for schemata is
forminvariant, there being only a simple multiplicative renor- R(n,n") =R, R0, 1" (14)
malization of the recombination probabilify.. This form
invariance, shown in [8, 9], demonstrates that BB schematae. the space of coarse grainings has a semi-group structure.
in general are a preferred set of coarse grained variables antihus, we see that one can naturally introduce the RG into
more particularly, the BBB is a preferred basis in the presencthe study of genetic dynamics. The naturalness of a particu-
of recombination. It has also been shown [11] that schematdar RG transformation will be to a large extent determined by
more generally, are thenly coarse graining that leads to in- how the dynamics looks under this coarse graining.
variance in the presence of mutation and recombination. Considering (1), for the pdf of the dynamics, then, given
Considering again the structure of (11) and (12) we se¢hat R (1, n)P,(t) = P,/ (t) the dynamics under a coarse
that variables associated with a certain degree of coarse graigraining is governed bR (n, 7' ) (T (P, (t),p) S (Py(t),f)),
ing are related to BB “precursors” at an earlier time, which inwhereS (P, (¢), f) and7 (P, (¢), p) are the dynamical oper-
their turn ... and so on. This hierarchical structure terminateators associated with the variables If this can be written
at order-one BBs as these are unaffected by crossover. Thus,the form7 (P,,(t),p") S (P, (t),f") with suitable “renor-
for example, the level one BB combinationsidft, i.e, BBs  malizations”,f — ' andp — p’ of the model's param-
that lead directly upon recombinationto1 are:11x : * x 1, eters, then the dynamics is form covariant or invariant un-
1% 1:x1xandl*x:x11. The level two BBs are x *, x1x der this coarse graining. Note that we are here considering
andx* x 1. Thus, a typical construction process is that BBsa more general notion of invariance than the idea of “com-
1 % x andx1* recombine at = ¢; to form the BB11x which  patibility” [11] (see [12] for a discussion of the relationship
at some later time, recombines with the BB * 1 to form  between the two). In the case of selection only, the coarse
the sequence1l. graining transforms the fithess
So we see then that different genetic operators are typ-
ically associated with different natural sets of effective de- f, — fy = R(n,n') fy = Z nPy(t)/ Z P, (t). (15)
grees of freedom. In these cases all the coarse graining has nen’ nen’

been done, in one form or another in “space”. It is als;oA _ tant point t te here is that icall
possible to coarse grain in “time”. We can think of the dy- /"' Important point to note here 1S that, generically, a coarse

namics of a genetic system also in a “space-time” Settinggralmng gives rise to ime dependertoarse-grained fitness.

Here, we imagine a description of the system on a finite two- _In. the case of recombw&an_o;‘: Eotgslso t.h?t the coarse
dimensional space (rather than the evolution of a finite onedraining operator associated with the BBs satisties
dimensional space (the string). This space is of “volume” no_ s IS c e

N x t and varies in size as the system evolves. Our genetic Rn,m') = R(n™,n=) R0, 1) (16)

dynamics can now be thought of in terms of two-dimensionalyhereR (15, ;5) represents the action of the coarse graining

spin configurations. In this setting we can consider a coarsg, the BBS while R(n°,1'°) represents the action on the
graining by integrating out “columns” of spins, thus effecting gg . '

a reduction to a system of “height’but “length” N’ < N.

It is clear however that one may also effect a coarse graining5 . )

as we will explicitly demonstrate shortly, by integrating out ©- A Transfer Matrix approach to Mutation-
“rows” of spins, thus coarse graining to a system of length Selection

but of heightt’ < ¢. Both these coarse grainings have natural ) ) _ ) _ ]
interpretations. It is possible to also envision a more genln this section we will restrict attention to mutation-selection

eral coarse graining where blocks of spins other than rows ofystems implementing a generic RG transformation at the

columns are integrated out. level of the transfer matrix. We begin with the dynamical
equation
4. Renormalization Group P(t+1) = fzt)w""(t)P(t) (17)

