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Low temperature S-shaped heat capacities in finite nuclei
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While in the thermodynamic limit a phase transition is signaled by the presence of a sharp peak in the specific heat, in finite systems a

bump is usually found. However, there are relevant cases in which the presence of a low-temperature bump in the canonical specific heat of
atomic nuclei is linked to the existence of isolated low energy states through a local Schottky effect, and do not represent a phase transition.
Examples are presented for light and heavy deformed nuclei, by using in the calculations experimental and theoretical energy levels.

Keywords: Phase transition in nuclei; heat capacities.

En el limite termodi@mico una transiéin de fase eétasociada a un pico bien definido en el calor edigec Por otro lado, en sistemas
finitos como los acleos abmicos se encuentren elevaciones anchas en el calorigspegrie no representan una tranforndecide fase.
Estos aparecen debido a la existencia de niveles aislados de bajmentayes del efecto Schottky local. Se presentan ejemplos de este
comportamiento paraieleos deformados pesados y ligeros, y empleando tanto niveles deaengrgrimentales como espectros calculados
en un modelo sencillo.

Descriptores: Transicbn de fase enlrcleos abmicos; calor espéfico.

PACS: 05.30.Fk, 24.10.Pa, 27.30.+t, 27.70.+q

1. Introduction ture increases does not reflect a true phase transitions, but the
mixing of deformed configurations with opposite sign [15].
The experimental determination of level densities in theAlso, the existence of the bump in the specific heat is better
0 - 6 MeV region of the spectrum of some heavy deformedexplained by the finite size of the configuration space [16,17],
nuclei has allowed the deduction of the entropy, temperatureshich imposes an upper limit to the energy accessible at the
and heat capacity within the microcanonical and canonicahucleus, producing the well known Schottky effect [18, 19].
ensambles [1]. The heat capacity exhibits an S-shape as a When the specific heat is studied in the canonical ensem-
function of temperature, which is interpreted as a fingerprinble, there is always a first bump at low temperature present,
of a phase transition from a strongly correlated to an uncorrewhich often has the form of areclined S, as can be recognized
lated phase. Shell model Monte Carlo studies of iron isotopem Figs. 1, 3, 5 and 6. It is found at around-0.5 MeV in
support the presence of a pairing phase transition [2], whiclight nuclei[13,15,17] and at&£0.1 MeV in heavy nuclei [1].
is correlated with the suppression of the number of spin-zergts origin was tentatively associated with the presence of the
neutron pairs as the temperature increases [3]. ground-state rotational band [13].

The analysis of caloric curves in small systems requires |n the present paper we show, in a model independent
new approaches [4]. Simple models have been used to away, that the peak in the specific heat at low temperature is
alyze the pairing phase transition [5]. A gradual transitiona remnant of a Schottky curve, typical of a two-level sys-
from strongly paired states to unpaired states in rare eartfem [19]. We shall demonstrate that this peak does not dis-
nuclei at low spin has been found [6]. While the liquid- appear when further states are added to the space of con-
gas phase transition is characterized at higher temperatur@igurations. We have applied these concepts to describe the
by abnormally large kinetic energy fluctuations [7], at lower thermal excitation of deformed nuclei within the framework
temperatures the vanishing of the pairing gap, predicted inf a simple, albeit realistic, model for rotational states. We
the finite temperature BCS formalism [8, 9] and taking intohave found that the same conclusions can be drawn from
account thermal and quantum fluctuations, washed out thghese realistic calculations. The emerging mechanism, which
sharp phase transition [10]. explains the appearance of a peaked structure, is the Schot-

Different studies have proposed the existence of a shaptity curve produced by the inversion of the population of the
phase transition, from deformed to spherical, at relatively longround state and of the first excitéd state. We have ver-
temperatures [11,12]. Attempts were made to link a promi-fied the validity of this statement by performing calculation
nent peak in the specific heat with this shape phase transwith and without including the first excited quadrupole state
tion [13,14]. But it was soon realized that the reduction in thein the model space. Care was taken in interpreting the notion
expectation value of the quadrupole moment as the temperaf temperature when working within the framework of the
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24Mg

