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Border collision bifurcations in tantalus oscillator
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The Tantalus oscillator is a nonlinear system having a stable limit cycle. In this work we analytically obtain the Phase Transition Curve
(PTC) finding a one-dimensional piecewise map which has a discontinuity. The map is defined by a function which was experimentally
verified with an excellent consistency between theoretical and experimental results. We iterate the obtained map to predict the coupling
behavior of the system under periodic perturbations, finding that it presents Periodicity Diagrams that display a high number of bistabilities.
We experimentally show the occurrence of the predicted behaviors. Bifurcations among periodicities resulted Border Collision Bifurcations.
Finally, by studying the Two-parametric Bifurcations Diagram we conjecture that there is at least one point in the diagram which corresponds
to a Big Bang Bifurcation. This point appears when the perturbation intensity leads to the discontinuity loss in the PTC.
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1. Introduction

The Tantalus oscillator is a hydrodynamic system that be-
haves as a nonlinear oscillator with a stable limit cycle. Os-
cillators with stable limit cycles are abundant among many
kinds of systems: physical [1], chemical [2] physiologi-
cal [3], electronic [4,5], etc. The description of their dynam-
ical behavior may be very complex however, their general
properties under perturbations can be described recurring to
the Reset Theory [6,7]. The fundamental tool in this theory
is a map or function called Phase Transition Curve (PTC),
which describes the punctual effect of isolated perturbations
given at specific moments to the particular nonlinear oscil-
lator studied. More recently systems that are described by
discontinuous maps have become relevant, for example, os-
cillators that suffer impacts [8,9], electric circuits [10,11],
dc-dc converters [12], etc. As it has been shown in a se-
ries of theoretical studies, in these systems the discontinuity
has a border role since it divides different kinds of behavior
in the map [13]. The discontinuity can occur directly in the
function or in its derivatives [14], and it can induce the exis-
tence of Border Collision Bifurcations (BCB) which happen
when a fixed point or an element in the orbit collides with
the discontinuity and changes the dynamical behavior [15].
Also this type of map can originate a One-parametric Bifur-
cation Diagrams which has a staircase shape [16]. Moreover
to generate points that coincide with an infinite number of bi-
furcations lines that have been named Big Bang Bifurcations
points (BBB) [17].

The Tantalus oscillator was studied previously by Chialvo
et al. in 1991 [18]; these authors showed that the system has
a stable limit cycle and that volume perturbations–depending
on the precise moment when they are applied–can increase or
reduce the oscillation period. By building a simple model of
the water level evolution by discrete increments, they obtain
a two-parametric diagram for the couplings between volu-

metric perturbations and the natural oscillation. For highest
intensities of volume perturbations there are only 1:0, 2:1 or
1:1 coupling rhythms. That is, one perturbation without os-
cillation, two perturbations for one oscillation and one pertur-
bation for one natural oscillation. They do not report bista-
bilities in the system. In an analogous system built with an
electric capacitor, Santillán [19] deduces the PTC from ex-
perimental results. By iterating this function, he finds the
Two-parametric Bifurcation Diagram (TBD) which is simi-
lar to the Chialvoet al. diagram. However, in this case for
highest intensity perturbation it is shown that rhythms con-
verge to one point in the diagram. Santillán could not find
bistabilities, despite of explicitly looking for them.

In the present work we show that the Tantalus oscillator
under short volumetric monophasic perturbations can be de-
scribed with a discontinuous PTC. The existence of the dis-
continuity induces BCB. We show that there is a perturbation
intensity for which the discontinuity disappears and, for that
intensity, there is a point in the TBD that leads us to conjec-
ture is a BBB. We theoretical and experimentally verify the
existence of bistabilities that had not been found in previous
work reported by other researchers.

2.

2.1. Methods and Experimental Setup

The experimental setup is illustrated in Fig. 1. It consists of a
transparent acrylic container of 9.5 cm in diameter and 20 cm
in height; it is permanently fed with water at constant rate of
5.27 mL/s. Inside the recipient there is a plastic tubing with
inverted U shape working as siphon. It has 6 mm as inner
diameter. One end of the tubing goes through the bottom of
the container, and it is through it that the water is discharged.
The other end of the tubing is inside the container and when
the water level reaches the top of the inverted U, the container
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FIGURE 1. Experimental Device. The main element of the experi-
mental device is a glass provided with a siphon inside it. The glass
is fed with water at a constant rate of 5.27 mL/seconds, and as the
water level increases the siphon is simultaneously filled. When the
water reaches the maximum level of the siphon, the glass is rapidly
emptied through it. This system is perturbed with water pulses two
seconds long injected by means of a pump controlled by an Arduino
board. The pulses can be either isolated or periodic. With labelP1
the perturbation pump is indicated and withP2 the feeding one.

empties with an average rate of 20.4 mL/s. The inner end of
the siphon is enclosed in a small glass cup ensuring the air
income when the tubing empties. Along the container there
is a millimeter graduated ruler. At the lowest level the wa-
ter reaches 33.5 mm; at the highest level 101.5 mm. The
discharged volume is 469 mL; we will call it “work volume”
(WV). Note that a direct geometric calculation gives us a big-
ger volume; we need to consider the volume inside the tubing.