In the previous section we saw that coarse grained variables

arise very naturally in genetic dynamics and gave as exanmwhere the selection-mutation mati¥ ,(t) = WF(t), not-
ples the genotype-phenotype map and schemata. We can fong an invariance of the dynamics under the transformation
malize these considerations by introducing a general coarsmn the fithess landscapg — Cf;, whereC is any pos-
graining operatoR (n, ') which coarse grains from the vari- itive constant. This equation looks superficially non-linear
ablen to the variable;'. In this case due to the presence of the factpit). However, this factor
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can be eliminated without loss of generality, and then rein- The transfer matrixW,(t¢) evolves the system from
stated, by passing to unormalized variablg$t), such that ¢ to ¢ + 1 or, put another way, links spin rows and

Pi(t) = y;(t)/ >, vi(t), that satisfy t+ 1. Spin rowst andt¢ + 2 are Iink(/ed by the matrix
_ W, (t) = W,(t + 1)W(t), the matrixW ,(¢) evolving the
y(t+1) = Wi(t)y(t) (18) system over two time steps. More generaWy,, (¢, ') will

be taken as the matrix that evolves the system ftoio ¢.

The solution to this equation is > .
g These matrices satisfy

t

y(t) = W,(t)y(0) (19)

and the resultant solution fa@(t) is

W, (1, t") = W (1,1 YW, (', ") (24)

and hence give a representation of the RG. Thus, we see how
integrating out rows of spins at the level of the transfer matrix
leads to a simple realization of the RG. In the next section we
will consider a concrete realization of this mapping.

W.(1)P(0)

PO S wip )

(20)

Thus, we see that knowledge of the mafi, is sufficient

to determine the dynamics, in particular its eigenvalues and
eigenvectors. The solution in terms of the eigenvalues, ©- EXact RG for a One Gene-Two Allele Sys-

and eigenvectorsy;, of W, is tem

P(t) = aiuiA] + azuzj + ... (21y Weillustrate the RG introduced in the previous section with
Yoo e + (a2/a1)(A2/A1) uze + ... a concrete, simple example - that of a genetic system con-

o . o _sisting of one gene (bit) with two alleles (values) with fitness
The matrixW is equwalent to the transfer matrix in statis- Va|uesf1 andfo_ In this case the transfer matrix is

tical mechanics and, in fact, may be put into precisely that

form [13], where the Hamiltonian of the resulting inhomoge- (1-p)fy pfo o5

neous two-dimensional Ising system is pfi (2-p)fo (25)

N If we now implement a coarse graining by integrating over
N i+l i 4 every other time step we arrive at a coarse grained transfer

H(T) = Z (Jyaj oj + T f;) matrix, W', that satisfies

TNt W' =Ww? (26)

The most natural reparametrization is that of the original, i.e.

where the “temperature” of the system is we parametrizéV”’ as

1/T =In(p/(1 —p)) W — (1—p)f! v f 27)
andln f; is the energy associated with a row of spins. One P fi (1-p"1o
can also make a correspondence between other observables
of interest and their thermodynamic analogs. For instancelhe equationiV’ = W? then leads to four equations with
relaxation into the stationary state is governed by an analognly three parametersy’, f1 and f; - that may be adjusted.

of the correlation length and given by One finds that the equations cannot be solved. The inter-
esting conclusion in this case is that the system is “non-
77 h=1In(\1/A2) (23)  renormalizable” with respect to this reparametrization. The

) . intuitive reason why the reparametrization doesn’t work is
We may formally consider a coarse graining of the abovehat the selection makes the “effective” mutation rate from
system in either direction, space or time, in the genetic sysy|iele one to allele zero different to that from allele zero to
tem. Considering the time direction we coarse grain the dyzjiele one. In other words asymmetric hopping probabilities

namics by integrating over certain rows of spins. In termsyetween the two alleles are required. Introducing, such prob-
of the transfer matrix we consider a coarse-grained matrigpjjities, ; andpj, leads to the following relations.

