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The knowledge of the solution of the Renormalization Group Equation (RGE) for the quartic self-interaction of the Higgs scalarλH is
crucial for the determination of the energy limits on the Higgs mass.λH is also important in order to solve the RGEs at the two loop level
for other observables like the quark masses or the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We obtain an analytical and numerical
(considering Grand Unification) solution to the one loop renormalization group evolution of the Higgs quartic couplingλH in the energy
range[mt, EGU ], wheremt is the mass of the top quark andEGU = 1014 GeV. We find that depending on the value ofλH(mt) the solution
for λH(E) may have singularities or zeros and become negative, in which case the Standard Model (SM) becomes inconsistent. We obtain
that for0.65 ≤ λH(mt) ≤ 0.69 the SM is valid in the whole range[mt, EGU ]. These values ofλH(mt) correspond to the following Higgs
mass198 ≤ mH ≤ 205 GeV.
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El conocimiento de la solución de la Ecuación del Grupo de Renormalización (EGR) correspondiente al acoplamiento cuártico del escalar
de HiggsλH es crucial para la determinación de los ĺımites de enerǵıa de la masa del Higgs.λH es tambíen importante para resolver las
EGR al nivel de dos lazos para otras observables tales como las masas de los quarks o la matriz de Cabibbo Kobayashi Maskawa (CKM)
en las que juega un papel básico. Obtenemos una solución anaĺıtica y nuḿerica (considerando Gran Unificación) para la evolución del
grupo de renormalización a un lazo del acoplamiento cuártico de HiggsλH en el rango de energı́as [mt, EGU ] dondemt es la masa del
quark top yEGU = 1014 GeV. Encontramos que dependiendo del valor deλH(mt) la solucíon paraλH(E) puede contener singular-
idades o ceros y hasta puede tomar valores negativos en cuyo caso el Modelo Standard (MS) serı́a inconsistente. Obtenemos que para
0.65 ≤ λH(mt) ≤ 0.69 el MS es v́alido en el rango completo[mt, EGU ]. Estos valores paraλH(mt) corresponden a las siguientes masas
del Higgs198 ≤ mH ≤ 205 GeV.

Descriptores: Modelo standard; Higgs; auto-interacción cúartica; ecuacíon de Riccati.
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1. Introduction
The question about the mechanisms by which the funda-
mental particles get their masses is important and very ba-
sic to acquire an understanding of the nature of the con-
stituents of matter and forces among them. The Stan-
dard Model (SM) is the gauge theory with the gauge group
SU(3)× SU(2)× U(1) that provides a very precise de-
scription of the microscopic interactions, and it is compat-
ible with the present elementary particle data [1, 2]. Higgs
found [3] that the parameters in the field equations (La-
grangian) associated with the scalar particleH can be cho-
sen in such a way that in the lowest energy state of that field
(in empty space) the value of the field is not zero and it is
the so called non zero vacuum expectation value VEV. As
the field is not zero in the empty space the particles that in-
teract with it gain mass from that interaction. The Higgs bo-
sonH gives the mechanism by which the particles can ac-
quire mass. To constrain these ideas more rigorously and
to obtain very significant clues, it is important to find first
hand evidence for the Higgs field. The Higgs is a hypothet-
ical particle about whose properties we still have only vague
hints, and speculations and its discovery is the most exciting
prospect in contemporary particle physics. There are many
unanswered questions about the Higgs. The most crucial one,
which may guide the experimentalist to its discovery is re-

lated with the knowledge of the behavior of the quartic cou-
pling λH through which the mass of the Higgs particlemH

is obtained. On the other hand, the idea of Grand Unifica-
tion (GU) is to look for symmetries in the SM at very high
energies. The most notable sign of the presence of GU is the
(approximate) convergence of the three gauge couplings to
one common value at the energies1014− 1015 GeV. [4]. The
main tool of the GU models are the RGEs that relate various
observables (like couplings or masses) at different energies,
and also allow the study of their asymptotic behavior. The
term “renormalization” means, together with the redefinition
of the mass and coupling constant, the readjustment of the
normalization of Green functions by suitable multiplicative
factors which may eliminate possible infinities in the Green
functions. The finite renormalization of the Green func-
tions constitutes a group called the renormalization group.
The physical predictions are invariant under the renormal-
ization group transformations, and an analytic expression of
this property is given by the renormalization group equation.
The one loop RGEs for the best measured observablesgi’s
and the Cabibbo-Kobayashi-Maskawa (CKM) matrix are in-
dependent of the Higgs quartic coupling. This allowed to
derive the running of those observables at the lowest order
without the knowledge of theλH [5].
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In this paper, using previous results for the gauge cou-
plings and for the quark-top Yukawa coupling, we solve
the one loop RGE equation [6] for the quartic Higgs cou-
pling λH . The equation for theλH is of Riccati’s type [7].
We show how to solve this equation explicitly. We find that
the functionλH(E) has a Landau singularity for values of
λH(mt) ≥ 0.6915 . For the values ofλH(mt) ≤ 0.65016
the solutionλH(E) passes through zero and becomes nega-
tive before reaching theEGU energy, and the SM becomes
invalid. As it is well known the couplingλH is related to the
Higgs mass, so our results forλH are important for the de-
termination of this mass. With the combination of the RGE
with GU we obtain numerical and graphical results for the
behavior of theλH(E) which result in some bounds on the
Higgs boson mass.