There is another tubing inside the container that corre-
sponds to the perturbation hose; it is 9 mm in diameter and
it is connected to a Comet Elegant submergible pump con-
trolled by an Arduino board which is controlled by a PC.
With this system, we apply water pulses whose volume can
be adjusted by the voltage applied to the pump. Pulses can be
isolated or periodically applied. Volume perturbations were
given as fractions of the work volume, for example a pertur-
bation of 0.1 corresponds to a volume of 46.9 mL.

Water level evolution was recorded by a Sony Digital
video camera. To improve the resolution of the images, the
water was stained with orange or blue dye. The video acqui-
sition was done at 31 frames per second. Water levels were
measured directly on the video recordings and also were an-
alyzed with the free software ImageJ 1.48v by using the lu-
minosity of the water mass, this measurement is proportional
to the water height within the container.

2.2. Data Fitting and Simulations

The Tantalus device just described before was used to obtain
the natural oscillation of the system. Ten oscillations were
recorded to measure the water level evolution directly frame

by frame. Data corresponding to three oscillations are shown
in panel A of Fig. 2. We define the highest level of the water
oscillations as the starting moment of the cycle, and name it
marker event [6,7]. By using the ImageJ program, we calcu-
lated the mean value for the period resulting 126.7 seconds
with standard deviation of 1.24 seconds.

In order to fit a function to the water level evolution the
experimental data were normalized dividing them by the nat-
ural oscillation period. Also the water level variations were
normalized with respect to the maximal amplitude. The wa-
ter discharge, indicated as “a-b” segment in panel A of Fig. 2
has a parabolic shape [20] whose mathematical relationship
is given by:

N(t) = 4p(t− tv)2 + Nv (1)

WhereN is water level,t is time; (tv, Nv) are the coor-
dinates of the parabola vertex;4p = 5.11, tv = 0.521
and Nv = −0.39. The fitting function had a correlation
R2 = 0.996.

The fitting for the filling course of the Tantalus, “b-c” seg-
ment in panel A of Fig. 2 was done by means of the straight
line:

N(t) = mt + b , (2)

wherem = 1.325 andb = −0.325. Panel B in Fig. 2 dis-
plays the normalized and fitted oscillations. The theoretical
analysis reported in the following pages is based on these two
data fittings. In panel C of Fig. 2 the fitting is used to rep-
resent the effect of a volume perturbation of 0.5 times the
work volume (WV), and it is applied when the container is
filling. The cyan trace corresponds to the unperturbed os-
cillation and, the blue trace that has been superposed corre-
sponds to the perturbed oscillation. The thin red trace at the
lower part indicates, with a square pulse, the moment of the
perturbation. We are considering its effect as instantaneously
moving upward the water level 0.5 WV. After this change
the oscillator continues its evolution starting from the newly
reached level. In this case the perturbation effect was to re-
duce the oscillation period. We will say that in this case the
oscillator moved forward. Depending on the precise moment
of the perturbation application, the oscillator advances or de-
lays. Moreover there is even a moment with no effect.

To quantitatively measure the effect of isolated perturba-
tions and to predict the periodical perturbations effect we cal-
culated the PTC [6,7]. The central idea for this calculation
is that the perturbation instantaneously moves the oscillator
from one moment in the natural oscillation to another one.
The moment just before the perturbation occurs is called old
phaseϕ, and the moment just after the perturbation which
the system moves to is called new phaseϕ′. In the case of the
Tantalus oscillator the new phases can be analytically calcu-
lated from the old phases. Let’s denote byg the function or
map that relates both quantities:

ϕ′ = g(ϕ). (3)
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FIGURE 2. Natural and perturbed oscillations. Panel A. Display of an experimental oscillation. A measure was taken for every 30th of
a second. It is considered a complete oscillation going through the points a, b and c. The natural period of the oscillation,T0, shown in
this recording has a value of 126.3 seconds. Panel B. Graph of the adjustments to the normalized oscillation. The downward section was
adjusted with a parabola, while the upward section with a straight line that reflects the constant rate at which the glass is filled. Panel C.
Model of instantaneous perturbation when the water level is rising. The cyan trace shows what would have been the water level evolution
if no perturbation was applied. The blue trace is the evolution of the water level resulting from the perturbation. The square pulse in
red shows the moment in which the water was injected. It can be noticed that the effect of the perturbation is to reduce the time of the
oscillation. According to the moment when the pulse is applied the oscillation can be lengthened, shortened or not present any effect. Panel
D. Experimental recording of the effect of an isolated perturbation.T0 corresponds to the natural period of oscillation,T1 to the perturbed
period of oscillation which in this case is smaller.Tc is the time elapsed between the “marker event” (corresponding to the beginning of the
oscillation) and the water injection.
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To predict the effect of periodical perturbations with a
fixed periodτ , we build a new function which allows to know
the phase after perturbationi+1, knowing the phase after the
i.th perturbation with the following relation

ϕi+1 = g(ϕi) + τmod(1). (4)

Once we know the initial phase, iteration of this expression
lets us know the system evolution aftern perturbations. Also
it lets us infer if there exist coupling rhythms between pertur-
bations and the modified behavior of the oscillator.