W' = W™ implying that we are coarse graining ovetime

steps. Whether the system is naturally “renormalizable” or fi=0=p)ff +p1fofa (28)
not depends on wheth&’ can be naturally written in terms

of reparametrized versions of the parameters that fafm fo = (1 =po) f5 + pofofr (29)
In general, for a mutation-selection system there2afepa- _ _

rameters associated with the fithess landscape Ahgossi- P =m <(1 1p1)f1 +{ po)fo) (30)
ble mutation rates, if we accept the possibility of asymmetric (I =p1)f1+pifo

mutation ratesi(e. for two stringsi and; the probability that , (I—po)fo+(1—p1)fa

i mutates tgj is not the same thgtmutates ta). Po = Po ( (= po)fo £ pofs ) (31)
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These relations generally relate the parameters aftet it- hence any value off is a fixed point, thus confirming that
erations of the RG map, associated with a systemy f*! we have a line of fixed points. To illustrate their nature with
“degrees of freedom” (time steps), to those aftéterations  respect to perturbations in the mutation rate it suffices to con-
correpsonding to a system 9f2™ degrees of freedom. The sider the case wheng, = p; = 1/2 and symmetric pertur-
interpretation of these results is via the “Law of Correspond-bations withépy = dp; = Ip. In this case, for anyd,
ing States” - where we can see that the dynamics of this one
gene genetic system with fitness landscdpef, and mu- 5p' = —2(0p)* (36)
tation ratesp; andp, evolving to timet/2" is identical to
that of a one gene system with fitness landscApef) and  so we note that mutation is an irrelevant operator for the para-
mutation rateg’ andp{, evolving to timet/2"*1. By map-  magnetic fixed points, though, interestingly, the irrelevance
ping the system to a smaller and smaller number of degreesnly appears at quadratic order. Thus, the RG flows for this
of freedom one hopes to realize the RG goal of reaching aystem flow from the doubly unstable ferromagnetic fixed
system with a sufficiently small number of degrees of free{point to the line of paramagnetic fixed points. Starting with
dom that a simple approximation technique may be used. Tha system at time, with a given selection pressure and mu-
Egs. (28-31) compose an exact closed form RG. tation rate, the RG maps to a system with stronger selection
We will now consider the asymptotic behaviour of thesepressure and higher mutation rate. i.e. the RG takes us away
equations starting with their fixed points. We are interestedrom the critical point.
in the fixed points of (26),e. W* = W*2. If W is invertible It should be noted that these fixed points are fixed points
then this reduces t87* = 1. The only solution of this equa- for any value of the initial population probability distribu-
tionisp; = po = 0, f1 = fo = 1. Actually, due to the invari- tion, P(¢). In the case of the ferromagnetic fixed point any
ance of the dynamics under any constant rescaling of the fipoint within the population simplex is already a fixed point
ness valuesf; = fy = C, whereC is any positive constant, in the infinite population limit. In this sense correlations in
exhibits fixed point behaviour. An appropriate way to takethe time direction are of long range near this fixed point. For
this into account is to consider the quantity = In(f;/f,)  the frozen fixed point the vertex of the simplex of highest
as this is automatically invariant under any rescaling. Thiditness is the population attractor while for the paramagnetic
guantity, in fact, intuitively, plays the role of a magnetic, or fixed points the center of the simplex is the attractor. So the
ordering, field as it breaks any symmetry betweenitaed0  fixed point probability distributions areP, = 1, Py = 0;
alleles. LargeH | corresponds to a regime of strong selectionPy = 0, Py = 1, andP; = 1/2, P, = 1/2. Although
pressure where one allele is strongly favoured over anothethese are the only fixed point distributions with respect to RG
In terms of H the fixed point isH = 0, p; = py = 0. transformations they are not the only fixed points of the dy-
If we also consider solutions whei& is not invertible ~namics. These may be obtained directly from (17) setting
we find the additional solutions = o0, p; = po = 0 and  P(t + 1) = P(¢) = P* for our simple one gene model. One
H = C, p1 +po = 1, whereC is any positive constant, finds for the casg; = po = p
the latter corresponding to a line of fixed points. These fixed
points are analogous, as one might expect, of what is found P; = |((f1—fo) — p(f1+f0))£((f1—fo)*(1 — 2p)
for the one-dimensional Ising moddll* = 0, p; = pj; =0
is the “ferromagnetic” fixed point correspond!ng to a critical +p2(f1 + fO)Z)%) /2(f1 — fo) (37)
temperaturel’ = 0. On the other hand we find a “param-

