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Border collision bifurcations in tantalus oscillator
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The Tantalus oscillator is a nonlinear system having a stable limit cycle. In this work we analytically obtain the Phase Transition Curve
(PTC) finding a one-dimensional piecewise map which has a discontinuity. The map is defined by a function which was experimentally
verified with an excellent consistency between theoretical and experimental results. We iterate the obtained map to predict the coupling
behavior of the system under periodic perturbations, finding that it presents Periodicity Diagrams that display a high number of bistabilities.
We experimentally show the occurrence of the predicted behaviors. Bifurcations among periodicities resulted Border Collision Bifurcations.
Finally, by studying the Two-parametric Bifurcations Diagram we conjecture that there is at least one point in the diagram which corresponds
to a Big Bang Bifurcation. This point appears when the perturbation intensity leads to the discontinuity loss in the PTC.
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1. Introduction metric perturbations and the natural oscillation. For highest
intensities of volume perturbations there are only 1:0, 2:1 or
The Tantalus oscillator is a hydrodynamic system that be4:1 coupling rhythms. That is, one perturbation without os-
haves as a nonlinear oscillator with a stable limit cycle. Os<illation, two perturbations for one oscillation and one pertur-
cillators with stable limit cycles are abundant among manybation for one natural oscillation. They do not report bista-
kinds of systems: physical [1], chemical [2] physiologi- pilities in the system. In an analogous system built with an
cal [3], electronic [4,5], etc. The description of their dynam- electric capacitor, Santih [19] deduces the PTC from ex-
ical behavior may be very complex however, their generaperimental results. By iterating this function, he finds the
properties under perturbations can be described recurring thyo-parametric Bifurcation Diagram (TBD) which is simi-
the Reset Theory [6,7]. The fundamental tool in this theorylar to the Chialvoet al. diagram. However, in this case for
is @ map or function called Phase Transition Curve (PTC)highest intensity perturbation it is shown that rhythms con-
which describes the punctual effect of isolated perturbationgerge to one point in the diagram. Sarétiil could not find
given at specific moments to the particular nonlinear oscilbistabilities, despite of explicitly looking for them.
lator studied. More recently systems that are described by |n the present work we show that the Tantalus oscillator
discontinuous maps have become relevant, for example, osmder short volumetric monophasic perturbations can be de-
cillators that suffer impacts [8,9], electric circuits [10,11], scribed with a discontinuous PTC. The existence of the dis-
dc-dc converters [12], etc. As it has been shown in a secontinuity induces BCB. We show that there is a perturbation
ries of theoretical studies, in these systems the discontinuityztensity for which the discontinuity disappears and, for that
has a border role since it divides different kinds of behaviorintensity, there is a point in the TBD that leads us to conjec-
in the map [13]. The discontinuity can occur directly in the ture is a BBB. We theoretical and experimentally verify the
function or in its derivatives [14], and it can induce the exis-existence of bistabilities that had not been found in previous
tence of Border Collision Bifurcations (BCB) which happen work reported by other researchers.
when a fixed point or an element in the orbit collides with
the discontinuity and changes the dynamical behavior [15]
Also this type of map can originate a One-parametric Bifur-="
cation Diagrams which has a staircase shape [16]. Moreovey 1 methods and Experimental Setup
to generate points that coincide with an infinite number of bi-
furcations lines that have been named Big Bang Bifurcationg he experimental setup is illustrated in Fig. 1. It consists of a
points (BBB) [17]. transparent acrylic container of 9.5 cm in diameter and 20 cm
The Tantalus oscillator was studied previously by Chialvoin height; it is permanently fed with water at constant rate of
et al in 1991 [18]; these authors showed that the system has.27 mL/s. Inside the recipient there is a plastic tubing with
a stable limit cycle and that volume perturbations—dependingiverted U shape working as siphon. It has 6 mm as inner
on the precise moment when they are applied—can increase diameter. One end of the tubing goes through the bottom of
reduce the oscillation period. By building a simple model ofthe container, and it is through it that the water is discharged.
the water level evolution by discrete increments, they obtairThe other end of the tubing is inside the container and when
a two-parametric diagram for the couplings between voluthe water level reaches the top of the inverted U, the container
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by frame. Data corresponding to three oscillations are shown
in panel A of Fig. 2. We define the highest level of the water
oscillations as the starting moment of the cycle, and name it
marker event [6,7]. By using the ImageJ program, we calcu-
lated the mean value for the period resulting 126.7 seconds
with standard deviation of 1.24 seconds.