2.3. Analytical Method to Find New Phases

To analytically find the dependence of the new phases in
terms of old phases we have to consider that subject to per-
turbations the oscillator may exhibit three operation regions
1) from the beginning of the emptying to the beginning of the
filling up. This corresponds to the “a-b” interval in panel A
of Fig. 2, this set of phases will be called RI; 2) from the
beginning of filling up to the moment the perturbation initi-
ates the emptying phase. This region will be called RII; this
region depends on the perturbation intensity; 3) from the end
of the last described region up to the beginning of the spon-
taneously emptying, point “c” in panel A of Fig. 2, this set
of phases will be called RIII. Given that to do the analytical
calculations we only consider the times corresponding to one
oscillation. We will take those times described by fittings (1)
and (2) as phases.

As it was mentioned in previous section, we consider that
both perturbations and its effect on the water level are instan-

taneous; in the same way the change from old phase to new
ones occurs.

The water levelNo, corresponding to the old phaseϕ is
related as follows:

No = No(ϕ). (5)

Where the specific form ofNo function depends on the region
that we are considering. The water levelNn, corresponding
to new phaseϕ′ is given by the relationship:

Nn = Nn(ϕ′) (6)

Where the specific form ofNn function depends on the re-
gion that we are considering. If we addδN volume, the water
level change becomes:

Nn = No + δN. (7)

We will use these expressions to get the relationship be-
tween the new phases and old phases. We have to remark that
the functional relationship forNo andNn depends on the op-
eration region we are considering. For RI region the water
level is decreasing before the perturbation, and after the per-
turbation it will continue decreasing. In these cases we will
use (1). For RII the water level will be increasing before the
perturbation and will continue increasing after the perturba-
tion. Here we will use (2). However, for RIII the water level
will be going up before the perturbation, but after the pertur-
bation it will start to going down. In this region we are going
to use (1) and (2).

Rearranging the terms we have for each operation region:

ϕ′ =





ϕν − ((4p(ϕ− ϕv)2 + δN)/4p)1/2 mod(1) if ϕ ∈ R I

ϕ + δN/m mod(1) if ϕ ∈ R II

ϕν + (mϕ + b + δN −Nν)1/2 mod(1) if ϕ ∈ R III

(8)

2.4. Experimental Method to Find New Phases

There is a huge amount of publications indicating how to cal-
culate new phases from experimental data [21]. In panelD
of Fig. 2 there is a scheme which has been obtained from an
experimental recording to illustrate how new phases are cal-
culated. The unperturbed period of oscillation is denoted by
T0, the perturbed oscillation period isT1. The time interval
between the marker event previous to the perturbation and the
perturbation time itself isTc. The time interval between the
perturbation time and the next marker event is called cophase.
The old phase isTc/T0:

ϕ = Tc/T0. (9)

While new phase is cophase subtracted fromT0 and normal-
ized, resulting in

ϕ′ = (T0− (T1− Tc))/T0. (10)

3. Results

3.1. Theoretical Phase Transition Curves (PTC)

PTC is the relation between old phases and new phases [6,7].
Figure 3 displays a PTC obtained using the analytical expres-
sions described above with varied intensity: 0.2 WV in panel
A; 0.4 WV in panel C; 0.6 WV in panel E. Intensities are
indicated in the right lower corner in each panel. In the first
panel, R1, R2 and R3 indicate the three different branches in
the map depending on the operation region. We can observe
that branch R1 has a discontinuity which is induced by the
module 1 operator; its position depends on the perturbation
intensity. In fact, the discontinuity phase can be calculated,
since corresponds to the moment when the descending water
level returns to the maximal level. There is another disconti-
nuity in this map, and it is present for all the Tantalus PTC.
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FIGURE 3. Experimental and Theoretical Phase Transition Curves. For all panels the horizontal axis indicates the old phase and the vertical
axis the new phase. The panels on the left side correspond to the theoretical results and those on the right side to the experimental results.
Each row corresponds to the same perturbation intensity, indicated on the lower right corner of each panel. The diagonal line is the graph
of the identity function. In the theoretical panels the dotted line indicates the position of the map discontinuity which is insensitive to
the perturbation intensity. Nevertheless, note that the magnitude of the discontinuity grows with the perturbation intensity. The maps are
considered to be formed by three branches: R1, R2 and R3. In the experimental panels the different colors indicate experiments done on
different days.

In the three left panels we have marked with a dotted thin
line the moment when this discontinuity always occurs. In
panel A the magnitude of this discontinuity is 0.22, up to two
decimal ciphers; in panel C the magnitude is 0.42; and in
panel E is 0.62. This means that the magnitude grows with
perturbation intensity. This result can be analytically veri-
fied, obtaining the difference of new phase values, between
the last point in branch R1 and the first of branch R2. This
discontinuity, which we call “essential discontinuity”, occurs
because before it perturbations delay the oscillator and, af-
ter it, perturbations advance the oscillator. This discontinuity
will be the one inducing the BCB.

