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We show how the idea of coarse graining can be applied fruitfully to the area of genetic dynamics, both in the context of “effective” theories -
leading to more appropriate effective degrees of freedom with which to describe the dynamics - as well as in terms of integrating out degrees
of freedom, using the Renormalization Group as a systematic calculational scheme. Specializing to dynamics in the presence of selection
and mutation we show how the Renormalization Group can be implemented at the level of a transfer matrix-type description. Further, we
present an explicit exact RG transformation for the simple case of a one gene-two allele system, solving for its fixed points and the asymptotic
behaviour of the system in the vicinity of these fixed points.Renormalization Group, Genetic Dynamics, Coarse graining, Selection,
Mutation, Evolution.

Se muestra como la idea de “coarse graining” puede ser aplicado exitosamente al area de la dinámica geńetica, tanto en el contexto de teorı́as
“efectivas” - llevando a grados de libertad mas adecuados con que describir la dinámica - como en términos de la integración de grados de
libertad, usando el grupo de renormalización como un esquema sistemático computacional. Particularizando la dinámica en la presencia de
mutacíon y seleccíon mostrando como el grupo de renormalización puede ser implementado al nivel de una descripción de tipo matriz de
transferencia. Adicionalmente, se presenta una transformación del grupo de renormalización exacta y explı́cita para el caso de un sistema de
un gen y dos alelos, solucionandola para obtener los puntos fijos correspondientes y el comportamiento asintótico del sistema cerca a estos
puntos fijos.

Descriptores:Grupo de renormalización, dińamica geńetica, seleccíon, mutacíon, evolucíon.

PACS: 05.10.Cc, 87.10.+e, 87.23.Kg, 89.75.-k

1. Introduction
The Renormalization Group (RG) is arguably the most pow-
erful tool developed to date for analysing, both qualitatively
and quantitatively, systems with many degrees of freedom.
Its value is manifest in the large spectrum of successful ap-
plications associated with it, ranging from relativistic quan-
tum field theory to the asymptotics of differential equations.
Recently, it has also been applied to the field of genetic dy-
namics [1]. With a mainly physics audience in mind, in this
article we will further consider its application in this area. In
particular, we will present an explicit exact RG transforma-
tion and solve the associated RG equations in the context of
a simple genetic model.

By genetic dynamics we mean the dynamics of popula-
tions of string-, or tree-like objects whose evolution is gov-
erned by a set of genetic operators. The most common opera-
tors, which one may think of as caricatures of the correspond-
ing operators found in real biological systems, are: selection,
mutation and recombination. Selection and mutation have
been studied by physicists (see for example [2]). Recom-
bination however remains relatively untouched, although it
has been intensively studied in biology (see for example [3]).
The basics of genetic dynamics are relevant to different fields,
such as population genetics, and associated fields, and evolu-
tionary computation. However, the underlying nature of the
systems being modelled in the different areas can be radi-
cally different. A common thread on the other hand is that
one is in practice dealing with many, many degrees of free-
dom and hence the normal motivation for applying coarse
graining methods, of reducing degrees of freedom, is valid.

For instance, a typical protein hasO(104) aminoacids. As
there are 21 aminoacids the number of associated states is
O(21104

).

Besides its calculational utility, coarse graining can also
be of great utility in terms of identifying, qualitatively, the
collective, or “effective”, degrees of freedom of a system
which consists of very many “microscopic” degrees of free-
dom. This may often times help in seeking a more appro-
priate “effective” theory with which to do calculations. Hy-
drodynamics would be a case in point. It may also lead to
conceptual insights of great importance. One only need re-
member that application of the RG in the context of criti-
cal phenomena leads to very deep insights, and “explains”
scaling and universality, without having to calculate explic-
itly any number.

The structure of the paper will be as follows: in Sec. 2 we
will give a brief introduction to the topic of genetic dynamics,
discussing some basic features. In Sec. 3 we give an overview
of coarse graining in the context of genetic dynamics showing
how different coarse grainings are naturally associated with
the different genetic operators. In Sec. 4 we introduce, in a
formal context, the RG as a framework within which to un-
derstand the different coarse grainings introduced. In Sec. 5
we restrict attention to genetic dynamics with mutation and
selection only, putting the dynamics in the context of a trans-
fer matrix formalism. In Sec. 6, to illustrate the techniques
and concepts developed and discussed, we apply the RG to
a simple genetic system consisting of one gene evolving un-
der the effect of mutation and selection. Finally, in Sec. 7 we
draw some conclusions.
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2. Basics of Genetic Dynamics

At its most basic level a genetic dynamics is a stochastic pro-
cess that takes as input a population of “objects” (strings,
trees etc.) - the “genotypes” - and a fitness function, at a
given time, and gives as output the population at a later time.
The objects live on a configuration spaceX, of dimension-
ality NX , with elementsi ∈ X. We denote a population by
P = (n1, n2, . . . , nNX

), whereni represents the proportion
of objects of typei in the population. Each object is assigned
a quality or fitness via a fitness functionfX : X → R+.
Population flows take place onX. One may also consider
the dynamics in the space of populations rather than onX,
the former being a simplex whose vertices correspond to the
totally uniform population states, of which there are2N for
binary strings, while the simplex center corresponds to the
completely random state where all strings are represented
equally.