In order to fit a function to the water level evolution the
experimental data were normalized dividing them by the nat-
ural oscillation period. Also the water level variations were
normalized with respect to the maximal amplitude. The wa-
ter discharge, indicated as “a-b” segment in panel A of Fig. 2
has a parabolic shape [20] whose mathematical relationship
is given by:

Perturbation Hose

Feeding Tube

Arduino

N(t) = 4p(t — t,)> + N, @

Water Container

Where N is water level,t is time; ¢,, N,) are the coor-
FIGURE 1. Experimental Device. The main element of the experi- dinates of the parabola vertexp = 5.11, t, = 0.521

mental device is a glass provided with a siphon inside it. The glassang v, = —0.39. The fitting function had a correlation
is fed with water at a constant rate of 5.27 mL/seconds, and as thq%2 — 0.996.

water level increases the siphon is simultaneously filled. When the The fitting for the filling course of the Tantalus, “b-c” seg-

water reaches the maximum level of the siphon, the glass is rapidly, . . ;
emptied through it. This system is perturbed with water pulses Mom]int in panel A of Fig. 2 was done by means of the straight

seconds long injected by means of a pump controlled by an Arduino :
board. The pulses can be either isolated or periodic. With |Bhel N — mt+ b 2
the perturbation pump is indicated and wi#t2 the feeding one. (t) =mt+b, @
empties with an average rate of 20.4 mL/s. The inner end opsherem = 1.325 andb = —0.325. Panel B in Fig. 2 dis-

the siphon is enclosed in a small glass cup ensuring the aﬂfgqsst.zergoérs(fé'?r??hz?gllf(')tte.g Os;'IE;'anséSLZeOTtehO;:gialo
income when the tubing empties. Along the container ther&"aYSIS Tep : wing pages | W

is a millimeter graduated ruler. At the lowest level the Wa_data fittings. In panel C of Fig. 2 the fitting is used to rep-

ter reaches 33.5 mm; at the highest level 101.5 mm Théesent the effect of a volume perturbation of 0.5 times the
discharged volume is ’469 mL; we will call it “work volume” work volume (WV), and it is applied when the container is

(1) Note rt et geometiccalciaon gesusabig 16, The 9 Toce coresbonce o e woperved oo
ger volume; we need to consider the volume inside the tubingé onds to th’e erturbed oscillation. The thin ‘r)edptrace at the
There is another tubing inside the container that corres P pertu mation. !

sponds to the perturbation hose; it is 9 mm in diameter anéower part indicates, with a square pulse, the moment of the

it is connected to a Comet Elegant submergible pump Ccmg)erturbation. We are considering its effect as instantaneously

trolled by an Arduino board which is controlled by a PC. moving upward the water level 0.5 WV. After this change

With this system, we apply water pulses whose volume caﬁhzcohsg('jll?(;Oélcﬁ:t'tﬂyseia'fei\r’](ZUtg? ?Egtt'lgr? ;?f)gtthzgiglye_
be adjusted by the voltage applied to the pump. Pulses can tE? Vel ' perturbatl w

isolated or periodically applied. Volume perturbations were uce the oscillation period. We W'.” say thatin th_|s case the
oscillator moved forward. Depending on the precise moment

given as fractions of the work volume, for example a pertur- . o .
bation of 0.1 corresponds to a volume of 46.9 mL of the perturbation application, the oscillator advances or de-
Water level evolution was recorded by a Sony Digital lays. Moreoyer_there Is even a moment W't.h no effect.
To quantitatively measure the effect of isolated perturba-

video camera. To improve the resolution of the images, th?’ons and to predict the periodical perturbations effect we cal-
water was stained with orange or blue dye. The video acqui-I predi periodica’ perturbatl w

sition was done at 31 frames per second. Water levels werd L !
measured directly on the video recordings and also were a S that the perturbation instantaneously moves the oscillator
alyzed with the free software ImageJ 1.48v by using the |uirom one moment in the natural oscillation to another one.
minosity of the water mass, this measurement is proportionaThe moment just before th(_a perturbation occurs IS called. old
to the water height within the container. phasep, and the moment just after the perturbation which
the system moves to is called new phaseln the case of the
Tantalus oscillator the new phases can be analytically calcu-
lated from the old phases. Let's denote pthe function or
The Tantalus device just described before was used to obtainap that relates both quantities:
the natural oscillation of the system. Ten oscillations were