3.2. Experimental Phase Transition Curves

Following the procedure explained in Sec. 2.4 we did a set of
experiments to measure the PTC for the same perturbation in-
tensities as those theoretical results illustrated in Fig. 3A, C,

E. Three runs were made on different days for each intensity.
The perturbations were applied in five seconds intervals from
the moment the container starts to fill and up to the moment it
is empty, that is, during an entire cycle. Between consecutive
perturbations two unperturbed oscillations were allowed. All
this procedure was recorded by a digital camera, and to mea-
sure phases we took as a marker event the moment when the
container starts emptying. Panels B, D and F in Fig. 3 show
the corresponding results for 0.2, 0.4 and 0.6 WV intensi-
ties. Different colors represent different experiments done in
different days. To facilitate comparison theoretical PTC are
superposed. The coincidence between them is remarkable.

3.3. Periodical Rhythms: Theoretical prediction

To explore the dynamical evolution of the system we can
choose any intensity, initial condition and a perturbation pe-
riod using the function (8). In most of the cases we found
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FIGURE 4. Resulting orbits from iterating the Phase Transition Curve for perturbation intensity of 0.5 WV. Panel A. Resulting orbit from
iterating with a perturbation period of0.7T0 and initial condition0.32T0. After some iterations the orbit move to the crossing of the map and
the identity function. A rhythm with 1-periodicity results given that each iteration falls in the same phase. Panel B. Orbit with 2-periodicity,
resulting from iterating with perturbation period of0.35T0, the orbits visit two phases of the map. In this panel, as in the following ones, the
initial condition is omitted and only the asymptotic part of the orbit is illustrated. Panels C and D. Orbits with 3-periodicity and 4-periodicity
resulting from iterating with perturbation periods of0.24T0 and0.18T0.

that orbits converge to in fixed points or periodic orbits, that
is, after certain number of perturbations the phases where the
system moves around are the same. This repeated phases can
be reached in one or several oscillations. The combination of
the number of perturbations with the number of oscillations
will be called coupling rhythm, and will be identified with
N : M notation; whereN = number of perturbations and
M = number of oscillations. When two rhythms have the
sameN , we would say that they have the same periodicity.

Figure 4 shows some orbits obtained with 0.5 WV per-
turbation intensity. Panel A displays the orbit the system fol-
lows when0.7T0 perturbation period and an initial condition
of 0.32T0 were used. It can be seen that after a transient
course of five iterations, the orbit converges to a point where
the identity line intersects the map. Staying in this point
means that before each perturbation the system is always at
the same phase. This is a rhythm with 1-periodicity. This
type of evolution occurs because the intersection of identity
line with the map has an absolute value slope lower than one,

in consequence, all orbits passing around that vicinity are at-
tracted. This fact allows us to analytically calculate those
1-periodicity cases.

Panels B, C and D illustrate rhythms with higher peri-
odicity, though transitory paths have not been represented,
only the final orbits. Panel B presents a 2-periodicity
rhythm obtained when perturbation period is0.35T0. Panel
C shows a 3-periodicity orbit occurring for perturbations
applied 0.24T0 and, D a 4-periodicity orbit obtained for
0.18T0. It can be observed that between identity line and
RI branch in the map there is a channel, and by adequately
choosing the perturbation period it can be made as thin as de-
sired. Reduction in the width of this channel will induce very
long orbits.

3.4. Periodical Rhythms. Experimental results

To corroborate the theoretical predictions established in the
last section, we perturbed the Tantalus oscillator with an in-
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FIGURE 5. Resulting couplings from applying periodic perturbations with intensity 0.5 Experimental recordings resulting from applying
periodic perturbations with periods and intensities as in Fig. 4. Points of the theoretically calculated orbits were taken as initial conditions
for each experiment. In each panel the horizontal axis indicates time in seconds. In the vertical axis indicates the water height in millimeters.
In the upper part of each panel the perturbation period and resulting rhythm is indicated, where the first digit indicates the number of
perturbations and the second one the number of oscillations in which the patterns is repeated.

tensity equal to 0.5 WV, which matches the case shown in
Fig. 4. This means that volume pulses of 234.5 mL are in-
jected in 2 seconds. In all the experiments the initial condi-
tion or first perturbation pulse phase was selected among the
several points in the studied orbits. Then for perturbation pe-
riod 0.7T0 the first pulse was applied in phase0.68T0. Panel
A of Fig. 5 shows that the result in this case is a coupling
with 1:1 rhythm. Panel B in the same figure shows the re-
sult for 0.33T0 perturbation period and an initial condition
of 0.27T0, the obtained rhythm is 2:1. In panel C the cou-
pling rhythm is 3:1, a result from perturbing with a0.24T0
period and an initial condition of0.17T0. Finally, in panel D
a coupling rhythm 4:1 produced by perturbation pulses with
0.17T0 period and initial condition0.81T0 is shown. Once
again the coincidence between theory and experiments is re-
markable. Not only are the predicted rhythms obtained; but
they can also be reached by starting the perturbation protocol
in the predicted phases. It has to be noted that each experi-
ment was repeated at least three times.

