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The knowledge of the solution of the Renormalization Group Equation (RGE) for the quartic self-interaction of the Higgs sdalar
crucial for the determination of the energy limits on the Higgs massis also important in order to solve the RGEs at the two loop level
for other observables like the quark masses or the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We obtain an analytical and numer
(considering Grand Unification) solution to the one loop renormalization group evolution of the Higgs quartic couplindhe energy
range[m:, Fcu|, wherem, is the mass of the top quark afitt: = 10** GeV. We find that depending on the valueXof (m:) the solution

for Au (E)) may have singularities or zeros and become negative, in which case the Standard Model (SM) becomes inconsistent. We ol
that for0.65 < A (m:) < 0.69 the SM is valid in the whole randen:, Ecu|. These values ok (m:) correspond to the following Higgs
masslo’ < my < 205 GeV.
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El conocimiento de la solugn de la Ecuacin del Grupo de Renormalizaéci (EGR) correspondiente al acoplamientartico del escalar

de HiggsAx es crucial para la determinéci de los imites de enefig de la masa del Higgs\i es tamh&én importante para resolver las
EGR al nivel de dos lazos para otras observables tales como las masas de los quarks o la matriz de Cabibbo Kobayashi Maskawa (
en las que juega un papehdico. Obtenemos una sol@nianaitica y nunerica (considerando Gran Unificaa) para la evoluéin del

grupo de renormalizagn a un lazo del acoplamientoaico de Higgs\x en el rango de enel@s [m., Ecu] dondem, es la masa del
quark top yEgy = 10** GeV. Encontramos que dependiendo del valonggm;) la solucbn paraig (E) puede contener singular-
idades o ceros y hasta puede tomar valores negativos en cuyo caso el Modelo Standardi@M&)mwistente. Obtenemos que para
0.65 < Am(m:) < 0.69 el MS es \alido en el rango completon., Equ]. Estos valores par (m.) corresponden a las siguientes masas
del Higgs198 < mpy < 205GeV.

Descriptores: Modelo standard; Higgs; auto-interaggiclartica; ecuadin de Riccati.
PACS: 11.10.Hi; 12.10.Dm; 14.80.Bn

1. Introduction lated with the knowledge of the behavior of the quartic cou-
The question about the mechanisms by which the fundapling Az through which the mass of the Higgs particig;
mental particles get their masses is important and very bas obtained. On the other hand, the idea of Grand Unifica-
sic to acquire an understanding of the nature of the contion (GU) is to look for symmetries in the SM at very high
stituents of matter and forces among them. The Stanenergies. The most notable sign of the presence of GU is the
dard Model (SM) is the gauge theory with the gauge grougapproximate) convergence of the three gauge couplings to
SU(3) x SU(2) x U(1) that provides a very precise de- one common value at the energig€sd* — 10'° GeV. [4]. The
scription of the microscopic interactions, and it is compat-main tool of the GU models are the RGEs that relate various
ible with the present elementary particle data [1, 2]. Higgsobservables (like couplings or masses) at different energies,
found [3] that the parameters in the field equations (La-and also allow the study of their asymptotic behavior. The
grangian) associated with the scalar partilecan be cho- term “renormalization” means, together with the redefinition
sen in such a way that in the lowest energy state of that fieldf the mass and coupling constant, the readjustment of the
(in empty space) the value of the field is not zero and it isnormalization of Green functions by suitable multiplicative
the so called non zero vacuum expectation value VEV. Adactors which may eliminate possible infinities in the Green
the field is not zero in the empty space the particles that infunctions. The finite renormalization of the Green func-
teract with it gain mass from that interaction. The Higgs bo-tions constitutes a group called the renormalization group.
son H gives the mechanism by which the particles can acThe physical predictions are invariant under the renormal-
quire mass. To constrain these ideas more rigorously anitation group transformations, and an analytic expression of
to obtain very significant clues, it is important to find first this property is given by the renormalization group equation.
hand evidence for the Higgs field. The Higgs is a hypothetThe one loop RGEs for the best measured observapkes
ical particle about whose properties we still have only vagueand the Cabibbo-Kobayashi-Maskawa (CKM) matrix are in-
hints, and speculations and its discovery is the most excitingependent of the Higgs quartic coupling. This allowed to
prospect in contemporary particle physics. There are mangerive the running of those observables at the lowest order
unanswered questions about the Higgs. The most crucial ongjthout the knowledge of thay [5].