TABLE |. Experimental spectrum 6fMg. In the first row.J7 in- 5
dicate the spinJ), parity (r) and the eigenvalue index)( In the
second row the energies are given in units of MeV. 4 L J

of 2 4 s 4 o 5

0.000 1.369 4.123 4.238 5.235 6.010 6.433 O

- . 27

guantum statistical mechanics of small systems. Also the no- —
tion of phase transition has to be taken with care, because 4 |
strictly speaking there are no phase transitions in finite sys-
tems. Nevertheless, in finite systems a phase transitionisas 7 . . .
sociated to rapid changes in thermodynamical quantities like 0 0.2 04 0.6 0.8 1
energy and its derivatives [20]. T

FIGURE 1. Heat capacity of*Mg. From bottom to top the curves
show the results obtained by including the ground state and the first
excited state in the partition function (first curve), and then, the re-

fi | il di h ey h sults of the calculations after adding one by one all the states of the
As a first example we will discuss the cas g, whose low-lying spectrum. The curve at the top was obtained by including

first seven low-lying states are presented in Table | For thgne first sixteen measured states [21], with their degeneracies.
sake of the present discussion we shall not argue about the

2. Model independent considerations

microscopic structure of the levels but, rather, we shall take 24Mg
the energy and degeneracy of each level as the input of our 5 : : : :
calculation.

In order to investigate the thermodynamic properties we 4 t
use the canonical ensemble, with the partition function given /
by 3L

o
2 L
Z(T)=> Qe P, (1)
i 1+t
The index: runs over all states to be consider@g,= 2J,+1 0 ;
is the degeneracy of theth state andF; is its energy. The 0 0.2
quantity3 = % is the inverse temperature afftis the tem- T

perature measured in units of MeV (the Boltzmann constant _ 4 _ _
is set to one). FIGURE 2. Heat capacity fo*Mg. The calculation of the parti-

tion function was performed excluding the first excited quadrupole

The specific heat state21+, from the sum. The meaning of the curves is the same as
in Fig. 1

P 1 The other curves of Fig. 1 have been obtained by adding

Cy = a—T<E> = ﬁ(<EQ> — (E)?), (2)  one by one the known states [21] in order of increasing en-

ergy, up to the last of the sixteen measured states of the spec-
is calculated from the expectation values of the engigy  trum. It can be seen that the addition of levels to the partition
and its fluctuationg£2), where function washes out the peak obtained when only the first
two levels are considered, producing an S-shaped structure.
The upper curve, which corresponds to the inclusion of the
(E™) = Z O E" e PE 7(T). ©) 16 reported levels, exhibits the proad structure typical of the
; Schottky peak. However, there is a remnant of the peak ob-
tained in the two-level case.
If only the ground state and the first excitgd state are con- To demostrate that the low temperature bump in the spe-
sidered, we have the typical case of a two level system, whereific heat is just a remnant of the two-level-like structure, we
the lowest level has degenerdey = 1, while the second one have proceeded as before, adding gradually more states to the
has a five fold degeneracy. For this particular system the hegiartition function but excluding from the sum the first excited
capacity has the temperature dependence plotted with a full™ state. The results are shown in Fig. 2, where, from bot-
line in Fig. 1. As expected, it has the characteristic shape dfom to top, the first curve corresponds to the two-level sys-
a Schottky curve [18-20]. tem composed by the ground state and the first exdited
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state; and the next curves are obtained by adding one level a 168,

a time. The last curve shows the results obtained in the con- 3 : : ,

figuration space consisting of the first fifteen observed states

of the spectrum, including the ground state and omitting the 25 1 ]

2. state. Now the peak at low energy has disappeared, a clea 5| |

indication that the bump at low energy is due to the presence

of the2;" state. O 15¢ /:\ .
Why does the peak of the two-level systdy _ , 27} I N\ |

survive, through the S-shaped peak? A possible explanatior ’/ N I

is that at relatively low temperatures the relevant scale is fixed 05 | \\ e 1

only by the excitation energy of tii" state. As the tempera- / T~

ture increases the system reacts by increasing the populatiol 0 0 0.05 0.1 015 72

of the first excited state, while the other states are less likely
to influence the partition function due to the large negative
values of the exponent$E;. This produces the Schottky FIGURE 3. Heat capacity fot°®Er. From bottom to top, the curves
peak at low energy. After the probabilities assigned to theshow the results corresponding to: a) the first two levels of the
ground state and the first excited state become comparabl%?ec"um' b) the gradual addition of levels, and c) the full set of
the heat capacity saturates and goes down. Another way fPserved states.

describe the situation is that the ground state and the first ex- 168,

cited state represent, to a good approximation, an isolatec

system of two levels which produce a Schottky peak. As the 3
temperature increases the next stdfe) comes into play and 25 ¢t
the opening of this channel raises the value of the heat capac

ity again. The contribution to the peak becomes broader, as 2t

seen in Fig. 1. The subsequent stat)(is close in energy to O 15
the4 ] state and its contribution makes the peak even broader.