3.5. Bifurcation Diagrams for the Perturbation Period

By repeating the exercise that we have described in Sec. 3.3,
but now for intensities going from 0.1 to 1.05 in 0.01 step
size; for 1000 periods between 0 and 1 with 0.001 steps size
and for 10 initial conditions between 0 and 1 with 0.1 steps
size, we completed 950 000 studied cases. We looked for pe-
riodicities between 1 and 16 making 2560 iterations in each
case. Most of the cases: 871 211 had periodicity between 1
and 16. The remaining cases could have longer periodicities.
In Fig. 6, panels A and B, we show the periodicities pattern
obtained for perturbation intensities 0.2 WV and 0.4 WV. It
can be seen that the periodicity patterns have a general horse-
shoe shape, built by rungs that constitutes a staircase. At the
right and left ends, outside the horseshoe, there are 1-rhythm
regions; these rhythms are consequence of the intersection
between the identity line and the mapping, as has been de-
scribed in Sec. 3.3. As perturbation intensity grows these
regions grow, which reflects that R3 grows with the perturba-
tion intensity, as can be seen in the left panels of Fig. 3.
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FIGURE 6. One-parametric Bifurcation Diagrams: increasing, additive and with bistabilities zones. In panels A and B are shown the
bifurcation diagrams obtained when perturbing with periods between 0 and 1, in steps of 0.0001. In the first panel the perturbations are done
with an intensity of 0.2 WV and in the second one of 0.4 WV. Panel C. Detail of panel A, for periods between0.25T0 and0.45T0. It can
be noted that between the regions with 2-periodicity and 3-periodicity there exists a gap filled with periodicities that sum the periodicities of
the edges, this way we have a region with periodicity 3+2=5, another one with 3+5=8, etc. Panel D. Detail of panel B, for periods between
0.17T0 and0.42T0. It can be noticed that region of 2-periodicity and the one of 3-periodicity overlap, which predicts the existence of
bistabilities.

In general, we have “additive periodicities”, that is, con-
secutive periodicities do not have contiguous domains of
rhythms [22]. This characteristic is illustrated in panel C
of Fig. 5. Here we show that between 2-periodicity and 3-
periodicity there is a gap. This gap is partially occupied by
a 2 + 3 = 5-periodicity region. Between 2-periodicity and
5-periodicity zones there is a 2 +5 = 7-periodicity zone; and
so on and so forth. Panel D in the same figure shows another
type of phenomena commonly found in Periodicity Diagrams
or One-parametric Bifurcation Diagrams. In the region be-
tween perturbation periods0.2T0 and0.4T0 and perturba-
tions intensity 0.4 WV, there is a region in which when chang-
ing the initial condition, we get different coupling rhythms,
that is, there is bistability and this property is very common
in the Tantalus Oscillator diagrams.

3.6. Experimental verification of Bistability and Addi-
tive Rhythms

In panel A of Fig. 7 we show a 2-rhythm coupling obtained
by using a perturbation period of0.4T0, we have two per-
turbations for each Tantalus oscillation. Repeating the proce-
dure for perturbation period0.25T0 we get a 3-rhythm cou-
pling, three perturbations for one Tantalus oscillation, this is
shown in panel B in the same figure. Finally, when we chose
an intermediate perturbation period,0.3T0, which according
to the results displayed in panel C of Fig. 6 should correspond
to a 5-periodicity pattern, we see that the experimental result
is five perturbations coupled to two Tantalus oscillations.

In relation to the experimental verification for the exis-
tence of predicted bistabilities (panel D of Fig. 6), we have
explored for perturbation intensity 0.4 WV and different per-
turbation periods overlapping their respective regions. In

Rev. Mex. Fis.63 (2017) 171–184



BORDER COLLISION BIFURCATIONS IN TANTALUS OSCILLATOR 179

FIGURE 7. Experimental recordings: additive and bistable rhythms. In the first three panels the addition phenomenon is illustrated, obtained
with a perturbation intensity of 0.2 WV. In the last two panels the bistability phenomenon is illustrated, obtained with a perturbation intensity
of 0.4 WV. In all the panels the blue trace shows the evolution of the water level, the red trace indicates the perturbation moments. Panel
A. Rhythm 2:1 obtained with a perturbation period of0.4T0; we have two perturbations per oscillation. Panel B. Rhythm 3:1 obtained with
a perturbation period of0.25T0; we have three perturbations per oscillation. Panel C. Applying perturbations with period in between the
previous ones: 0.3, a rhythm 5:2 is obtained, which is the combination of the elemental blocks for 2:1 and 3:1. We have 5 perturbations in
two oscillations. In panels D and E perturbations with the same intensity and period were applied: 0.4WV and 0.28T0. In panel D the initial
condition was 0.25T0 and the resulting rhythm was 2:1. In panel E the initial condition was0.22T0 and the obtained rhythm 3:1.

panels D and E of Fig. 7 we show the results obtained af-
ter applying repetitive pulses with a perturbation period of
0.28T0 and initial condition of0.25T0 (panel D) and the
same parameters values but with initial condition0.22T0
(panel E). It can be observed that we get two different cou-
plings: 2:1 and 3:1.

3.7. Border Collision Bifurcations

Bifurcation Diagrams described in the previous paragraph in
which the system “jumps” from one periodicity to another
pose the question: what kind of bifurcations occur between
one periodicity and the other? In most cases we are study-
ing the bifurcations type is Border Collision and it happens
because the orbits collide with the essential discontinuity de-
scribed at the beginning of this results section. In Fig. 8 we
illustrate how this kind of bifurcation occurs when the per-

turbation intensity is 0.2 WV, perturbation period goes from
0.182T0 to 0.154T0 and the initial condition is 0.1. In panel
A the 4-period orbit when perturbation period is0.182T0 is
shown.