A dynamics is imposed via an evolution operator gener-
ated by the genetic operators and which can be written for-
mally as

P(t + 1) = T (P(t), p)S (P(t), f) (1)

whereT (P(t), p) is a matrix andS (P(t), f) is a vector. The
transmission termT (P(t), p) describes the probability of
transforming one object into another by mutation, crossover,
or other genetic operators, the explicit transmission mecha-
nism being encoded by the parametersp. The termS(P, f)
describes the selection forces acting onP with the parame-
tersf determining the fitness function. For an infinite popula-
tion (1) describes the evolution of the probability distribution
while, for a finite system, it describes the relationship be-
tween an actual population state at timet and the expected
population state at timet + 1.

In this paper, for simplicity, we will restrict attention to
the evolution of strings (“chromosomes/proteins”) of fixed
length, consisting ofN bits (“genes”). Also, for simplic-
ity, we will assume that the bits take only binary values
(“alleles”), though nothing we shall present depends on this
fact. In this case, the most natural representation ofX is
a N -dimensional hypercube, where the natural metric is
Hamming distance (The Hamming distance between two
strings is the number of bits that differ between the strings.
For example, the Hamming distance between100 and010 is
two.), strings associated with adjacent vertices being Ham-
ming distance one apart. TheN string loci are taken to be a
complete orthonormal basis for the hypercube.

To make (1) more explicit one needs to specify the
particular “genetic” operators that generate the dynamics.
As mentioned we will restrict attention here to the three
canonical operators - selection, mutation and recombination.
In this case the evolution operator depends on the repro-
ductive fitness landscape,f, the populationP and the set
of parameters,p, that govern the other genetic operators;
e.g.mutation and recombination probabilities. For selection,
Pi(t+1) ≡ P ′i (t) = FijPj(t), whereFij is the fitness matrix
andPi(t) is the probability of finding the stringi at timet.
A typical selection scheme is proportional selection. In this

case the fitness matrix isFij = (fi/f̄(t))δij , wheref̄(t) is
the average population fitness. It is usually considered as a
unary operator.

Mutation, typically, is such that every string bit flips to its
complement with probabilityp every generation and is also
a unary operator. Recombination, however, is almost always
a binary operator (although higher cardinality can be con-
sidered). Recombination is implemented by taking a certain
number of bits from one “parent” string and the complement
from another “parent” string to form a “child” string. For ex-
ample, one can form1111 from parents1010 and0101 by
taking the first and third bits from1010 and the complemen-
tary second and fourth bits from0101. The bits taken from
the different parents can be specified using a recombination
“mask”, m. For instance, in the above example the recombi-
nation mask is1010 which signifies take bits one and three
from the first parent (specified by the position of the ones)
and two and four from the second.

The resultant dynamical equation describing the evolu-
tion of the probability distribution for this system is

Pi(t + 1) =
∑

j

WijP
c
j (t) (2)

whereP i
c(t) is the probability to find strings of typei after

selection and crossover. The mutation matrix,W, has matrix
elementsWij = pdH

ij (1 − p)N−dH
ij , wheredH

ij is the Ham-
ming distance between the two strings. As in the case of the
more abstract (1), (2) also applies for a finite population if we
interpret the left hand side of (2) as the expected proportion
of genotypei to be found att + 1, while anyPi(t) on the
right hand side are to be considered as the actual proportions
found att.

In order to have a closed set of equations we need to spec-
ify P c

i (t) in terms of the underlyingPi(t). The relation is

P c
i (t) = (1−pc)P ′i (t)+

∑
m

∑

j

∑

k

λijk(m)P ′j(t)P
′
k(t) (3)

wherepc is the probability to implement recombination and
P ′i (t) is the probability to selecti. P ′i = (fi/f̄(t))Pi for pro-
portional selection.λijk(m) is an interaction term between
strings, that depends on the particular crossover maskm,
and

∑2N

m=1 is the sum over all possible recombination masks.
Note that the interaction constants,λijk(m), are independent
of the population. For a given target string,i, λijk(m) is
a 2N -dimensional matrix. The matrix is very sparse how-
ever, having onlyO(2N ) non-zero elements for a given target
string. Thus, this “microscopic” representation in terms of in-
dividual string states is very inefficient, there being very few
ways of creating a given target by recombination of strings.
The vast majority of string recombination events are neutral
in that they lead to no non-trivial interaction.

The sum over masks takes into account the different ways
genetic material can be combined from the different parent
strings to form a given child string. As an interaction,λijk

takes into account different interaction events that can result
in the gain of a given string. Taking as target the string111,
for example, recombining110 and001 with a mask110 leads
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to the formation of111. It is not difficult to write down ex-
plicit forms for the interaction constants - see for example [1].

Unlike mutation, for recombination Hamming distance
is not a natural metric. For example, consider two parent
strings1111111111 and0000000000. A one-point crossover
implemented between the last two bits leads to offspring
1111111110 and 0000000001, which are Hamming dis-
tance one from the respective parents. An equally probable
crossover between the fifth and six bits, however, leads to
1111100000 and0000011111, which are Hamming distance
five away from the parents.

The Eqs. (2) and (3) yield an exact expression for the
probability distribution governing the evolution for arbitrary
selection, mutation and crossover. It takes into account ex-
actly the effects of destruction and construction of strings.