The addition of successive states increases the contribution tc 1r
the heat capacity but is unable to erase the trace left from the

first two levels. A similar effect does not happen whenafie 05 ¢

state is excluded. Although the two-level system composed 0 - . s s

by the ground state and thi§ state shows also a Schottky 0 0.05 0.1 0.15 0.2
peak, the fact that the following states are in the same energy T

range eliminates the dominance of the two-level peak. FIGURE 4. Heat capacity for®®Er, calculated with the partition

The same analysis can be performed for a heavy-massnction where the2} state is excluded. The explanation is the
nucleus. As an example we chod$&Er, which is a well de-  same as for Fig. 3
formed nucleus and has rotational bands [21]. The first seven The explanation of the observed features of the heat ca-
states are listed in Table Il In Fig. 3 we have first considerecpacity, calculated with the experimentally observed levels, is
the two-level system, consisting of the ground state and théhe same as the one advanced for the cagéM§, namely:
first excited2™. Then, other states were added, one by onethe existence of the peak at low temperature is directly re-
and finally, we have calculated the heat capacity includingated to the presence of the first excited state. Wherﬁhe
the first sixteen experimentally observed states. The resuligate is excluded from the partition function, the peak at low
shown in Fig. 4 were obtained by removing the first excitedenergy disappears (see Fig. 4). In the casétfr, the ratio
21 state from the partition function. Note that slightly below between the energies of the first and higher excited states is
0.1 MeV a peak appears and the feature above 0.1 MeV indsmaller that ir?*Mg. It reinforces the dominance of the gap
cates a rise in the heat capacity. Weather this feature givésetween the first excited state and the ground state in deter-
a new peak will be better understood when the schematimining the energy scale.
model is introduced in Sec. Ill.

_ _ 3. A simple model
TaBLE II. Experimental spectrum df®Er. Only the first seven

low-lying states are shown. The complet_e spectrum can be o_btaineaph this section we apply the ideas exposed before to a simple
from [21]. The values are displayed as in Fig. 1. The energies argy,,qe| which allows us to calculate a complete spectrum. We
given in units of MeV. will not explain the model in detail, because the main em-
phasis of this contribution lies in the thermodynamical prop-
erties. The reader can either consult the references given be-
low, or accept the model as a mean to obtain a spectrum.

of 2 46028 3 8
0.000 0080 0.264 0546 0821 0896 0.928
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In this section we calculate the energy spectrum and the fairly good agreement with data at low energy. Above 6
partition function, using a collective model which is adequateMeV the model predicts states with spin one, not seen in the
to the microscopic description of rotational nuclei. Itis basedexperiments. This, of course, limits the validity of the model.
on the Elliott.SU(3) model [22], which is a suitable model However, the main effect on the heat capacity takes place at
for light-mass nuclei, where the spin-orbit effects are notlow energy, where the main contribution comes from states
strong enough to produce the occurrence of states with difwhich are well described by the model.
ferent principal quantum numbers within a shell. For heavy | Taple 11l the adjusted parameters fMg and 165Er
nuclei the pseud&U (3) (SU(3)) [23] will be adopted. In gre Jisted.
the SU(3) the orbits (or one body states) of the shell model
are divided in normal and unique orbits. The unique orbits
are those with the largest angular momentum in a shell. ByfABLE I1l. Parameters of the Hamiltonian, f6tMg and*®*Er.
keeping only the normal orbits and re-defining the spin and
angular momentum as the pseudo-spin and pseudo-angular hw