2. Quartic self-interaction of the Higgs scalar

The scalar part of the SM Lagrangian, after the spontaneous
symmetry breaking, in terms of the physical states, contains
among other terms: the diagonalized quark Yukawa cou-
plings Yu,d of the up and down quarks, the quartic interac-
tion λH of the Higgs scalarH, and a the term withµ which
is connected to the (tree-level) Higgs mass:

−L = . . . +
v√
2
uLYu uR +

v√
2
dLYd dR

+
1
2
µ2H2 +

1
8
λHH4. (1)

The relation betweenµ and the Higgs mass is:mH =√
−2µ2 =

√
2λHv wherev is the vacuum expectation value

of the Higgs field [2] (see Appendix A).
In previous papers we have discussed a consistent ap-

proximation scheme for the solution of the RGEs that was
based on the expansion of the solutions in terms of the pow-
ers ofλ, whereλ ' 0.22 is the absolute value of the|Vus|
element of the CKM matrix.

In such an approximation, we have obtained the energy
dependence in terms oft = ln (E/mt) of the gauge cou-
plingsgi(t)
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and the RGE running of theYt which is the largest eigenvalue
of the up quark Yukata coupling matrix
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3 = 3, ck = (17/20, 9/4, 8).

Also, in the same approximation the lowest order RGE for
theλH , given in Ref. 6, has the form of a Riccati differential
equation
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The behavior of the gauge couplinggi’s is given in Eq. (2)
and the explicit energy dependence ofYt(t) is given in
Eq. (3). Thegi’s andYt(t) as functions of energy have no sin-
gularities in the range[mt, EGU ]. The solutions of the Ric-
cati’s equations can become singular even if the coefficients
of the equation are smooth regular functions of the energy.

3. Solution of the Riccati equation

The solution of Eq. (4) is obtained using the substitution
of λH by the following expression containing the auxiliary
functionW

λH (t) = −4π2

3
W ′(t)
W (t)

(5)

which fulfills the linear second order differential equation

W ′′ + p (t) W ′ + q(t)W = 0. (6)

where
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Any solution of Eq. (6) generates the solutions of Eq. (4).
Eq. (6) is of the Frobenius type [8], and the solutionW (t)
is aregular function oft in the region where the coefficients
of Eq. (6) areregular. One can look for the solutions of this
equation in terms of an infinite series (see Appendix B). We
look for the two independent solutions of this equation with
the following properties

W1 (t0) = 1, W ′
1(t0) = 0,

W2 (t0) = 0, W ′
2(t0) = 1. (9)

The solution forλH in terms of the functionsW1(t) and
W2(t) has the following form

λH(t) = − (4π)2

12

W ′
1(t)− 12

(4π)2 λH(t0)W ′
2(t)

W1(t)− 12
(4π)2 λH(t0)W2(t)

, (10)
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The most important property of the solution (10) is that
the singularities (Landau poles) and the zeros of the solu-
tion λH(t) are determined from the zeros of the denominator
and numerator, respectively. One is able to determine pre-
cisely the position of the singularities and zeros and their
dependence on the initial value of the Higgs quartic cou-
pling λH(t0), wheret0 = ln(E/mt)E=mt = 0.

The form of the functionsp(t) and q(t) is too compli-
cated to be able to solve Eq. (6) in terms of simple functions.
To find the solution of this equation we approximatep(t)
and q(t) in the range of energies[mt, EGU ] by polyno-
mials of 4-th order and 6-th order int (see Appendix B).
These polynomials approximate perfectly both functions in
the whole range of energies and this allows us to find the so-
lution of Eq. (6) as a power series oft .

From Eq. (10) we find the dependence ofλH(t) on the
energy and important properties of its behavior. It is very
interesting to investigate howλH(t) depends on the initial
values ofλH(t0) and to find out the range of the validity of
the SM. As discussed earlier for the SM to be validλH(t)
must be positive and cannot be singular. SinceλH(mt) > 0,
it means that the SM is valid for the energies betweenmt

and such a value of the energyE whereλH(E) is zero or
becomes singular.

The singularity ofλH(t) can be determined from the de-
nominator of Eq. (10). For the singularity (a simple pole)
of λH(t), we obtain that the value ofλs

H(t0) at which the sin-
gularity occurs is equalλs

H(t0) = ((4π)2/12)W1(t)/W2(t).
The behavior of the inverse ofλs

H (mt) is plotted in
Fig. 1. In the numerical evaluations we consider

g1(tGU ) = g2(tGU ) = g3(tGU ) = 0.5

and

mt(t0) = v(t0) = 174.1.