3. Coarse-Graining and Coordinate Transfor-
mations

We have shown that the dynamics of our string system is de-
scribed by2N coupled, non-linear difference equations rep-
resenting the microscopic degrees of freedom, i.e. the strings
themselves. This is an exact representation. However, obtain-
ing useful information from these equations is a highly non-
trivial undertaking. The field of population genetics has been
concerned precisely with this task for over 80 years now, and
there most progress has been at the level of toy models with
very simple fitness landscapes or a small number of genetic
loci (string bits) - often at the level of only 2 or 3 bits.

There are two basic motivations for performing a coarse
graining of a system with many degrees of freedom. One
is: to write the dynamics in terms of more appropriate effec-
tive degrees of freedom,i.e. to write an “effective” dynam-
ics, while the other is to solve for the dynamics by consider-
ing a related system with fewer degrees of freedom. In this
sense we are using the word coarse graining in what would
normally be considered to be two different contexts. For in-
stance, writing the dynamics of a set of coupled harmonic
oscillators in terms of normal modes would be an example
of writing dynamics in terms of more appropriate degrees
of freedom - the normal modes being collective (“coarse
grained”) degrees of freedom composed from the underly-
ing microscopic degrees of freedom - the oscillators them-
selves. Of course, the normal way of thinking of this exact
coarse graining is as a symplectic transformation. Here, the
word coarse graining is meant to indicate that it is a descrip-
tion in terms of collective degrees of freedom. The mapping
between the two is exact. Another simple example would
be that of describing the dynamics of a macroscopic metal
sphere in terms of its position coordinates and Euler angles.
Once again these degrees of freedom are collective degrees of
freedom relative to the underlying more fundamental atomic
degrees of freedom. The mapping however in this case is ap-
proximate as we forego information about all atomic degrees
of freedom. Mathematically, this is described by a projection
rather than a symplectic transformation as above.

It is this concept of a projection on the configuration
space that is at the heart of the second meaning of coarse

graining - “integrating out” degrees of freedom - which is
more directly associated with considerations of the RG. Once
again, a coarse graining may be exact or approximate, though
the number of explicit exact coarse graining transformations
is very limited. An example would be the one-dimensional
Ising model [4]. The motivation behind this type of coarse
graining is that if you can map a system onto an analogous
system with fewer degrees of freedom then the latter should
be easier to solve, or at least approximately solve. Both types
of coarse graining naturally appear in genetic dynamics as we
shall see.

We will start off with coarse grainings associated with
more natural collective degrees of freedom. A very simple,
but relevant, example is that of phenotypic dynamics. Fit-
ness, almost by definition, acts at the level of the phenotype
(The observable manifestation of the genotype) hence if the
dynamics is engendered by nothing other than pure selection
it is natural to perform a coarse graining from genotype to
phenotype. As a concrete example consider a fitness land-
scape where the fitness is given by the number of ones on
the string (a simple paramagnet). In this case the dynamics
can be rewritten in terms of theN phenotypes rather than2N

genotypes. The equation of motion for selection only is then

Pn(t + 1) =
n

n̄(t)
Pn(t) (4)

where we denote phenotypes byn, the number of ones,
andn̄(t) is the average number of ones in the population at
time t. The solution of thesen difference equations is

Pn(t) =
ntPn(0)∑N

n=0 ntPn(0)
(5)

Another example is that of the Eigen model [5], where the
fitness landscape is degenerate for all genotypes except one,
the master sequence. At the level of selection only, given that
there are only two phenotypes, there is a reduction in the size
of the configuration space from2N to 2, i.e. a reduction in
the number of degrees of freedom fromN to 1. However,
if we include in the effect of mutation we see there is an in-
duced breaking of the genotype-phenotype symmetry due to
the fact that strings close to the master sequence in Hamming
distance have a higher “effective” fitness [6,7]. In both these
cases a natural coarse graining is suggested by the form of
the fitness landscape, which itself is intimately related to the
selection operator. Note that, although the genotype to phe-
notype mapping is a true coarse graining, in the sense that it
is a projection onX, it is a very simple one as it is an exact
coarse graining associated with a symmetry. Information is
lost in the sense that after the projection we can no longer en-
quire as to the dynamical evolution of a particular genotype.

In the case of selection and mutation the dynamical equa-
tions are essentially linear, the apparently non-linear average
fitness only acting as a normalization factor, and, as we will
see, the resulting selection/mutation problem can be recast
in the guise of a two-dimensional, inhomogeneous statistical
mechanics problem, where powerful techniques such as the
transfer matrix approach can be invoked. In this case the nat-
ural effective degrees of freedom are the normal modes of the
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mutation-selection matrix, i.e. its eigenvectors. In the case of
pure mutation a Walsh transformation (Fourier transform on
binary numbers) yields the eignevectors. In both cases the
transformation is a coordinate transformation rather than a
projection and no information is lost.