which may guide the experimentalist to its discovery is re-
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In this paper, using previous results for the gauge couAlso, in the same approximation the lowest order RGE for
plings and for the quark-top Yukawa coupling, we solvethe Ay, given in Ref. 6, has the form of a Riccati differential
the one loop RGE equation [6] for the quartic Higgs cou-equation
pling Ag. The equation for the g is of Riccati's type [7].

We show_ how to solve this equation_ explic_itly. We find that 9AH — 12 {;3{ + [|Yt|2 3 (195 + 95)] e
the function\y (E) has a Landau singularity for values of ~ d¢ (4m) 4\5

Am(mg) > 0.6915 . For the values oh g (m;) < 0.65016 3/(3 4, 24545 4 A

the solution\;; (E) passes through zero and becomes nega- t 16 (2591 + oo+ 92) — V3] } )

tive before reaching thé&'sy; energy, and the SM becomes
invalid. As it is well known the coupling z is related to the  The behavior of the gauge couplings is given in Eg. (2)
Higgs mass, so our results fag; are important for the de- and the explicit energy dependence ¥f(t) is given in
termination of this mass. With the combination of the RGEEq. (3). They;’s andY;(¢) as functions of energy have no sin-
with GU we obtain numerical and graphical results for thegularities in the rangén,, Eqy]. The solutions of the Ric-
behavior of the\ (E£) which result in some bounds on the cati’'s equations can become singular even if the coefficients
Higgs boson mass. of the equation are smooth regular functions of the energy.

2. Quartic self-interaction of the Higgs scalar 3. Solution of the Riccati equation

The scalar part of the SM Lagrangian, after the spontaneoushe solution of Eq. (4) is obtained using the substitution

symmetry breaking, in terms of the physical states, containgf ) ,; by the following expression containing the auxiliary
among other terms: the diagonalized quark Yukawa coufynction W

plingsY, 4 of the up and down quarks, the quartic interac-

_tion Ay of the Higgs scalaf, and_ a the term witly which Mg (t) = _ﬁ wW'(t) )
is connected to the (tree-level) Higgs mass: 3 W()
v v — . ' . . . .
L= . 4+ —u Y, up+ —d; Y, d which fulfills the linear second order differential equation
ﬁuL UR \/i Ltd OR
1 1 W +p ) W' + ()W = 0. (6)
+ §,u2H2 + g)\HH“. 1)
where
The relation between: and the Higgs mass ismy = 1 3 /1
vV —2u? = v/2Agv wherev is the vacuum expectation value ) — {y H2_ 2 ( 2(¢ 2 )}
= 91(t) +92@) ||, (7)
of the Higgs field [2] (see Appendix A). ) (4r)? (o) 4\5 1(t) +az(0)

In previous papers we have discussed a consistent ap-
proximation scheme for the solution of the RGEs that was 9
based on the expansion of the solutions in terms of the pow-(¢)= (122)
ers of \, where\ ~ 0.22 is the absolute value of th&,| (47)
element of the CKM matrix. 3 /3, o\ o A A
In such an approximation, we have obtained the energy % {16 (2591 (t)+591 ()92 (t)+92(t)) —[Y3(t)] ] - (8)
dependence in terms of = In (E/m;) of the gauge cou-