If we impose the condition thatλH(t) is regular in the whole
range of the energies[mt, EGU ] then

λH(t0) ≤ 0.6915. (11)

For the SM to be valid, the quartic couplingλH(t) should not
become negative. We use the numerator of Eq. (10) to find the
first zero ofλH(t). In Fig. 2, we have drawn the dependence
on energy of theλz

H(t0) at which the numerator vanishes,
given by the relationλz

H(t0) = ((4π)2/12)W ′
1(t)/W ′

2(t)
which determines at what energyt occurs the first zero
of λH(t) depending on the value ofλH(t0). Now, from the
condition thatλH(t) should not have zeros in the whole range
of the energies[mt, EGU ] we obtain

λH(t0) ≥ 0.6502. (12)

We thus see that the consistency of the theory imposes a nar-
row band on the admissible values of theλH(t0).

0.6502 ≤ λH(t0) ≤ 0.6915. (13)

FIGURE 1. Energy dependence of theλH(mt) that determines the
singularity ofλH(E).

FIGURE 2. Energy dependence of theλH(mt) for which
λH(E) = 0.

This band of the admissible values ofλH(mt) can be
transformed into the narrow band of the allowed values of
the Higgs boson mass att0.

198 ≤ mH(t0) ≤ 205 GeV. (14)

This condition has been obtained from the analysis of the
RGEs for the Higgs quartic coupling in the SM, and the con-
dition that this model remains a consistent theory in the whole
range of energies between the top mass and the energy of
grand unification. If the Higgs mass is in the range given
in (14) then this would be a strong indication for the grand
unification hypothesis.

Finally, in Fig. 3 we show the dependence on the en-
ergy of λH(E) consideringλH(mt) = 0.65 for which we
haveλH(EGU ) = 0. The relationλH(EGU ) = 0 can be also
used as the condition which defines the grand unification en-
ergyEGU . In Fig. 4 the region between the boundaries deter-
mined from the zero value and the singularity ofλH(E), i.e.
the boundaries at which the SM breaks down is displayed.

Rev. Mex. F́ıs. 50 (4) (2004) 401–405
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FIGURE 3. Lower boundary of the region at whichλH(E) > 0 in
the[mt, EGU ] region.

FIGURE 4. Plot of theλH(mt) boundaries at which the SM breaks
down.

4. Outlook

The knowledge of theλH is essential due to its appearance in
the RGEs for many observables, like the quark masses or the
CKM matrix, having a decisive influence on their behavior.
It is also crucial in the determination of the mass of the Higgs
particle which is equal to

√
2λH(E)v, wherev is the Higgs

field vacuum expectation value.
Let us stress that ifmH(t0) = 198 GeV then the condi-

tion mH(EGU ) = 0 may be another definition of theEGU . It
may also be another indication of a very special behavior of
the SM for energies at the grand unification scale1014 GeV.

The results of this paper are consistent with those of
Refs. 9 and 10 where the similar problem was considered.
In Ref. 9 the authors were using the simplified assumption
that the gauge couplings and the top quark Yukawa coupling
are constant and do not run according to the RGE. Our treat-
ment is more precise and the simplifying assumptions are not
necessary. It is interesting that running of the gauge cou-
plings and the top quark Yukawa coupling has an important
influence on the results especially for the low Higgs masses,
where the one loop approximation is the best.
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A Higgs potential and its mass

V = µ2
(
φφ†
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+
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λH

(
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B Series solution of Eq. (6)

p(t) =
6∑
0

pntn q(t) =
6∑
0

qntn

p0 = −5.43358 · 10−2, p1 = 1.13094 · 10−3,

p2 = −1.02011 · 10−4, p3 = 3.03248 · 10−6,

p4 = −6.874 · 10−8, p5 = p6 = 0.

q0 = −5.61543 · 10−3, q1 = 2.06607 · 10−4,

q2 = −1.89481 · 10−5, q3 = 1.0073 · 10−6,

q4 = −5.14838 · 10−8, q5 = 1.49736 · 10−9,

q6 = −2.1906 · 10−11.

W (t) =
∑

wntn,

The conditions

W1 (t0) = 1, W ′
1 (t0)|t0 = 0,

⇒ w0 = 1, w1 = 0,
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and

W2 (t0) = 0, W ′
2 (t0)|t0 = 1,

⇒ w0 = 0, w1 = 1.

The coefficientswn are obtained using the relations:

w2 = −1
2

(p0w1 + q0w0) ,

w3 = −1
6

[2p0w2 + (q0 + p1) w1 + q1w0] ,
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w7 = − 1
42

[6p0w6 + (q0 + 5p1) w5
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