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Excitable chaos in diffusively coupled FitzHugh-Nagumo equations
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A prototypic model of three coupled FitzHugh-Nagumo oscillators is shown to exhibit spatio-temporal hyperchaos. With increasing the
number of coupled units the number of positive Lyapunov exponents increases. A system in two spatial dimensions shows two types of
excitable spatio-temporal (hyper-)chaos depending on which variable is chosen for the coupling. Some implications for excitable cardiac
tissue are discussed.
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Un modelo protot́ıpico de tres osciladores acoplados tipo FitzHugh-Nagumo muestra hipercaos espacio-temporal. Aumentando el número
de unidades acopladas se aumenta el número de exponentes de Lyapunov positivos. Un sistema extendido en dos dimensiones espaciales
genera dos tipos de (hiper-)caos excitable espacio-temporal dependiente de la variable de acoplamiento. Se discuten unas implicaciones para
tejidos excitables cardiacos.

Descriptores: Ecuacíon de FitzHugh-Nagumo; hipercaos; caos espacio-temporal.

PACS: 05.45.-a; 05.45.Pq; 87.17.Hf

1. Introduction

Rössler [1] and Kuramoto [2] first demonstrated how lin-
ear diffusive coupling can induce low-dimensional spatio-
temporal chaos in reaction-kinetic oscillators. By “chaos”
they referred to attractors of deterministic systems that pos-
sess at least one positive Lyapunov characteristic expo-
nent (LCE). Attractors with more than one positive LCE are
referred to as hyperchaos [3]. A set ofN ordinary differ-
ential equations containing at least one nonlinear term may
have attractors with up toN-2 positive LCEs. The concept
of hyperchaos serves as a link for the stepwise transition
from low-dimensional to high-dimensional irregularity in de-
terministic systems [4]. In the case of diffusively coupled
oscillators, conditions were found under which the number
of positive LCEs increases monotonically when the number
of oscillators was increased [5,6]. More recently, using this
approach, a system of diffusively coupled Goldbeter-Dupont-
Berridge models was reported to show this phenomenon un-
der conditions where a single oscillator is excitable [7]. None
of the arguments involved depends on the specific type of
reaction-kinetic functions. It is therefore probable that a sim-
ilar mechanism should work in abstract excitable systems of
the van der Pol type,e.g. the FitzHugh-Nagumo equation.
Here we study linearly coupled FHN equations and show how
hyperchaos found in (comparatively) low-dimensional sys-
tems leads to the discovery of new types of excitable spatio-
temporal chaos in spatially extended versions.

2. Model

The FitzHugh-Nagumo model is used in the following form:

dX1

dt
=X1(a−X1)(X1−1)−Y1+Ia+DX(X2−X1)

dY1

dt
= b(X1 − Y1) + DY (Y2 − Y1)

dXi

dt
= Xi(a−Xi)(Xi − 1)− Yi + Ia

+ DX(Xi−i + Xi+1 − 2Xi)

dYi

dt
= b(Xi − Yi) + DY (Yi−i + Yi+1 − 2Yi) (1)

dXN

dt
= XN (a−XN )(XN − 1)− YN + Ia

+ DX(XN−1 −XN )

dYN

dt
= b(XN − YN ) + DY (YN−1 − YN )

with i = 2, 3, . . . , N − 1. With a = 0.1 andb = 0.015 the
isolated system (DX = DY = 0) has a stable fixed point
solution for Ia < 0.0590. At Ia ≈ 0.0590 a supercrit-
ical Hopf bifurcation to near-harmonic oscillations occurs.
As Ia is increased the amplitude of the oscillations grows
first with A∝

√
Ia − Icrit

a , whereIcrit
a is the critical value of

the Hopf bifurcation. The amplitude then grows in an ex-
ponential fashion between0.061 < Ia < 0.063. Following
this Canard region, further increase ofIaleads to relaxation
oscillations with linearly growing amplitude.