The arrow and “a” letter are indicating one of the four ele-
ments in the orbit. As the perturbation periodicity is decreas-
ing, this element is approaching the discontinuity. In panel B
we see its new position indicated with an arrow and “b” let-
ter, when the perturbation period is0.156T0. At that moment
it is almost touching the discontinuity. Another small reduc-
tion in the perturbation period causes the orbit to touch the
discontinuity and moves from branch R2 to branch R1, reor-
ganizing the orbit path that now has 5-periodicity. In panel D
of the same figure, we show in a general fashion these bifur-
cations. We plot the phase values for each orbit element for
perturbation periods from 0.12 to 0.2. In red we show phase
values corresponding to 5-rhythm, in black the phase values
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FIGURE 8. Border Collision Bifurcations. Transition between 4-periodicity and 5-periodicity during the period reduction. In Panel A the
obtained orbit for a perturbation period of0.182T0 is shown; it has 4-periodicity. The third element of the orbit is identified with a blue
arrow and the letter “a”. Panel B. The reduction the perturbation period to0.156T0 approaches this third element to the map discontinuity,
now marked labeled with letter “b”. Panel C. A very small reduction makes the third element of the map collide with the map discontinuity
and reorganizes the orbit with now five elements. Panel D. In the horizontal axis the perturbation period is indicated, in the vertical axis the
phases the iteration visits are indicated. Phases with 4-periodicity are in black and those of 5-periodicity in red. The horizontal blue line
indicates the discontinuity position. Observing the graph from right to left it can be seen that the 4 periodicity starts in the fourth phase and
ends in the third one. At that moment the 5 periodicity starts in its fourth phase to end in its third one. We are counting the phases from top
to bottom.

corresponding to 4-rhythm. A thin horizontal blue line marks
the essential discontinuity position; arrows indicate the posi-
tion of a, b and c points marked in panels A, B and C. If
we analyze the pattern of moving phases going from right
to left along the blue line, we can see that 4-rhythm begins
at the discontinuity point for the fourth phase (if considered
from top to bottom), and it finishes to the end of third phase
in the same discontinuity line. For the fourth phase, the 5-
periodicity rhythm emerges which ends in the same disconti-
nuity for the third phase.

A detailed inspection of the phase diagrams for each stud-
ied perturbation intensity and for each initial condition shows
all bifurcations occur in this way when we plot the phases
between 0 and 1. Then we can say that most of the bifurca-
tions occurring in this system are BCB, without discarding
that there may be some other bifurcation types.

3.8. Two-parametric Bifurcation Diagram

We can group the One-parametric Bifurcations Diagrams as
those shown in panels A and B of Fig. 6, to build a TBD. In
panel A of Fig. 9 this construction is shown. The horizontal
axis indicates perturbation periods from 0 to 1 in step size
of 0.001; in the vertical axis we represent the perturbation
intensity between 0.1 and 1.05 WV in step size of 0.001; in
total we have 950 000 points. Periodicities up to fourteen are
represented giving the same color to these rhythms with the
same periodicity. It can be seen that in general, the diagram
has the same appearance as those obtained by Chialvo [18]
and Santilĺan [19]. There are large zones with 1:0 and 1:1
rhythm at both sides. The region with higher rhythm has a
triangular shape with its vertex pointing towards higher in-
tensities. The border zone with 1:0 rhythms is barely curved,
while the border with the 1:1 region is a straight-line.
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FIGURE 9. Two-parametric Bifurcation Diagram and Bistabilities Diagram. In both panels the horizontal axis indicates the periodicity
and the vertical axis the perturbation intensity. Panel A. Regions with similar periodicity are indicated with the same color. Yellow for
periodicity 1. White regions have periodicity greater than 14. Panel B. Regions with different periodicities overlap, this indicates that there
are many bistability regions. These regions are indicated in black.

The pattern inside the triangle is formed by bands, that is,
sets of points with the same rhythm. As some of the rhythms
share the same periodicity, we assigned all of them the same
color. For example, looking at the diagram from left to right
we see 5:1, 5:2, 5:3 and 5:4 rhythm bands. To all of them we
assigned the red color. At the right side of the figure it ap-
pears the color code for periodicities, reported up to 14. Yel-
low color corresponds to 1-periodicity. On the left side of the
figure is the 1:0 coupling, meaning that the system receives
periodic perturbation in the same phase but never completes
an oscillation. On the right side the coupling is 1:1, imply-
ing an oscillation is produced for each volume perturbation
applied in the sameT0 phase.

Although the diagram changes as the intensity perturba-
tion grows, there are some general characteristics. A notable
one is that periodicities accumulate to the left and right of
the diagram boundaries. In both cases, as we approach to
the borders, longer periodicities are observed, but each time
in narrower zones. This property could be observed in the
One-parametric Bifurcation Diagrams of panels A and B of
Fig. 6. Another general characteristic is that a band rhythms
goes to the vertex of the triangle becoming thinner but pre-
serving their ordering. Zooming the visualization of the dia-
gram at different heights, the same band ordering is observed.
A novel result respect to Chialvo and Santillán [18,19] pa-
pers, is the existence of bistabilities in our system. In panel
B of Fig. 9 they are shown. We can see that besides a wide
zone between 2:1 and 3:1 rhythm; in the middle of the dia-
gram there are bistabilities too. They accumulate towards the
boundaries. White zones in the diagram are partially ought
to bistabilities of very high order not detected in our simula-
tions.