Explicitly, theWalsh basisψ, consists ofWalsh functions,

ψI(x) = 1/
√
|X|

∏

j∈I

xj ,

whereI is a subset of{1, . . . , N} andxj = ±1. The Walsh
functions are normed and orthogonal and oforder |I|, the
number of loci that are multiplied. The Walsh-transform,f̂ ,
of a functionf is defined implicitly by

f(i) =
∑

I

f̂(I)ψI(i)

Multiplying with ψK(x) and summing over alli ∈ X we
obtain

∑

i∈X

f(i)ψK(i) =
∑

I

f̂(I)
∑

i∈X

ψI(i)ψK(i)

=
∑

I

f̂(I)δIK = f̂(K) (6)

In matrix form, f̂ = Ψf , where the matrixΨ has the Walsh
functionsψK as its rows. As mentioned, the Walsh functions
are eigenfunctions of the mutation operatorW that satisfies
WψI = (1 − 2|I|/N)ψI The mutation operator is therefore
diagonal in the Walsh basis. Equation (2) reads in these co-
ordinates

P̂I(t + 1) =
∑

i

(ΨW)IiP
c
i =

(
1− 2

|I|
N

)
P̂ c

I (7)

For example, in the case of one gene

W1 ≡
(

(1− p) p
p (1− p)

)

with ψ0 = 1√
2

(
1
1

)
and ψ1 = 1√

2

(
1
−1

)
one finds

W1ψ0 = ψ0 andW1ψ1 = (1− 2p)ψ0. The Walsh basis will
be particularly useful if the transformed selection-crossover
term P̂ c

I also has a simple form. The explicit Walsh matrix
for 3 bits is seen below (Note that although we have defined
above the Walsh functions in terms of an alphabet1, −1 the
Walsh matrix is the same for alphabet1, 0 the only difference
for the latter being how the Walsh function is defined.). Note
that the last row corresponds to the constant eigenvector.

Ψ =
1√
8

111 110 101 011 100 010 001 000
111 −1 +1 +1 +1 −1 −1 −1 +1
110 +1 +1 −1 −1 −1 −1 +1 +1
101 +1 −1 +1 −1 −1 +1 −1 +1
011 +1 −1 −1 +1 +1 −1 −1 +1
100 −1 −1 −1 +1 −1 +1 +1 +1
010 −1 −1 +1 −1 +1 −1 +1 +1
001 −1 +1 −1 −1 +1 +1 −1 +1
000 +1 +1 +1 +1 +1 +1 +1 +1

(8)

A third, and much more non-trivial example, is associated
with the recombination operator. The fact that the string rep-
resentation for recombination is very inefficient, due to the
sparsity of the interaction matrix, is an indication that strings
are not the natural effective degrees of freedom for recom-
bination. Insight into what are more appropriate effective
degrees of freedom can be gleaned by considering a simple
example: To form the string111 with a recombination mask
100 one can join strings111, 110, 101 and100 with either
111 or 011. In other words, for the first parent the second
and third bit values are unimportant and for the second the
first bit value is unimportant. Thus, it is natural to coarse
grain over those strings that give rise to the desired target for
a given mask. Such coarse-grained variables are known as
“schemata”, and are conceptually equivalent to, for instance,
“block spins” in traditional statistical mechanics RG applica-
tions, except in this case there are eminently good reasons as
to why they need not be “local”. The marginal probability,
Pα(t), represents the probability of finding the schemaα at
time t. A specific schema is determined by summing over

those bit positions that are not part of the schema. One may
denote such a bit position by a∗. Thus,11∗ represents the
two strings111 and110. The number of definite bits of the
schema defines its order,N2, while the number of bits be-
tween the outermost defining bits, including the latter, defines
its length. Thus,∗11 ∗ ∗0 ∗ ∗ hasN2 = 3 andl = 5.

Generally, if one picks, arbitrarily, a vertex inX, as-
sociated with a stringi, one may perform a linear coordi-
nate transformation,Λ : X → X̃, to a basis consisting
of all schemata that containi. For instance, for two bits
X = {11, 10, 01, 00}. Selecting the string11 as our “pre-
ferred” vertex, we havẽX = {11, 1∗, ∗1, ∗∗}. The invertible
matrix Λ is such thatΛαi = 1 ⇐⇒ i ∈ α. We denote the
resulting basis the Building Block Basis (BBB) [1]. Given
the arbitrariness of the choice of vertex there are in fact2N

equivalent BBBs each transformable to any other by a per-
mutation. For 3 bits the explicit transformation matrix for the
basis with preferred vertex111 is
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Λ =

111 110 101 011 100 010 001 000
111 1 0 0 0 0 0 0 0
11∗ 1 1 0 0 0 0 0 0
1 ∗ 1 1 0 1 0 0 0 0 0
∗11 1 0 0 1 0 0 0 0
1 ∗ ∗ 1 1 1 0 1 0 0 0
∗1∗ 1 1 0 1 0 1 0 0
∗ ∗ 1 1 0 1 1 0 0 1 0
∗ ∗ ∗ 1 1 1 1 1 1 1 1

(9)

The BBB is not orthonormal. Note that the vertexi by
construction is a fixed point of this transformation. Apart
from the vertexi, the points inX̃, being schemata, corre-
spond to higher dimensional objects inX. For instance, con-
sidering the two-dimensional case,1∗ and∗1 are one-planes
in X while ∗∗ is the whole space. In the BBB one may trans-
form (3) to find

P̃ c
i (t + 1) = (1− pc)P̃ ′i (t)

+
2N∑

m=1

∑

β,γ

λ̃αβγ(m)P̃ ′j(t)P̃
′
k(t) (10)

whereλ̃αβγ(m) = ΛαiλijkΛ−1
βj Λ−1

γk .