plingsg;(t) Any solution of Eq. (6) generates the solutions of Eq. (4).
24 Eq. (6) is of the Frobenius type [8], and the solutidi(t)
G2(t) = 5 gg( 0) , 2) is aregular function oft in the region where the coefficients
L= G2 i (to)bi(t — to) of Eq. (6) areregular. One can look for the solutions of this
419 equation in terms of an infinite series (see Appendix B). We
(b1,b2,b3) = (, —— = ) , look for the two independent solutions of this equation with
10" 6 the following properties
and the RGE running of thE, which is the largest eigenvalue
of the up quark Yukata coupling matrix Wi (to) =1, Wi(te) =0,
y2 (t) 1/752 (tO) = 913 (tO) Zilli (3) W2 (to) =0, W2/ (to) =1 (9)
' 1_2(a5‘+a§)(yo)2 jr(T)dT kl;[l {91% (t) ] ’ The solution for\g in terms of the functiond¥,(¢) and
(am* 7t/ Ws(t) has the following form
where (4m)? WH(E) — 22 A (1) W (1)
3 >\H(t) = 12 12 ) (10)
ad =2, a¥=3, ¢ =(17/20,9/4,8). Wi(t) = gz Am (to) Wa(t)
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The most important property of the solution (10) is that T ~ ~ = ~ = = = = = = ]
the singularities (Landau poles) and the zeros of the solu- 144 e ]
tion Ay (t) are determined from the zeros of the denominator , ,, ] — 12,5 m) i .
and numerator, respectively. One is able to determine pre-g ]
cisely the position of the singularities and zeros and their & 0]
dependence on the initial value of the Higgs quartic cou- 2 s ]
pling A (o), wherety = In(E/my) p—pm, = 0. ";JN o] ]
The form of the functiong(¢) and ¢(t) is too compli- 8§ .
cated to be able to solve Eq. (6) in terms of simple functions. wir 044 ]
To find the solution of this equation we approximatg) < 2] / ]
and ¢(t) in the range of energiefn,, Ecy| by polyno- 1 .
mials of 4-th order and 6-th order in(see Appendix B). I P T T N R R
These polynomials approximate perfectly both functions in E[GeV]
the whole range of energies and this allows us to find the so-
lution of Eq. (6) as a power series of FIGURE 1. Energy dependence of the; (m:) that determines the

From Eqg. (10) we find the dependence’of (t) on the  singularity ofAx (E).
energy and important properties of its behavior. It is very
interesting to investigate howy (¢) depends on the initial

values ofA g (to) and to find out the range of the validity of 0.7 ]
the SM. As discussed earlier for the SM to be valig(t) F— e
must be positive and cannot be singular. Singgm;) > 0, o ]
it means that the SM is valid for the energies between g‘ 05+ :
and such a value of the enerdy where Ay (E) is zero or O oqd _ 45 i
becomes singular. s ) :
The singularity of\ (¢) can be determined from the de- & °°] ]
nominator of Eqg. (10). For the singularity (a simple pole) I 02
of Ay (t), we obtain that the value of}; (¢o) at which the sin- E 1 ]
gularity occurs is equaly; (to) = ((47)2/12)W1(t)/Wa(t). w0 ]
The behavior of the inverse of3; (m,) is plotted in T 2
Fig. 1. In the numerical evaluations we consider © © 9 9 @ ¢ e W T 10T 98wt

E[GeV]
g1(teu) = g2(tqu) = g3(tqu) = 0.5
FIGURE 2. Energy dependence of th&gy(m.) for which
and Au(E) = 0.
mi(to) = v(to) =174.1. This band of the admissible values &f;(m;) can be
If we impose the condition thaty; (¢) is regular in the whole transformed into the narrow band of the allowed values of

range of the energids,, E¢y] then the Higgs boson mass &t

An (to) < 0.6915. (11) 198 < my(to) < 205 GeV. (14)

For the SM to be valid, the quartic coupling; (¢) should not

become negative. We use the numerator of Eq. (10) to find theps condition has been obtained from the analysis of the
first zero ofA (t). In Fig. 2, we have drawn the dependenceRGEs for the Higgs quartic coupling in the SM, and the con-
on energy of the\j; (¢o) at which the numerator vanishes, gition that this model remains a consistent theory in the whole
given by the relatiom\ (to) = ((47)?/12)W{(t)/W5(t)  range of energies between the top mass and the energy of
which determines at what energyoccurs the first zero grang unification. If the Higgs mass is in the range given

of A (¢) depending on the value ofy; (fo). Now, from the in (14) then this would be a strong indication for the grand
condition that\ ; (¢) should not have zeros in the whole range nification hypothesis.