4. Discussion

There is a large number of oscillators that can be typified as
oscillators with a stable limit cycle. Among those, some of
them can be modelled by discontinuous PTC’s under brief
perturbations, the Tantalus oscillator being one of these. This
oscillator had already been studied from the nonlinear dy-
namics perspective by Chialvo,et al. [18] these authors
showed that by changing the perturbation period it can be
found that the Periodicity Diagram has a Devil’s Staircase
shape.

Besides considering the perturbation period as a bifurca-
tion parameter, its intensity is also considered, then triangular
coupling regions can be found for periodicities greater than 1,
though for big perturbation intensities rhythms 1:0, 2:1 and
1:1 still remain, this being due to the model characteristic
that does not allow the water level to go over the maximal
threshold regardless the moment when the perturbation takes
place.

In 2016 a paper was published [19] dealing with a system
analogous to the Tantalus Oscillator in which results similar
to those in Chialvo, et al. are obtained. In that case it is a
capacitor being charged until it reaches its threshold voltage
and when it does so, it discharges rapidly [19]. The voltage
oscillation has a shape very close to the water level in the
Tantalus Oscillator. The charge and discharge process can be
affected by a circuitry which allows introducing constant pe-
riod voltage pulses. Even though with that systems it is not
possible to evaluate the effect of isolated perturbations, the
author manages to extract a PTC by means of studying the
effect of individual pulses from the train of stimuli.

Among the presented results it can be highlighted a TBD.
This diagram displays periodicities according to perturbation
period and intensity; and its shape is very close to that ob-
tained by Chialvo,et al. Nevertheless, it is shown by the
author as well; that in the studied case, all rhythms with pe-
riodicity greater than one converge to one point. It also hap-
pens that, since the origin of all oscillations (and the marking
event to calculate the PTC’s) is defined as the moment when
the capacitor is starting the charging process, the discontinu-
ity characteristic is less noticeable.

In our case we have taken the beginning of the emptying
process of the Tantalus Oscillator as the origin of all oscilla-
tions, and also as marking event. This highlights the phase
where the isolated perturbation PTC’s obtained have their
discontinuity. This discontinuity is precisely where the orbits
collide when the perturbation period is changed and produces
a BCB. These bifurcations are the dominant ones in the bifur-
cation diagram. Besides, a variety of phenomena occur as the
perturbation period and/or intensity are modified. These phe-
nomena have been shown and discussed in several theoretical
papers regarding discontinuous maps. One of the research
groups that has more contributed in the study of these phe-
nomena is the group leading by Avrutin [16-17,22-23,25].
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We will discuss the trajectory reinjection mechanism happen-
ing in the Tantalus map. This mechanism was addressed, in
general, in a paper of the mentioned research group in the
year 2000 [23]. Supported on that work we propose that the
peak of the rhythms with periodicity greater than one in the
two-parametric diagram is a point where a BBB takes place.

The reinjection mechanism was suggested by Pérez in
1985 [24] and developed by Avrutin in 2000 [23]. For this
aim the following map was used:

X(i + 1) =

{
X(i) + a, if x(i) < 1

0, if x(i) ≥ 1
(11)

The dynamic associated with this discontinuous map in-
cludes countless periodic orbits. It consists of a line parallel
to the identity function separated a distance “a” from it, and
of a small horizontal segment on the abscissa axis. The do-
main section where the first segment of the map is valid is
[0,1) and the second part applies for the values greater than
or equal to one. The orbits this map induces, consist on a se-
ries of steps formed in between the identity function and the

diagonal section of the map, see Fig. 2 Ref. 23. When the
orbit attains a value in the interval [1-a,1) the value for the
next iteration is zero and the orbit repeats itself. This is the
mechanism known as reinjection. The number of steps de-
pends on the value “a”, the lower it is the larger the number
of steps and the greater the periodicity of the orbit. As it can
be seen with this map, a countless number of periodic orbits
can be generated.

A similar mechanism exists with the map obtained for
the Tantalus oscillator. In Fig. 3 it can be seen that any per-
turbation intensity studied forms a channel between the PTC
and the identity function. In Fig. 4 it can be seen that the
magnitude of the perturbation period modifies the width of
the channel and the size and organization of the orbits. For
instance, for perturbation periods close to zero or one there
exists an intersection between the identity function and the
branch R3 of the map, therefore there are no channels formed.
Nevertheless, when the period moves the map upwards or
downwards, the previously mentioned crossing is eliminated
and therefore stepped orbits can be found for which the rein-