3. A prototype composed of three coupled os-
cillators

The coupled system with N=3 is found to be prototypic for
the generation of hyperchaos (seee.g. [4] or any textbook on
nonlinear dynamics for an introduction to the technical terms
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used). If, for a constant valueIa = 0.0625, with DY = 0,
DX is slowly increased we find a sequence of bifurcations
from periodic behavior in the uncoupled case to quasiperi-
odicity, chaos on a fractalized two-torus, and hyperchaos.
Figure 1 is a bifurcation diagram of theN=3 system as a
function of coupling strength. The sequence of transitions
(from left to right) starts with a secondary Hopf bifurcation
from periodic to quasiperiodic oscillations (exemplary value
DX = 0.001). Within the chaotic region there are other tran-
sitions whose generic nature has not been resolved so far (this
holds in general forN > 2). Increasing the coupling further
we obtain a sequence of reverse bifurcations to the periodic
synchronized state. To characterize the degree of chaotic-
ity we use the spectrum of LCEs. The LCEs are calculated
with a modified Wolf algorithm with periodic Gram-Schmitt
orthogonalization implemented by C. Knudsen, R. Feldberg
and J.S. Thomsen. All values are given in bits per model time
unit. The values converge in all cases and the numerical er-
ror is found to be less than 3%. The complete spectrum of
6 LCEs

FIGURE 1. Bifurcation diagram of Eq. (1) withN = 3 with cou-
pling in variableX. Maxima of variableX2 are plotted as a func-
tion of DX . Parameters:a = 0.1, b = 0.015, Ia = 0.0625,
DY = 0.

FIGURE 2. Cross-section of hyperchaotic attractor in Eq. (1) with
N = 3, DX = 0.001. Other parameters as in Fig. 1.

in the hyperchaotic case is calculated to be 0.007, 0.003, 0,
-0.008, and -0.034 bps,i.e. two positive LCEs. Figure 2
shows a Poincaré cross-section of the attractor. The cross-
section shows the multiply folded sheet structure typical of
two orthogonal directions of stretching and folding in phase
space.

The same equation also has diffusion-induced chaotic so-
lutions for couplingsDX = 0.0, DY > 0. With all other pa-
rameters as above only one positive LCE is found, however.
The cross-section is sheet-like forDY = 0.015 (implying a
fractal dimension larger than 3), but this is associated with an
increase in dimension in accordance with the Kaplan-Yorke
conjecture [8].

4. Spatio-temporal hyperchaos in more than 3
coupled oscillators

Increasing the number of coupled oscillators we find an in-
creasing maximal number of positive LCEs: withN = 5
there are 3 positive LCE with parametersIa = 0.064,
DX = 0.004, and withN = 10 there are 7 positive LCE
(0.008, 0.006, 0.005, 0.003, 0.003, 0.002, 0.001, 0.0 bps)
with the same set of parameters. Decoupling variableX
(DX = 0) and coupling in variableY yields 4 positive LCEs
with parametersIa = 0.0635, DY = 0.01 (numerical values
0.005, 0.003, 0.001, 0 bps) confirming that this coupling is
also able to induce hyperchaos albeit with a smaller number
of positive LCEs at a givenN than in the case ofX-coupling.

Before jumping to systems of many coupled oscillators
a few instances of small networks with coupling to 4 and
six nearest neighbors were examined with respect to chaos-
hyperchaos transitions. The picture outlined so far holds in
all cases whether the boundary conditions are chosen zero-
flux or periodic. Only slight adjustments in parametersDX ,
DY and/or Ia are required. For example, the numerical
values of the largest LCEs in a net of cubically arranged
3×3 oscillators with zero flux-boundaries and parameters
Ia = 0.0625, DX = 0.001 are 0.004, 0.003, 0.002, 0.002,
0.001, 0.0005, and 0 bps,i.e. six positive LCEs. Coupling to
more than two nearest neighbors does not hamper the evolu-
tion of multiple direction of exponential divergence.