The advantage of this new representation is that the prop-
erties and symmetries of crossover are much more transpar-
ent. For instance,̃λαβγ(m) is such that, for a given mask,
only interactions between BBs that construct the target string
or schema are non-zero,i.e., λ̃αβγ(m) = 0, unlessγ corre-
sponds to a schema which is the complement ofβ with re-
spect toα. Also, λ̃αβγ(m) = 0 unlessβ is equivalent tom,
where equivalent means that, for any1 in the mask, we have
a1 at the corresponding locus inβ and for any0 we have a∗.
These two important properties mean that the summations
over β andγ in (10) disappear to leave only the sum over
masks with an “interaction” constantpc(m) which depends
only on the mask. For example, for two bits, if we choose as
vertex11, then11 may interact only with∗∗, while 1∗ may
interact only with∗1.

In X this has the interesting interpretation that for a tar-
get schema,α, of dimensionality(N − d), only geometric
objects “dual” in thed-dimensional subspace ofX that cor-
responds toα may interact. In other words, ak-dimensional
object recombines only with a(N − d− k)-dimensional ob-
ject. Additionally, a(N − d)-dimensional object may only
be formed by the interaction of higher dimensional objects.
In this sense interaction is via the geometric intersection of
higher dimensional objects. For example, the point11 can be
formed by the intersection of the two lines1∗ and∗1. Simi-
larly, 1111 can be formed via intersection of the three-plane
1 ∗ ∗∗ with the line∗111 or via the intersection of the two
two-planes11 ∗ ∗ and∗ ∗ 11.

As mentioned, one of the primary advantages of the BBB
representation is that the sums overj andk in equation (3)

disappear thus obtaining

P c
i (t) = (1− pc)P ′i (t) +

2N∑
m=1

pc(m)P ′im
(t)P ′im̄

(t) (11)

whereP ′im
(t) is the probability to select the BBim (note

that the mask uniquely specifies which element,im, of the
BBB to choose) andP ′im̄

(t) is the probability to select the
BB im̄, which is uniquely specified as the complement ofim
in i. Both im and im̄ are elements of the BBB associated
with i. The above equation clearly shows that recombination
is most naturally considered in terms of the BBB. In the stan-
dard basis there were of the order of22N elements ofλijk

to be taken into account for a giveni. In the BBB there is
only one term. Of course, the coarse grained averages ofim
andim̄ contain2N terms, still, the reduction in complication
is enormous. Thus, crossover naturally introduces the idea
of a coarse graining, the associated effective degrees of free-
dom being the BBs we have defined. This is an important
point as it shows that evolution is acting in the presence of
crossover most naturally at the level of populations, the BBs
representing populations with a certain degree of “kinship”
to the target object.

Inserting (11) in (2) we can try to solve for the dynam-
ics. However, in order to do that we must know the time
dependence ofim andim̄. Although the number of BB basis
elements is2N we may generalize and consider the evolution
of an arbitrary schema,α. To do this we need to sum with∑

i∈α on both sides of equation (2). This can simply be done
to obtain [8–10] again the form (2), where this time the index
α runs only over the2N2 elements of the schema partition and
where againWαβ = pdH

αβ (1−p)N−dH
αβ . In this case however

dH
αβ is the Hamming distance between the two schemata. For

instance, for strings with three loci the schemata partition as-
sociated with the first and third loci is{1∗1, 1∗0, 0∗1, 0∗0}.
In this casedH

12 = 1 anddH
14 = 2. P c

α(t) =
∑

i∈α P c
i (t) is

the probability of finding the schemaα after selection and re-
combination. Note the form invariance of the equation after
coarse graining. To complete the transformation to schema
dynamics we need the schema analog of (11). This also can
be obtained by acting with

∑
i∈α on both sides of the equa-

tion. One obtains

P c
α(t)=(1− pcNα)P ′α(t)+

∑

m∈Mr

pc(m)P ′αm
(t)P ′αm̄

(t) (12)

whereαm represents the part of the schemaα inherited from
the first parent andαm̄ that part inherited from the second.
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N(α) is the number of crossover masks that affectα, relative
to the total number of masks withpc(m) 6= 0, the set of such
masks being denoted byMr. Obviously, these quantities de-
pend on the type of crossover implemented and on properties
of the schema such as defining length. Note that the BBB
naturally coarse grains here to the BBB appropriate for the
schemaα as opposed to the stringx.

Thus, we see that the evolution equation for schemata is
form invariant, there being only a simple multiplicative renor-
malization of the recombination probabilitypc. This form
invariance, shown in [8, 9], demonstrates that BB schemata
in general are a preferred set of coarse grained variables and,
more particularly, the BBB is a preferred basis in the presence
of recombination. It has also been shown [11] that schemata,
more generally, are theonly coarse graining that leads to in-
variance in the presence of mutation and recombination.

Considering again the structure of (11) and (12) we see
that variables associated with a certain degree of coarse grain-
ing are related to BB “precursors” at an earlier time, which in
their turn ... and so on. This hierarchical structure terminates
at order-one BBs as these are unaffected by crossover. Thus,
for example, the level one BB combinations of111, i.e., BBs
that lead directly upon recombination to111 are:11∗ : ∗ ∗ 1,
1 ∗ 1 : ∗1∗ and1 ∗ ∗ : ∗11. The level two BBs are1 ∗ ∗, ∗1∗
and∗ ∗ 1. Thus, a typical construction process is that BBs
1 ∗ ∗ and∗1∗ recombine att = t1 to form the BB11∗ which
at some later timet2 recombines with the BB∗ ∗ 1 to form
the sequence111.

