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Low temperature S-shaped heat capacities in finite nuclei
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While in the thermodynamic limit a phase transition is signaled by the presence of a sharp peak in the specific heat, in finite systems a
bump is usually found. However, there are relevant cases in which the presence of a low-temperature bump in the canonical specific heat of
atomic nuclei is linked to the existence of isolated low energy states through a local Schottky effect, and do not represent a phase transition.
Examples are presented for light and heavy deformed nuclei, by using in the calculations experimental and theoretical energy levels.
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En el ĺımite termodińamico una transición de fase está asociada a un pico bien definido en el calor especı́fico. Por otro lado, en sistemas
finitos como los ńucleos at́omicos se encuentren elevaciones anchas en el calor especı́fico que no representan una tranformación de fase.
Estos aparecen debido a la existencia de niveles aislados de baja energı́a a trav́es del efecto Schottky local. Se presentan ejemplos de este
comportamiento para núcleos deformados pesados y ligeros, y empleando tanto niveles de energı́a experimentales como espectros calculados
en un modelo sencillo.

Descriptores: Transicíon de fase en ńucleos at́omicos; calor especı́fico.

PACS: 05.30.Fk, 24.10.Pa, 27.30.+t, 27.70.+q

1. Introduction

The experimental determination of level densities in the
0 - 6 MeV region of the spectrum of some heavy deformed
nuclei has allowed the deduction of the entropy, temperature
and heat capacity within the microcanonical and canonical
ensambles [1]. The heat capacity exhibits an S-shape as a
function of temperature, which is interpreted as a fingerprint
of a phase transition from a strongly correlated to an uncorre-
lated phase. Shell model Monte Carlo studies of iron isotopes
support the presence of a pairing phase transition [2], which
is correlated with the suppression of the number of spin-zero
neutron pairs as the temperature increases [3].

The analysis of caloric curves in small systems requires
new approaches [4]. Simple models have been used to an-
alyze the pairing phase transition [5]. A gradual transition
from strongly paired states to unpaired states in rare earth
nuclei at low spin has been found [6]. While the liquid-
gas phase transition is characterized at higher temperatures
by abnormally large kinetic energy fluctuations [7], at lower
temperatures the vanishing of the pairing gap, predicted in
the finite temperature BCS formalism [8, 9] and taking into
account thermal and quantum fluctuations, washed out the
sharp phase transition [10].

Different studies have proposed the existence of a shape
phase transition, from deformed to spherical, at relatively low
temperatures [11, 12]. Attempts were made to link a promi-
nent peak in the specific heat with this shape phase transi-
tion [13,14]. But it was soon realized that the reduction in the
expectation value of the quadrupole moment as the tempera-

ture increases does not reflect a true phase transitions, but the
mixing of deformed configurations with opposite sign [15].
Also, the existence of the bump in the specific heat is better
explained by the finite size of the configuration space [16,17],
which imposes an upper limit to the energy accessible at the
nucleus, producing the well known Schottky effect [18,19].

When the specific heat is studied in the canonical ensem-
ble, there is always a first bump at low temperature present,
which often has the form of a reclined S, as can be recognized
in Figs. 1, 3, 5 and 6. It is found at around T≈0.5 MeV in
light nuclei [13,15,17] and at T≈0.1 MeV in heavy nuclei [1].
Its origin was tentatively associated with the presence of the
ground-state rotational band [13].

In the present paper we show, in a model independent
way, that the peak in the specific heat at low temperature is
a remnant of a Schottky curve, typical of a two-level sys-
tem [19]. We shall demonstrate that this peak does not dis-
appear when further states are added to the space of con-
figurations. We have applied these concepts to describe the
thermal excitation of deformed nuclei within the framework
of a simple, albeit realistic, model for rotational states. We
have found that the same conclusions can be drawn from
these realistic calculations. The emerging mechanism, which
explains the appearance of a peaked structure, is the Schot-
tky curve produced by the inversion of the population of the
ground state and of the first excited2+ state. We have ver-
ified the validity of this statement by performing calculation
with and without including the first excited quadrupole state
in the model space. Care was taken in interpreting the notion
of temperature when working within the framework of the
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TABLE I. Experimental spectrum of24Mg. In the first rowJπ
i in-

dicate the spin (J), parity (π) and the eigenvalue index (i). In the
second row the energies are given in units of MeV.