agnetic” line of fixed points ap; + p; = 1 and a *fully  \yich is the “Quasi-species” [5] for this simple model and
aligned” or “frozen” infinite field fixed point at/* = oo,  corresponds to the asymptotic population distribution. Under
p1=po =0 a coarse graining the Quasi-species distribution is not invari-
We can linearize the RG equations in the vicinity of thesegnt being mapped into the asympotic distributidis= 1,
fixed points. In the vicinity of the ferromagnetic fixed point for zero mutation, o, = 1/2 for non-zero mutation.
we have So what are the “biological” interpretations of these fixed
, points? The fixed poinH* = oo, pj = p§ = 0 corre-
OH" =20H (32) sponds to the strong selection limit, where the positive se-
(33) lection associated with one allele over another is so strong
that the population completely orders after one generation.
dpl, = 26po (34)  The ferromagnetic system corresponds to the limit of small
selection pressure and small mutation rate so that the pop-
Thus, we see that the eigenvalues of the RG linearized aroungation does not “evolve” but remains relatively static. Of
this fixed point are all positive, meaning this fixed point is un-course, in the real world, populations are not infinite and “fi-
stable to linear perturbations in both the mutation rates andite size” effects have to be considered. In this case there will

517/1 = 20p1

selection strength. be a “spontaneous symmetry breaking” such that the popula-
Considering now the “infinite temperature” paramagnetiction becomes uniform consisting of either all alleles 1 or al-

fixed points: on the ling; + p; = 1 we have leles 0, the timescale of the symmetry breaking depending on
1/n'/?, wheren is the population size. The paramagnetic

H =H (35) fixed points are associated with a strong mutation regime
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where selection essentially does not play a role. The strongemi-group structure associated with the RG.
selection/weak mutation regime one may term “Darwinian”  We also presented for the first time an explicit exact RG
due to its emphasis on strong positive selection, whereas tHer a concrete simple genetic system - a one gene, two allele
weak selection/strong mutation regime we may term “Neu-model evolving under the action of mutation and selection
tral” after the Neutral theory of evolution [14]. - showing how an explicit coarse graining RG led to identi-
With the behaviour in the vicinity of the RG fixed points cal dynamics for different “corresponding states” explicitly
in hand we may calculate quantities such as the correlatioshowing the relationship between the renormalized parame-
length (time), etc. ters of these different “corresponding” systems. We exam-
ined the fixed points of the RG finding two isolated fixed
points associated with the strong selection/zero mutation and
zero selection/zero regimes respectively, and a line of fixed
; L oints associated with the weak selection/strong mutation
In this paper we have shown how coarse graining is a ver egime. By considering the RG in the neighbourhood of these

natural tool to use when examining the dynamics of genetic. od points we showed that the weak selection/strond muta-
systems. In particular, we showed how both meanings o IXed points w W W ! gmu

coarse graining: i) writing an effective theory in terms of ion regime was the only stable regime in terms of pertur-
o - - ._bations in the selection pressure and mutation. We strong|
more appro_prlate effective degrees of freedom and, ii) expllg- elieve that the RG haspan important role to play in devegl-y
itly integrating out degrees of freedom naturally made thenJ; ing & more quantitative undeprstandin of thg dynamics of
appearance. ping. q 9 y
- . genetic systems.

We saw that coarse grainings could be implemented a
coordinate transformations or as projections on the configu-
ration space. _Howevgr, integr_atin.g out Qegrees of freedom iAcknowIedgements
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