Common to all cases is that as long as the system is re-
stricted to small-amplitude near-harmonic oscillations it pre-
serves the feature of excitability. That is, a short suprathresh-
old stimulus induces one large-amplitude oscillation of relax-
ation type. In all cases where the chaos is composed only of
small-amplitude oscillations (i.e. where it is not self-exciting)
it is also excitable.

5. The case of two spatial dimensions

Following the hypothesis (first introduced by Rössler [1] and
later supplied with numerous examples [5,6]) that diffusion-
induced chaos in low-dimensional systems is a generic build-
ing block for spatially extended models, we present results
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obtained with a system of 50×50 coupled FHN subunits.
Boundary conditions are zero-flux and both hexagonal and
cubic net geometries were used to confirm the independence
of the results from the particular geometry of coupling. The
initial conditions were chosen randomly in a neighborhood
of the excitable fixed point of the system. Given the parame-
ters obtained from the low-dimensional systemsN = 3 and
N = 10 it is straightforward to find parameters for spatio-
temporally chaotic solutions.

FIGURE 3. Chaotic pattern in the autonomous 2D system of 50x50
oscillators with coupling in variableX. Ia = 0.062, DX = 0.02,
DY = 0. Other parameters as in Fig. 1. a) Snapshot of the net
after transients have died out. Grey coding of variableX. b) Time
series of oscillator (29,19). c) Attractor projection from oscillators
(29,19) and (5,13).

Figure 3a shows a snapshot of the system with diffu-
sive coupling restricted to variableX. The distribution of
all variables varies irregularly in space and time. Occasion-
ally, a region reaches values typical of an excitation but no
traveling waves are induced. The time series of an indi-
vidual oscillator (Fig. 3b) shows oscillations with chaotic
amplitude-modulation. The mean amplitude varies between
near-harmonic and occasional relaxation oscillations. The at-
tractor projection on a plane due to its high dimensionality
does not possess any perceivable structure (Fig. 3c). The
spatial homogeneity is broken yielding oscillating patterns of
irregular size with all sets of initial conditions tested. This
spatio-temporal chaos appears to be the only asymptotic so-
lution.

Figure 4a is a snapshot with coupling in variableY . Sim-
ilar as in the case of Fig. 3 we see irregularly amplitude-
modulated oscillations in part of the coupled units. Here,
however, some units spontaneously grow to create large-
amplitude columns that remain unchanged in the course of
time. They can be seen as black spots in the figure. In con-
trast toX-coupling described in the previous paragraph here
the time series of individual oscillators depends crucially on
their position in the net. They can be hyperchaotic as shown
in Fig. 4b, bottom, for an oscillating unit of the net or they
can be quasi-fixed points if the tip of the stable column is
picked as in (Fig. 4b, top). If the couplingDY is further
increased the asymptotic solution is a temporally invariant
pattern of spots (a Turing pattern with short wavelength) dis-
tributed evenly over the whole net.

6. Discussion

The principle of a chaotic hierarchy for the generation of
high-dimensional asymptotic solution out of simple nonlin-
ear units [9] is found to apply for prototypic excitable sys-
tems. Diffusion-induced instabilities of periodic orbits gener-
ically lead to quasiperiodicity, fractalized tori and eventu-
ally to chaos with more than one positive LCE. The maxi-
mal number of positive LCEs depends on the number of cou-
pled units as expected. The bifurcation diagrams of diffu-
sively coupled units that do not allow chaotic solutions when
isolated (due to their restricted phase space) thus are char-
acteristically different from those reported for linearly cou-
pled chaotic units where the coupling strength causes step-
wise decrease in complexity (seee.g. [10] for systems of
coupled non-invertible maps and [11] for coupled continuous
systems).