0+
1 2+

1 4+
1 2+

2 3+
2 4+

2 0+
2

0.000 1.369 4.123 4.238 5.235 6.010 6.433

quantum statistical mechanics of small systems. Also the no-
tion of phase transition has to be taken with care, because
strictly speaking there are no phase transitions in finite sys-
tems. Nevertheless, in finite systems a phase transition is as-
sociated to rapid changes in thermodynamical quantities like
energy and its derivatives [20].

2. Model independent considerations

As a first example we will discuss the case of24Mg, whose
first seven low-lying states are presented in Table I For the
sake of the present discussion we shall not argue about the
microscopic structure of the levels but, rather, we shall take
the energy and degeneracy of each level as the input of our
calculation.

In order to investigate the thermodynamic properties we
use the canonical ensemble, with the partition function given
by

Z(T ) =
∑

i

Ωie
−βEi . (1)

The indexi runs over all states to be considered,Ωi = 2Ji+1
is the degeneracy of thei-th state andEi is its energy. The
quantityβ = 1

T is the inverse temperature andT is the tem-
perature measured in units of MeV (the Boltzmann constant
is set to one).

The specific heat

CN =
∂

∂T
〈E〉 =

1
T 2

(〈E2〉 − 〈E〉2), (2)

is calculated from the expectation values of the energy〈E〉
and its fluctuations〈E2〉, where

〈En〉 =
∑

i

Ωi En
i e−βEi/Z(T ). (3)

If only the ground state and the first excited2+ state are con-
sidered, we have the typical case of a two level system, where
the lowest level has degeneracyΩ1 = 1, while the second one
has a five fold degeneracy. For this particular system the heat
capacity has the temperature dependence plotted with a full
line in Fig. 1. As expected, it has the characteristic shape of
a Schottky curve [18–20].

FIGURE 1. Heat capacity of24Mg. From bottom to top the curves
show the results obtained by including the ground state and the first
excited state in the partition function (first curve), and then, the re-
sults of the calculations after adding one by one all the states of the
low-lying spectrum. The curve at the top was obtained by including
the first sixteen measured states [21], with their degeneracies.

FIGURE 2. Heat capacity for24Mg. The calculation of the parti-
tion function was performed excluding the first excited quadrupole
state2+

1 , from the sum. The meaning of the curves is the same as
in Fig. 1

The other curves of Fig. 1 have been obtained by adding
one by one the known states [21] in order of increasing en-
ergy, up to the last of the sixteen measured states of the spec-
trum. It can be seen that the addition of levels to the partition
function washes out the peak obtained when only the first
two levels are considered, producing an S-shaped structure.
The upper curve, which corresponds to the inclusion of the
16 reported levels, exhibits the broad structure typical of the
Schottky peak. However, there is a remnant of the peak ob-
tained in the two-level case.

To demostrate that the low temperature bump in the spe-
cific heat is just a remnant of the two-level-like structure, we
have proceeded as before, adding gradually more states to the
partition function but excluding from the sum the first excited
2+ state. The results are shown in Fig. 2, where, from bot-
tom to top, the first curve corresponds to the two-level sys-
tem composed by the ground state and the first excited4+
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state; and the next curves are obtained by adding one level at
a time. The last curve shows the results obtained in the con-
figuration space consisting of the first fifteen observed states
of the spectrum, including the ground state and omitting the
2+
1 state. Now the peak at low energy has disappeared, a clear

indication that the bump at low energy is due to the presence
of the2+

1 state.

Why does the peak of the two-level system{0+
g.s., 2

+
1 }

survive, through the S-shaped peak? A possible explanation
is that at relatively low temperatures the relevant scale is fixed
only by the excitation energy of the2+

1 state. As the tempera-
ture increases the system reacts by increasing the population
of the first excited state, while the other states are less likely
to influence the partition function due to the large negative
values of the exponentsβEi. This produces the Schottky
peak at low energy. After the probabilities assigned to the
ground state and the first excited state become comparable,
the heat capacity saturates and goes down. Another way to
describe the situation is that the ground state and the first ex-
cited state represent, to a good approximation, an isolated
system of two levels which produce a Schottky peak. As the
temperature increases the next state (4+

1 ) comes into play and
the opening of this channel raises the value of the heat capac-
ity again. The contribution to the peak becomes broader, as
seen in Fig. 1. The subsequent state (2+

2 ) is close in energy to
the4+

1 state and its contribution makes the peak even broader.
The addition of successive states increases the contribution to
the heat capacity but is unable to erase the trace left from the
first two levels. A similar effect does not happen when the2+

1

state is excluded. Although the two-level system composed
by the ground state and the4+

1 state shows also a Schottky
peak, the fact that the following states are in the same energy
range eliminates the dominance of the two-level peak.