L - X a b
momentum, a new degeneracy of orbits is observeq which ZiMg 126 0.153 0.228 0717
can be mapped to the scheme of #1&(3) group. As a first o
approximation one can deal with heavy nuclei by restricting Er 743 0.029 0.013 0.185
to normal orbits. The application of an extended version of
the model was quite successful, as shown in [24] In Fig. 5 the theoretically obtained values of the heat ca-
~___The Hamiltonian has in both caseS{((3) for light and pacity of2*Mg, calculated with the spectrum of the Hamilto-
SU(3) for heavy nuclei) the form: nian H, are shown. As in the previous section we have calcu-
lated the partition function in different spaces: by including
H = hwi — %Q -Q +al? +bK?, (4)  or excluding the first excited™ state. Again, when the;

state is excluded the S-shaped peak disappears, in agreemen

wherei is the number operator of excitation quardais the with the discussion in the previous section. The absolute val-
quadrupole operator acting in a single oscillator shblis  Ues of the heat capacity agree with those of Figs. 1 and 2.
the angular momentum operator akdgives approximately The same analysis was performed for the cas€d#r

the projection of the angular momentum onto the intrinsicand the results are depicted in Fig. 6. The trend of the re-
z-axis. The form of the{? operator is given in [26]. The sults and the explanations go along the same line as for the

energy eigenvalues are given by case of**Mg. The absolute values of the heat capacity also
agree with those presented in Sec. Il. The peak at low en-
E = hwn—xCo(\p)+aL(L+1)+bK% (5) ergy, clearly visible with its well defined S-shape structure,

disappears when t%" state is excluded. However, a peak at
whereCy(X, 1) = (A% + A + p? + 3X\ 4 3p) is the expec-  a higher temperature appears, which is the contribution from
tation value of the second order Casimir operatofbf(3),  the 4] state. This is also in agreement with the finding in
(A, 1) is theSU (3) irreducible representation [25], The value Fig. 4. The reason for the appearance of the peak is the same
hw is fixed asts A~1/% — 25472/ MeV for light nuclei, and s for the2] state. The next excited state is still far from the

as41A~'/3 MeV for heavy nuclei. The parametgris ad- 4 state and another local Schottky effect appears.
justed to the difference of the first excitéd state, the value

ofa = %X + o« to the energy of the first excite2i™ state 24m

and the value ob to the difference £(25) — E(2])). The 9

lowestSU (3) irrep for>*Mg is (8,4) and the next one, which 4 ' ‘ ' '
contains &) state, is (4,6). Fot%Er the lowestSU (3) ir- 35 |
rep is (30,8) [24] and the next one with0d is (32,4). In 3t s
the calculation, only states withi = 0 are considered, which 25 | ]
are the most symmetric in their spatial components. Taking 5| |
into account higher spin states does not significantly modify P

the results. The shell model space, restricting'te- 0 and 1.5+ 7 1
AN = 0hw configurations, is a complete space and the only 1+ / .
model dependence is due to the use of the Hamiltonian. The g5 | / ]
theoretical description of the low energy spectra is, due to 0 . T ,

the simplicity of the model, not a perfect one, but it is real- 0 02 0.4 0.6 08 1
istic enough for the purpose of the present discussion. The T

47 state of the rotational ground state band is theoretically

predicted at 4.56 MeV, compared to the experimental valugcure 5. Heat capacity of*Mg within the simple model. The
of 4.12 MeV. The2; band-head of the-vibrational band,  curve with the bump al’ ~ 0.4 MeV contains all states dffw

is obtained at about 4.24 MeV. The rest of the spectrum iwith S = 0. In the other curve thg] state was excluded.
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FIGURE 6. Heat capacity of ®Er within the simple model. The

O. CIVITARESE, P.O. HESS, AND J.G. HIRSCH

ergy/temperature scale in a finite size configurational space.
In finite systems with discrete spectra, the appearance of a
broad Schottky bump is a direct consequence of the finite-

ness [17, 19], but also the appearance of additional peaks on
top of the bump may be due to the discrete nature of the spec-
trum.

These conclusions are supported by the results of our cal-
culations, based on the use of t§&/(3) model, both for
24Mg and'%®Er. The same features were obtained by using
phenomenological levels for both cases.

We remind the reader that the systems discussed are fi-
nite and, strictly speaking, they cannot undergo a phase tran-
sitions. However, phase transitions in finite systems are de-
fined as given by sudden changes in some thermodynamic
variables, like the internal energy and its derivatives [20]. The

curve with the peak at lower temperatures contains all states withhresent contribution shows that, using both schematic and re-

0hw andS = 0, while for the other curve the state of the ground
state rotational band was excluded.

4. Conclusions

alistic examples taken from nuclear structure studies, the ex-
istence of peaks in the caloric curve at low energies does not
necessarily indicate a phase transition.

A model independent discussion on the specific heat in nuclehcknowledgments
at low temperatures was given. It was shown that the bump
of the heat capacity at low temperatures, for rotational nucleiyve acknowledge financial support through the CONACyT-
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