The spatio-temporal hyperchaos in Fig. 3 bears resem-
blance to the solutions found in spatially extended reaction-
kinetic systems [5] but to our knowledge has not been re-
ported in equations of the van-der-Pol-Bonhoeffer type so far.
Thus the restrictions imposed by mass-action kinetics can be
omitted and the behavior is generic to the class of equations
that is commonly used to model excitable biological systems
like cardiac, pancreatic, and neural tissue with their charac-
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FIGURE 4. a) Snapshots of mixed chaotic pattern in the 2D system
of 50 × 50 oscillators with coupling in variableY . b) Time series
of two oscillators in the net shown in a).Ia = 0.062, DX = 0,
DY = 0.01. Other parameters as in Fig. 1.

teristic and hitherto not well-understood order-disorder tran-
sitions [12].

Remarkably, the spontaneous small-amplitude oscilla-
tions prohibit the evolution of spirals or broken spirals typical
of FHN media with subcritical Hopf bifurcation in the iso-
lated oscillator [13]. The reason is that the small-amplitude
chaos prevents the propagation of excitation waves, be they
target patterns or spirals. We find that the transition from
global to local excitability is continuous,i.e. there exists a re-
gion that allows both propagation waves and spatio-temporal
chaos for nearby parameters. As one consequence, a shift of
the parameters from subcritical to supercritical Hopf bifur-
cation in an excitable system offers a new dynamic mecha-
nism to explain temporal incapacity of a spatially extended
excitable system to support traveling waves.

The generation of deterministic chaos in diffusively cou-
pled FHN-type oscillators has been suggested as an expla-
nation of the dynamic transition to fibrillatory states in car-
diac tissue [13,14]. In these studies fibrillation is consid-

ered as an example of a hyperchaotic spatio-temporal dy-
namics that often occurs without obvious external stimulus.
Dynamic mechanisms are of importance when trying to un-
derstand sudden breaking of the normally regular excitation
waves in the heart that cannot be attributed to permanent al-
terations of the tissue (see [15] for a discussion of the role of
dynamic explanations). In this context, heart cell cultures ob-
tained from mammals or chicken offer an experimental sys-
tem where the present results can be tested. In particular, with
mouse heart cells it was possible to prepare clusters of differ-
ent size that showed a transition from regular to synchronized
irregular and finally to desynchronized irregular excitations
at either low potassium or high calcium concentration in the
medium [16]. In such a set-up it is possible to study the de-
gree of chaoticity as a function of the number of connected
cells either by electrophysiologic techniques or recordings of
the spatio-temporal dynamics of voltage-dependent dyes.

The stable Turing patterns for strong coupling of vari-
ableY are well-known solutions of partial differential equa-
tions of the activator-inhibitor type with inhibitor cou-
pling [17]. The pattern in Fig. 4 can therefore be under-
stood as a chaotic mixture of the Hopf instability (break-
ing the temporal symmetry) and the Turing-like pattern in-
stability (breaking the spatial symmetry). In the classical
Hopf-Turing mixed mode chaos however, the Turing patterns
are temporally unstable and unpredictably appear and disap-
pear [18,19]. The fact that hyperchaotic oscillations coexists
with quasi-steady-states in the same net has previously only
been reported for systems with parameter gradients [20]. The
dynamic reason for the quasi-unperturbed fixed point behav-
ior of the spot tips is that they show center-surround char-
acteristics [21]. That is, each excitation spots is surrounded
by a ring of cells that are hyperpolarized and thereby suc-
cessfully dampen the oscillations of the neighborhood. This
is not only a surprising finding in itself but also an intrigu-
ing feature when thinking ofe.g.the transition to fibrillation:
in the case ofY -coupling the perfectly homogeneous system
dynamicallygenerates obstacles that may help to explain the
break-up of pace-maker-induced excitation waves. In con-
trast to the generally supposed ischemia (organic damage that
can be considered constant on the time scale of individual ex-
citations) this would allow switching from regular to tachy-
cardic to fibrillatory behavior on the short time scales often
observed in cardiology (seee.g. [22] for references).
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