The same analysis can be performed for a heavy-mass
nucleus. As an example we choose168Er, which is a well de-
formed nucleus and has rotational bands [21]. The first seven
states are listed in Table II In Fig. 3 we have first considered
the two-level system, consisting of the ground state and the
first excited2+. Then, other states were added, one by one,
and finally, we have calculated the heat capacity including
the first sixteen experimentally observed states. The results
shown in Fig. 4 were obtained by removing the first excited
2+
1 state from the partition function. Note that slightly below

0.1 MeV a peak appears and the feature above 0.1 MeV indi-
cates a rise in the heat capacity. Weather this feature gives
a new peak will be better understood when the schematic
model is introduced in Sec. III.

TABLE II. Experimental spectrum of168Er. Only the first seven
low-lying states are shown. The complete spectrum can be obtained
from [21]. The values are displayed as in Fig. 1. The energies are
given in units of MeV.

0+
1 2+

1 4+
1 6+

1 2+
2 3+

1 8+
1

0.000 0.080 0.264 0.546 0.821 0.896 0.928

FIGURE 3. Heat capacity for168Er. From bottom to top, the curves
show the results corresponding to: a) the first two levels of the
spectrum, b) the gradual addition of levels, and c) the full set of
observed states.

FIGURE 4. Heat capacity for168Er, calculated with the partition
function where the2+

1 state is excluded. The explanation is the
same as for Fig. 3

The explanation of the observed features of the heat ca-
pacity, calculated with the experimentally observed levels, is
the same as the one advanced for the case of24Mg, namely:
the existence of the peak at low temperature is directly re-
lated to the presence of the first excited state. When the2+

1

state is excluded from the partition function, the peak at low
energy disappears (see Fig. 4). In the case of168Er, the ratio
between the energies of the first and higher excited states is
smaller that in24Mg. It reinforces the dominance of the gap
between the first excited state and the ground state in deter-
mining the energy scale.

3. A simple model

In this section we apply the ideas exposed before to a simple
model which allows us to calculate a complete spectrum. We
will not explain the model in detail, because the main em-
phasis of this contribution lies in the thermodynamical prop-
erties. The reader can either consult the references given be-
low, or accept the model as a mean to obtain a spectrum.
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In this section we calculate the energy spectrum and the
partition function, using a collective model which is adequate
to the microscopic description of rotational nuclei. It is based
on the ElliottSU(3) model [22], which is a suitable model
for light-mass nuclei, where the spin-orbit effects are not
strong enough to produce the occurrence of states with dif-
ferent principal quantum numbers within a shell. For heavy
nuclei the pseudo-SU(3) (S̃U(3)) [23] will be adopted. In
the S̃U(3) the orbits (or one body states) of the shell model
are divided in normal and unique orbits. The unique orbits
are those with the largest angular momentum in a shell. By
keeping only the normal orbits and re-defining the spin and
angular momentum as the pseudo-spin and pseudo-angular
momentum, a new degeneracy of orbits is observed which
can be mapped to the scheme of thẽSU(3) group. As a first
approximation one can deal with heavy nuclei by restricting
to normal orbits. The application of an extended version of
the model was quite successful, as shown in [24]

The Hamiltonian has in both cases (SU(3) for light and
S̃U(3) for heavy nuclei) the form:

H = ~ωn̂− χ

4
Q̂ · Q̂ + αL̂2 + bK̂2, (4)

wheren̂ is the number operator of excitation quanta,Q̂ is the
quadrupole operator acting in a single oscillator shell,L̂ is
the angular momentum operator andK̂ gives approximately
the projection of the angular momentum onto the intrinsic
z-axis. The form of theK̂2 operator is given in [26]. The
energy eigenvalues are given by

E = ~ωn− χC2(λ, µ) + aL(L + 1) + bK2. (5)

whereC2(λ, µ) = (λ2 + λµ + µ2 + 3λ + 3µ) is the expec-
tation value of the second order Casimir operator ofSU(3),
(λ, µ) is theSU(3) irreducible representation [25], The value
~ω is fixed as45A−1/3− 25A−2/3 MeV for light nuclei, and
as41A−1/3 MeV for heavy nuclei. The parameterχ is ad-
justed to the difference of the first excited0+ state, the value
of a = 3