FIGURE 10. Reinjection mechanism for the Tantalus map. For low or high periodicities, the map forms a channel with the identity function
through which the orbit flows. In the case of high periodicities, the channel is formed by branch R2 and the orbit is reflected in branch R1
to be reinjected in the channel. In panels A, B and C it is shown that as the perturbation period increases, the channel is narrower, the orbits
have more steps and the periodicity is higher. This mechanism works for any length of branch R2, that is for any perturbation lower than 1.
In panel D it is shown that the same mechanism also works for brief perturbation periods.
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jection mechanism occurs. This is shown in Fig. 10. In panel
A we show the orbit occurring for a perturbation period of
0.695T0. In this case branches R2 and R3 form a channel
with the identity function in which the orbit will move. The
value of the perturbation period is such that it allows the for-
mation of four steps before the orbit leaves through the lower
side of the channel and travels to the branch R1 where it rein-
jects to traverse once again the channel. If a simulation of
the water level is done for this case, a pattern is found to be
repeated four times for every five applied perturbations, this
being a rhythm 5:4. If the perturbation period is slightly in-
creased the width of the channel is reduced. In panel B we
show that forTp = 0.725T0 the new channel width compels
to traverse it in five steps. The organization of the orbit is
exactly the same as discussed above but with an additional
step, therefore the rhythm obtained is 6:5, that is, five oscil-
lations where six perturbations fall. The range of this proce-
dure seems to be limitless regarding the number of steps that
can be fitted. In panel C we increase the perturbation period
to 0.794T0, the channel width is once again reduced and to
traverse it eleven steps are needed, this way we get a period-
icity rhythm of twelve. It must be mentioned that we have
illustrated the type of channel formed for perturbation peri-
ods greater than 0.5 WV, but we shall mention that for periods
lower than 0.5 WV a similar channel is formed but it does in
between the branch R1 and part of the branch R2, as shown
in the orbit with periodicity 6 occurring forTp = 0.117T0.

Relying on the reinjection mechanism we infer that the
peak of the TBD, in its periodicities greater than one, is a
BBB. Recalling that a BBB is a point in which an infinite
number of bifurcation lines converge. In this case, the bifur-
cation lines would be of border collision. This lines would be
induced by the reinjection mechanism occurring basically in
a channel formed between the identity function and the map.
The orbit traverses this channel through a given number of
steps and then leaves it to be reflected somewhere else in the
map where it only suffers from one iteration. In the case of
high periodicities, as shown in panels A, B, and C of Fig. 10
the number of steps gone through depends on two factors:
the existing distance between branch R2 of the map and the
identity function (distance determined by the perturbation pe-
riod) and the length of the branch R2 of the map (determined
by the perturbation intensity). Therefore, as long as the per-
turbation intensity is less than one the branch R2 of the map
it will have a length different from zero which will allow the
generation of orbits with periodicities as lengthy as wanted,
for which it would only be required to approach the map and
the identity function as much as needed.

As we have shown through the results, the regions of dif-
ferentiated periodicities are separated by BCB. When the per-
turbation intensity becomes 1, the branch R2 of the map, as
well as the essential discontinuity and all the rhythms with
periodicity greater than 1 disappear simultaneously. We infer
that at that moment a BBB takes place. A similar result for
other maps has been discussed in Ref. 25.

5. Conclusions

The Tantalus oscillator is a nonlinear oscillator with stable
limit cycle. It is of hydraulic nature and its oscillation pe-
riod depends on the filling and emptying rates as well as on
the container’s volume with which it is constructed. When
this system suffers brief perturbations it returns to its original
oscillation after a short transient. In this research we apply
monophasic perturbations to a Tantalus oscillator, those per-
turbations being injections of a given volume of water. The
injected volumes are smaller than the volume of the container
and their duration is shorter than 2% of the normal oscillatory
period.

We have done the analytical calculation of the PTC’s
linked to these perturbations. We found that this curve has
a discontinuity, which we have named essential, which exists
for all the perturbation intensities smaller than the actual vol-
ume of the container. The size of the discontinuity increases
with the perturbation magnitude. We experimentally mea-
sured the PTC’s and found an extraordinary consistency with
the curves analytically predicted.

We iterate the PTC’s to predict the effect of periodic per-
turbations, varying the period for fixed given volumes of per-
turbation. We find bifurcation diagrams with the shape pre-
dicted by Avrutin,et al. for discontinuous maps, those au-
thors named these diagrams Periodicity Diagrams. In our
case these are increasing, additive and with bistabilities [22].
We experimentally show some of the rhythms illustrated in
the research, Figs. 5 and 7. We show experimental occur-
rence of bistabilities and the oscillation patterns matching the
addition of periodicities.

We study the type of occurring bifurcation between both
periodicities and find they are BCB. The same behavior
changes take place when some of the elements of the orbit
“collide” with the discontinuity in the PTC’s. We construct
the TBD finding it has the general form as the one found in
Chialvo, et al. for the Tantalus oscillator [18] and by San-
till án for an analogous system [19]. Nevertheless, in our case
it is possible to notice a large number of bistabilities. It is also
observed that towards the frontiers of the rhythms 1:0 and 1:1
the periodicity of the rhythms increases, leaving the regions
of different rhythms split by BCB. This is due to the rein-
jection mechanism discussed by the Avrutin research group
for discontinuous maps [23]. Based on this mechanism, we
infer that the number this BCB lines are infinite. Given that
they converge in only one point of the TBD, and they do so
in a point where the map loses its discontinuity, we infer that
this point is a BBB, since it has been shown that for a similar
system, whenever the map ceases to be discontinuous a BBB
takes place [25].
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184 H. ARCE, A. TORRES, A. FALĆON-NERI, O. MIMILA AND G.H. GONZÁLEZ
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