So we see then that different genetic operators are typ-
ically associated with different natural sets of effective de-
grees of freedom. In these cases all the coarse graining has
been done, in one form or another in “space”. It is also
possible to coarse grain in “time”. We can think of the dy-
namics of a genetic system also in a “space-time” setting.
Here, we imagine a description of the system on a finite two-
dimensional space (rather than the evolution of a finite one-
dimensional space (the string). This space is of “volume”
N × t and varies in size as the system evolves. Our genetic
dynamics can now be thought of in terms of two-dimensional
spin configurations. In this setting we can consider a coarse
graining by integrating out “columns” of spins, thus effecting
a reduction to a system of “height”t but “length” N ′ < N .
It is clear however that one may also effect a coarse graining,
as we will explicitly demonstrate shortly, by integrating out
“rows” of spins, thus coarse graining to a system of lengthN
but of heightt′ < t. Both these coarse grainings have natural
interpretations. It is possible to also envision a more gen-
eral coarse graining where blocks of spins other than rows or
columns are integrated out.

4. Renormalization Group

In the previous section we saw that coarse grained variables
arise very naturally in genetic dynamics and gave as exam-
ples the genotype-phenotype map and schemata. We can for-
malize these considerations by introducing a general coarse
graining operatorR(η, η′) which coarse grains from the vari-
ableη to the variableη′. In this case

R(η′, η)P (η, t) = P (η′, t)

R(η′′, η)P (η, t) = P (η′′, t) (13)

However, given thatR(η′′, η′)P (η′, t) = P (η′′, t) we deduce
that

R(η, η′′) = R(η, η′)R(η′, η′′) (14)

i.e. the space of coarse grainings has a semi-group structure.
Thus, we see that one can naturally introduce the RG into
the study of genetic dynamics. The naturalness of a particu-
lar RG transformation will be to a large extent determined by
how the dynamics looks under this coarse graining.

Considering (1), for the pdf of the dynamics, then, given
thatR(η′, η)Pη(t) = Pη′(t) the dynamics under a coarse
graining is governed byR(η, η′)(T (Pη(t), p)S (Pη(t), f)),
whereS (Pη(t), f) andT (Pη(t), p) are the dynamical oper-
ators associated with the variablesη. If this can be written
in the formT (Pη′(t), p′)S (Pη′(t), f ′) with suitable “renor-
malizations”,f −→ f′ andp −→ p′ of the model’s param-
eters, then the dynamics is form covariant or invariant un-
der this coarse graining. Note that we are here considering
a more general notion of invariance than the idea of “com-
patibility” [11] (see [12] for a discussion of the relationship
between the two). In the case of selection only, the coarse
graining transforms the fitness

fη −→ fη′ = R(η, η′)fη =
∑

η∈η′
fηPη(t)/

∑

η∈η′
Pη(t). (15)

An important point to note here is that, generically, a coarse
graining gives rise to atime dependentcoarse-grained fitness.

In the case of recombination note also that the coarse
graining operator associated with the BBs satisfies

R(η, η′) = R(ηS , η′S)R(ηC, η′C) (16)

whereR(ηS , η′S) represents the action of the coarse graining
on the BBS while R(ηC, η′C) represents the action on the
BB C.

5. A Transfer Matrix approach to Mutation-
Selection

In this section we will restrict attention to mutation-selection
systems implementing a generic RG transformation at the
level of the transfer matrix. We begin with the dynamical
equation

P(t + 1) =
1

f̄(t)
Ws(t)P(t) (17)

where the selection-mutation matrixWs(t) = WF(t), not-
ing an invariance of the dynamics under the transformation
on the fitness landscapefi → Cfi, whereC is any pos-
itive constant. This equation looks superficially non-linear
due to the presence of the factorf̄(t). However, this factor
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can be eliminated without loss of generality, and then rein-
stated, by passing to unormalized variables,yi(t), such that
Pi(t) = yi(t)/

∑
i yi(t), that satisfy

y(t + 1) = Ws(t)y(t) (18)

The solution to this equation is

y(t) = W
t

s(t)y(0) (19)

and the resultant solution forP(t) is

P(t) =
W

t

s(t)P(0)∑
i W t

ijPj(0)
(20)

Thus, we see that knowledge of the matrixWs is sufficient
to determine the dynamics, in particular its eigenvalues and
eigenvectors. The solution in terms of the eigenvalues,λi,
and eigenvectors,ui, of Ws is

P(t) =
a1u1λ

t
1 + a2u2λ

t
2 + ...∑

α u1α + (a2/a1)(λ2/λ1)tu2α + ...
(21)

The matrixWs is equivalent to the transfer matrix in statis-
tical mechanics and, in fact, may be put into precisely that
form [13], where the Hamiltonian of the resulting inhomoge-
neous two-dimensional Ising system is

H(T ) = −
t−1∑

i=0

N∑

j=1

(
Jyσi+1

j σi
j + T ln fi

)

−TNt

2
ln(p(1− p)) (22)

where the “temperature” of the system is

1/T = ln(p/(1− p))

and ln fi is the energy associated with a row of spins. One
can also make a correspondence between other observables
of interest and their thermodynamic analogs. For instance,
relaxation into the stationary state is governed by an analog
of the correlation length and given by

τ−1 = ln(λ1/λ2) (23)

We may formally consider a coarse graining of the above
system in either direction, space or time, in the genetic sys-
tem. Considering the time direction we coarse grain the dy-
namics by integrating over certain rows of spins. In terms
of the transfer matrix we consider a coarse-grained matrix
W ′ = Wn implying that we are coarse graining overn time
steps. Whether the system is naturally “renormalizable” or
not depends on whetherW ′ can be naturally written in terms
of reparametrized versions of the parameters that formW .
In general, for a mutation-selection system there are2N pa-
rameters associated with the fitness landscape and2N possi-
ble mutation rates, if we accept the possibility of asymmetric
mutation rates (i.e. for two stringsi andj the probability that
i mutates toj is not the same thatj mutates toi).