4χ + α to the energy of the first excited2+ state
and the value ofb to the difference (E(2+

2 ) − E(2+
1 )). The

lowestSU(3) irrep for 24Mg is (8,4) and the next one, which
contains a0+ state, is (4,6). For168Er the lowest̃SU(3) ir-
rep is (30,8) [24] and the next one with a0+ is (32,4). In
the calculation, only states withS = 0 are considered, which
are the most symmetric in their spatial components. Taking
into account higher spin states does not significantly modify
the results. The shell model space, restricting toS = 0 and
∆N = 0~ω configurations, is a complete space and the only
model dependence is due to the use of the Hamiltonian. The
theoretical description of the low energy spectra is, due to
the simplicity of the model, not a perfect one, but it is real-
istic enough for the purpose of the present discussion. The
4+
1 state of the rotational ground state band is theoretically

predicted at 4.56 MeV, compared to the experimental value
of 4.12 MeV. The2+

2 band-head of theγ-vibrational band,
is obtained at about 4.24 MeV. The rest of the spectrum is

in fairly good agreement with data at low energy. Above 6
MeV the model predicts states with spin one, not seen in the
experiments. This, of course, limits the validity of the model.
However, the main effect on the heat capacity takes place at
low energy, where the main contribution comes from states
which are well described by the model.

In Table III the adjusted parameters for24Mg and168Er
are listed.

TABLE III. Parameters of the Hamiltonian, for24Mg and168Er.

~ω χ a b
24Mg 12.6 0.153 0.228 0.717
168Er 7.43 0.029 0.013 0.185

In Fig. 5 the theoretically obtained values of the heat ca-
pacity of24Mg, calculated with the spectrum of the Hamilto-
nianH, are shown. As in the previous section we have calcu-
lated the partition function in different spaces: by including
or excluding the first excited2+ state. Again, when the2+

1

state is excluded the S-shaped peak disappears, in agreement
with the discussion in the previous section. The absolute val-
ues of the heat capacity agree with those of Figs. 1 and 2.

The same analysis was performed for the case of168Er
and the results are depicted in Fig. 6. The trend of the re-
sults and the explanations go along the same line as for the
case of24Mg. The absolute values of the heat capacity also
agree with those presented in Sec. II. The peak at low en-
ergy, clearly visible with its well defined S-shape structure,
disappears when the2+

1 state is excluded. However, a peak at
a higher temperature appears, which is the contribution from
the 4+

1 state. This is also in agreement with the finding in
Fig. 4. The reason for the appearance of the peak is the same
as for the2+

1 state. The next excited state is still far from the
4+
1 state and another local Schottky effect appears.

FIGURE 5. Heat capacity of24Mg within the simple model. The
curve with the bump atT ≈ 0.4 MeV contains all states of0~ω
with S = 0. In the other curve the2+

1 state was excluded.
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FIGURE 6. Heat capacity of168Er within the simple model. The
curve with the peak at lower temperatures contains all states with
0~ω andS = 0, while for the other curve the2+

1 state of the ground
state rotational band was excluded.

4. Conclusions

A model independent discussion on the specific heat in nuclei
at low temperatures was given. It was shown that the bump
of the heat capacity at low temperatures, for rotational nuclei,
is a remnant of a Schottky effect,i.e.: the thermal memory of
a two level system situation where the energy difference be-
tween the ground state and the first excited state fixes the en-

ergy/temperature scale in a finite size configurational space.
In finite systems with discrete spectra, the appearance of a
broad Schottky bump is a direct consequence of the finite-
ness [17, 19], but also the appearance of additional peaks on
top of the bump may be due to the discrete nature of the spec-
trum.

These conclusions are supported by the results of our cal-
culations, based on the use of thẽSU(3) model, both for
24Mg and168Er. The same features were obtained by using
phenomenological levels for both cases.

We remind the reader that the systems discussed are fi-
nite and, strictly speaking, they cannot undergo a phase tran-
sitions. However, phase transitions in finite systems are de-
fined as given by sudden changes in some thermodynamic
variables, like the internal energy and its derivatives [20]. The
present contribution shows that, using both schematic and re-
alistic examples taken from nuclear structure studies, the ex-
istence of peaks in the caloric curve at low energies does not
necessarily indicate a phase transition.
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