of the energie E e obtain
giegms, Eu]w I Finally, in Fig. 3 we show the dependence on the en-

Ax (to) > 0.6502. (12) ergy of Ay (E) consideringAy (m¢) = 0.65 for which we
havely (Eqy) = 0. The relatiom\ g (Egy) = 0 can be also
We thus see that the consistency of the theory imposes a nassed as the condition which defines the grand unification en-

row band on the admissible values of the (o). ergy Equ. In Fig. 4 the region between the boundaries deter-
mined from the zero value and the singularity)of (E), i.e.
0.6502 < Ap(to) < 0.6915. (13)  the boundaries at which the SM breaks down is displayed.
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4. Outlook 6 6
. ) ) ) p(t) = antn q(t) = ZQntn
The knowledge of the i is essential due to its appearance in 0 0
the RGEs for many observables, like the quark masses or the o ) _ _3
CKM matrix, having a decisive influence on their behavior. po = 543358 -1077, pr = 1.13094 - 1077,
Itis also crucial in the determination of the mass of the Higgs po = —1.02011-107%, p3 = 3.03248 - 1076,
particle which is equal ta/2\ g (E)v, wherew is the Higgs s
field vacuum expectation value. pa=—06874-10"°,  ps =ps = 0.

Let us stress that ifny (to) = 198 GeV then the condi- G = —5.61543 - 1073, ¢y = 2.06607 - 10™%,
tionmy(Egy) = 0 may be another definition of thgg. It _ .
may also be another indication of a very special behavior of g2 = —1.89481-107°, ¢3 =1.0073-107",
the SM for energies at the grand unification sddl&* GeV. 4o = —5.14838 1075, g5 = 1.49736 - 102,

The results of this paper are consistent with those of
Refs. 9 and 10 where the similar problem was considered. g6 = —2.1906 - 10711,
In Ref. 9 the authors were using the simplified assumption
that the gauge couplings and the top quark Yukawa coupling W(t) = antna
are constant and do not run according to the RGE. Our treat-
ment is more precise and the simplifying assumptions are nothe conditions
necessary. It is interesting that running of the gauge cou-

plings and the top quark Yukawa coupling has an important Wi (to) =1, W, (to)l,, =0,
influence on the results especially for the low Higgs masses,
where the one loop approximation is the best. = wo=1, w1 =0,
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and

= 4 = 1
W (to) =0, Wa(to)ly, =1, W1 =" [6pows + (g0 + 5p1) ws

= Wy = O, wy = 1.
+ (q1 + 4p2) wy + (g2 + 3p3) ws

The coefficientsu,, are obtained using the relations:

1 + (2p4 + q3) w2 + (qa + ps) w1 + gswo] ,

w2 =—3 (powr + gowo) , 1 1
Wk = 1 POWk-1 = oy [q0 + p1 (k= 2)] wi—2
1 (k—1)
ws=—¢ [2pow2 + (qo + p1) w1 + qrwo] ,
- k—3 _
1 k(k—l) [Q1+p2( )]U]k 3
wi="15 [3pows + (qo + 2p1) wa ,
_ + k—4)| wg_
+ (q1 + p2) w1 + g2 wo] k(k—1) g2 + ps ( Nwi-s
1 1
= —— —_ — < k_5 —
ws = =55 [4pows + (g0 + 3p1) wy F— D) [g3 + pa (k = 5)] wi—s
+ (q1 + 2p2) w 1
(QI Pz) 2 _ m [Q4 + ps (k‘ _ 6)] Wi—g
+ (g2 + p3) w1 + qzwo] , )
1 - + k— 1) wi_
wﬁz—%[5pow5+(%+4p1)w4 k(k—1) 45 + po ( ek
1
+ (g1 + 3p2) wz + (g2 + 2p3) wo - m%wk—és

+ (pa + g3) w1 + qawo]
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