The transfer matrixWs(t) evolves the system from
t to t + 1 or, put another way, links spin rowst and
t + 1. Spin rowst and t + 2 are linked by the matrix
W

′
s(t) = Ws(t + 1)Ws(t), the matrixW

′
s(t) evolving the

system over two time steps. More generally,W
′
s(t, t′) will

be taken as the matrix that evolves the system fromt′ to t.
These matrices satisfy

W
′
s(t, t

′′) = W
′
s(t, t

′)W
′
s(t

′, t′′) (24)

and hence give a representation of the RG. Thus, we see how
integrating out rows of spins at the level of the transfer matrix
leads to a simple realization of the RG. In the next section we
will consider a concrete realization of this mapping.

6. Exact RG for a One Gene-Two Allele Sys-
tem

We illustrate the RG introduced in the previous section with
a concrete, simple example - that of a genetic system con-
sisting of one gene (bit) with two alleles (values) with fitness
valuesf1 andf0. In this case the transfer matrix is

(1-p)f1 pf0
pf1 (1-p)f0

(25)

If we now implement a coarse graining by integrating over
every other time step we arrive at a coarse grained transfer
matrix,W ′, that satisfies

W ′ = W 2 (26)

The most natural reparametrization is that of the original, i.e.
we parametrizeW ′ as

W´ = (1− p′)f ′1 p′f ′0
p′f ′1 (1− p′)f ′0

(27)

The equationW ′ = W 2 then leads to four equations with
only three parameters -p′, f ′1 andf ′0 - that may be adjusted.
One finds that the equations cannot be solved. The inter-
esting conclusion in this case is that the system is “non-
renormalizable” with respect to this reparametrization. The
intuitive reason why the reparametrization doesn’t work is
that the selection makes the “effective” mutation rate from
allele one to allele zero different to that from allele zero to
allele one. In other words asymmetric hopping probabilities
between the two alleles are required. Introducing, such prob-
abilities,p′1 andp′0, leads to the following relations.

f ′1 = (1− p1)f2
1 + p1f0f1 (28)

f ′0 = (1− p0)f2
0 + p0f0f1 (29)

p′1 = p1

(
(1− p1)f1 + (1− p0)f0

(1− p1)f1 + p1f0

)
(30)

p′0 = p0

(
(1− p0)f0 + (1− p1)f1

(1− p0)f0 + p0f1

)
(31)
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These relations generally relate the parameters aftern + 1 it-
erations of the RG map, associated with a system oft/2n+1

“degrees of freedom” (time steps), to those aftern iterations
correpsonding to a system oft/2n degrees of freedom. The
interpretation of these results is via the “Law of Correspond-
ing States” - where we can see that the dynamics of this one
gene genetic system with fitness landscapef1, f0 and mu-
tation ratesp1 andp0 evolving to timet/2n is identical to
that of a one gene system with fitness landscapef ′1, f ′0 and
mutation ratesp′1 andp′0 evolving to timet/2n+1. By map-
ping the system to a smaller and smaller number of degrees
of freedom one hopes to realize the RG goal of reaching a
system with a sufficiently small number of degrees of free-
dom that a simple approximation technique may be used. The
Eqs. (28-31) compose an exact closed form RG.

We will now consider the asymptotic behaviour of these
equations starting with their fixed points. We are interested
in the fixed points of (26),i.e. W ∗ = W ∗2. If W is invertible
then this reduces toW ∗ = 1. The only solution of this equa-
tion isp1 = p0 = 0, f1 = f0 = 1. Actually, due to the invari-
ance of the dynamics under any constant rescaling of the fit-
ness values,f1 = f0 = C, whereC is any positive constant,
exhibits fixed point behaviour. An appropriate way to take
this into account is to consider the quantityH = ln(f1/f0)
as this is automatically invariant under any rescaling. This
quantity, in fact, intuitively, plays the role of a magnetic, or
ordering, field as it breaks any symmetry between the1 and0
alleles. Large|H| corresponds to a regime of strong selection
pressure where one allele is strongly favoured over another.
In terms ofH the fixed point isH = 0, p1 = p0 = 0.

If we also consider solutions whereW is not invertible
we find the additional solutions:H = ∞, p1 = p0 = 0 and
H = C, p1 + p0 = 1, whereC is any positive constant,
the latter corresponding to a line of fixed points. These fixed
points are analogous, as one might expect, of what is found
for the one-dimensional Ising model.H∗ = 0, p∗1 = p∗0 = 0
is the “ferromagnetic” fixed point corresponding to a critical
temperatureT = 0. On the other hand we find a “param-
agnetic” line of fixed points atp∗1 + p∗0 = 1 and a “fully
aligned” or “frozen” infinite field fixed point atH∗ = ∞,
p∗1 = p∗0 = 0.

We can linearize the RG equations in the vicinity of these
fixed points. In the vicinity of the ferromagnetic fixed point
we have

δH ′ = 2δH (32)

δp′1 = 2δp1 (33)

δp′0 = 2δp0 (34)

Thus, we see that the eigenvalues of the RG linearized around
this fixed point are all positive, meaning this fixed point is un-
stable to linear perturbations in both the mutation rates and
selection strength.

Considering now the “infinite temperature” paramagnetic
fixed points: on the linep∗1 + p∗0 = 1 we have

H ′ = H (35)

hence any value ofH is a fixed point, thus confirming that
we have a line of fixed points. To illustrate their nature with
respect to perturbations in the mutation rate it suffices to con-
sider the case wherep∗0 = p∗1 = 1/2 and symmetric pertur-
bations withδp0 = δp1 = δp. In this case, for anyH,

δp′ = −2(δp)2 (36)

so we note that mutation is an irrelevant operator for the para-
magnetic fixed points, though, interestingly, the irrelevance
only appears at quadratic order. Thus, the RG flows for this
system flow from the doubly unstable ferromagnetic fixed
point to the line of paramagnetic fixed points. Starting with
a system at timet, with a given selection pressure and mu-
tation rate, the RG maps to a system with stronger selection
pressure and higher mutation rate. i.e. the RG takes us away
from the critical point.

It should be noted that these fixed points are fixed points
for any value of the initial population probability distribu-
tion, P(t). In the case of the ferromagnetic fixed point any
point within the population simplex is already a fixed point
in the infinite population limit. In this sense correlations in
the time direction are of long range near this fixed point. For
the frozen fixed point the vertex of the simplex of highest
fitness is the population attractor while for the paramagnetic
fixed points the center of the simplex is the attractor. So the
fixed point probability distributions are:P1 = 1, P0 = 0;
P1 = 0, P0 = 1, andP1 = 1/2, P0 = 1/2. Although
these are the only fixed point distributions with respect to RG
transformations they are not the only fixed points of the dy-
namics. These may be obtained directly from (17) setting
P(t + 1) = P(t) = P∗ for our simple one gene model. One
finds for the casep1 = p0 = p

P ∗1 =
[
((f1−f0)− p(f1+f0))±((f1−f0)2(1− 2p)

+p2(f1 + f0)2)
1
2 )

]
/2(f1 − f0) (37)

which is the “Quasi-species” [5] for this simple model and
corresponds to the asymptotic population distribution. Under
a coarse graining the Quasi-species distribution is not invari-
ant being mapped into the asympotic distributionsP1 = 1,
for zero mutation, orP1 = 1/2 for non-zero mutation.

So what are the “biological” interpretations of these fixed
points? The fixed pointH∗ = ∞, p∗1 = p∗0 = 0 corre-
sponds to the strong selection limit, where the positive se-
lection associated with one allele over another is so strong
that the population completely orders after one generation.
The ferromagnetic system corresponds to the limit of small
selection pressure and small mutation rate so that the pop-
ulation does not “evolve” but remains relatively static. Of
course, in the real world, populations are not infinite and “fi-
nite size” effects have to be considered. In this case there will
be a “spontaneous symmetry breaking” such that the popula-
tion becomes uniform consisting of either all alleles 1 or al-
leles 0, the timescale of the symmetry breaking depending on
1/n1/2, wheren is the population size. The paramagnetic
fixed points are associated with a strong mutation regime
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where selection essentially does not play a role. The strong
selection/weak mutation regime one may term “Darwinian”
due to its emphasis on strong positive selection, whereas the
weak selection/strong mutation regime we may term “Neu-
tral” after the Neutral theory of evolution [14].

With the behaviour in the vicinity of the RG fixed points
in hand we may calculate quantities such as the correlation
length (time), etc.

7. Conclusions

In this paper we have shown how coarse graining is a very
natural tool to use when examining the dynamics of genetic
systems. In particular, we showed how both meanings of
coarse graining: i) writing an effective theory in terms of
more appropriate effective degrees of freedom and, ii) explic-
itly integrating out degrees of freedom naturally made their
appearance.

We saw that coarse grainings could be implemented as
coordinate transformations or as projections on the configu-
ration space. However, integrating out degrees of freedom is
always associated with a projection. Different coarse grain-
ings were seen to be naturally associated with the different
genetic operators, a particularly interesting one being the map
to the BBB in the case of recombination. We showed that
both coarse grainings in space and time naturally showed a

semi-group structure associated with the RG.
We also presented for the first time an explicit exact RG

for a concrete simple genetic system - a one gene, two allele
model evolving under the action of mutation and selection
- showing how an explicit coarse graining RG led to identi-
cal dynamics for different “corresponding states” explicitly
showing the relationship between the renormalized parame-
ters of these different “corresponding” systems. We exam-
ined the fixed points of the RG finding two isolated fixed
points associated with the strong selection/zero mutation and
zero selection/zero regimes respectively, and a line of fixed
points associated with the weak selection/strong mutation
regime. By considering the RG in the neighbourhood of these
fixed points we showed that the weak selection/strong muta-
tion regime was the only stable regime in terms of pertur-
bations in the selection pressure and mutation. We strongly
believe that the RG has an important role to play in devel-
oping a more quantitative understanding of the dynamics of
genetic systems.
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