/
recorded to measure the water level evolution directly frame ¢ = g(p). ®)

2.2. Data Fitting and Simulations

Rev. Mex. Fis63(2017) 171-184



BORDER COLLISION BIFURCATIONS IN TANTALUS OSCILLATOR 173

A Experimental Oscillaton B Fitted Oscillation
E
£ 100 | oa ¢
Q
>
3 50 ;
= b
=

4

Normalised Time

Water Level

[

O
o

Normalised Time

m
-
N
o

- T0 T y

> €——>

-
o
o

A

Tc
<>

n

Water Level (m
o))
o

N
o

100 200 300 400
Time (s)

FIGURE 2. Natural and perturbed oscillations. Panel A. Display of an experimental oscillation. A measure was taken for every 30th of
a second. It is considered a complete oscillation going through the points a, b and c. The natural period of the ogdil|agtomyn in

this recording has a value of 126.3 seconds. Panel B. Graph of the adjustments to the normalized oscillation. The downward section wa:
adjusted with a parabola, while the upward section with a straight line that reflects the constant rate at which the glass is filled. Panel C.
Model of instantaneous perturbation when the water level is rising. The cyan trace shows what would have been the water level evolution
if no perturbation was applied. The blue trace is the evolution of the water level resulting from the perturbation. The square pulse in
red shows the moment in which the water was injected. It can be noticed that the effect of the perturbation is to reduce the time of the
oscillation. According to the moment when the pulse is applied the oscillation can be lengthened, shortened or not present any effect. Pane
D. Experimental recording of the effect of an isolated perturbatidhcorresponds to the natural period of oscillati@t, to the perturbed

period of oscillation which in this case is smalléic is the time elapsed between the “marker event” (corresponding to the beginning of the
oscillation) and the water injection.

o
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To predict the effect of periodical perturbations with a taneous; in the same way the change from old phase to new
fixed periodr, we build a new function which allows to know ones occurs.
the phase after perturbation- 1, knowing the phase after the The water levelV,, corresponding to the old phageis
1.th perturbation with the following relation related as follows:

Pi+1 = g(pi) + 7mod(1). 4) N, = N,(¢p). (5)

Once we know the initial phas_e, iteration of thi_s expressionyhere the specific form a¥, function depends on the region
lets us know the system evolution afteperturbations. Also 14t we are considering. The water levé}, corresponding
it lets us infer if there exist coupling rhythms between pertur-4 naw phase’’ is given by the relationship:

bations and the modified behavior of the oscillator.
. . Ny, = Nn(‘Pl) (6)
2.3. Analytical Method to Find New Phases

Where the specific form oV,, function depends on the re-

To analytically find the dependence of the new phases iiqn, that we are considering. If we add volume, the water
terms of old phases we have to consider that subject to pejg,g| change becomes:

turbations the oscillator may exhibit three operation regions

1) from the beginning of the emptying to the beginning of the N, = N, +6N. )
filling up. This corresponds to the “a-b” interval in panel A
of Fig. 2, this set of phases will be calledIR2) from the We will use these expressions to get the relationship be-

beginning of filling up to the moment the perturbation initi- tween the new phases and old phases. We have to remark that

ates the emptying phase. This region will be calletl;Rhis  the functional relationship fav, and NV,, depends on the op-

region depends on the perturbation intensity; 3) from the enération region we are considering. Forl Region the water

of the last described region up to the beginning of the sponlevel is decreasing before the perturbation, and after the per-

taneously emptying, point “c” in panel A of Fig. 2, this set turbation it will continue decreasing. In these cases we will

of phases will be called RI. Given that to do the analytical use (1). For RIl the water level will be increasing before the

calculations we only consider the times corresponding to oneerturbation and will continue increasing after the perturba-

oscillation. We will take those times described by fittings (1)tion. Here we will use (2). However, for Rl the water level

and (2) as phases. will be going up before the perturbation, but after the pertur-
As it was mentioned in previous section, we consider thabation it will start to going down. In this region we are going

both perturbations and its effect on the water level are instarto use (1) and (2).

| Rearranging the terms we have for each operation region:

¢v — ((4p(p — pu)* +0N) /4p)'/? mod1) if ¢ € R
' =< ¢+dN/m mod1) if ¢ e Rl (8)
¢y + (mp + b+ N — N,)1/? mod(1) if ¢ € Rl

2.4. Experimental Method to Find New Phases

There is a huge amount of publications indicating how to cal-|3' Results

culate new phases from experimental data [21]. In pdhel 3.1. Theoretical Phase Transition Curves (PTC)
of Fig. 2 there is a scheme which has been obtained from an
experimental recording to illustrate how new phases are cabTC is the relation between old phases and new phases [6,7].
culated. The unperturbed period of oscillation is denoted by-jgyre 3 displays a PTC obtained using the analytical expres-
T0, the perturbed oscillation period 15l The time interval  sjons described above with varied intensity: 0.2 WV in panel
between the marker event previous to the perturbation and the. 9.4 wv in panel C; 0.6 WV in panel E. Intensities are
perturbation time itself if.. The time interval between the jngjcated in the right lower corner in each panel. In the first
perturbation time and the next marker eventis called cophas@ane|, R1, R2 and R3 indicate the three different branches in
The old phase i§../T0: the map depending on the operation region. We can observe
¢ = T./T0. ) that branch R1 has a diSC(_)ntinuity which is induced by the
) _ module 1 operator; its position depends on the perturbation
While new phase is cophase subtracted fforand normal-  jntensity. In fact, the discontinuity phase can be calculated,
ized, resulting in since corresponds to the moment when the descending water
¢ = (T0 — (T1 - Tc))/TO0. (10) levelreturns to the maximal level. There is another disconti-
nuity in this map, and it is present for all the Tantalus PTC.

Rev. Mex. Fis63(2017) 171-184



BORDER COLLISION BIFURCATIONS IN TANTALUS OSCILLATOR 175

A Theory B Experiment
15 i - -
| R2 R3
0.5 |
R1 1=0.2
D
F

1=0.6

e e

(I) 1

FIGURE 3. Experimental and Theoretical Phase Transition Curves. For all panels the horizontal axis indicates the old phase and the vertical
axis the new phase. The panels on the left side correspond to the theoretical results and those on the right side to the experimental result
Each row corresponds to the same perturbation intensity, indicated on the lower right corner of each panel. The diagonal line is the grapt
of the identity function. In the theoretical panels the dotted line indicates the position of the map discontinuity which is insensitive to
the perturbation intensity. Nevertheless, note that the magnitude of the discontinuity grows with the perturbation intensity. The maps are
considered to be formed by three branches: R1, R2 and R3. In the experimental panels the different colors indicate experiments done ol
different days.

In the three left panels we have marked with a dotted thirE. Three runs were made on different days for each intensity.
line the moment when this discontinuity always occurs. InThe perturbations were applied in five seconds intervals from
panel A the magnitude of this discontinuity is 0.22, up to twothe moment the container starts to fill and up to the moment it
decimal ciphers; in panel C the magnitude is 0.42; and iris empty, that is, during an entire cycle. Between consecutive
panel E is 0.62. This means that the magnitude grows witlperturbations two unperturbed oscillations were allowed. All
perturbation intensity. This result can be analytically veri-this procedure was recorded by a digital camera, and to mea-
fied, obtaining the difference of new phase values, betweeaure phases we took as a marker event the moment when the
the last point in branch R1 and the first of branch R2. Thiscontainer starts emptying. Panels B, D and F in Fig. 3 show
discontinuity, which we call “essential discontinuity”, occurs the corresponding results for 0.2, 0.4 and 0.6 WV intensi-
because before it perturbations delay the oscillator and, aties. Different colors represent different experiments done in
ter it, perturbations advance the oscillator. This discontinuitydifferent days. To facilitate comparison theoretical PTC are
will be the one inducing the BCB. superposed. The coincidence between them is remarkable.

3.2. Experimental Phase Transition Curves 3.3. Periodical Rhythms: Theoretical prediction

Following the procedure explained in Sec. 2.4 we did a set ofo explore the dynamical evolution of the system we can
experiments to measure the PTC for the same perturbation ilthoose any intensity, initial condition and a perturbation pe-
tensities as those theoretical results illustrated in Fig. 3A, Criod using the function (8). In most of the cases we found
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A Perturbation Period 0.7 B Perturbation Period 0.35

0.8}

0.6
¢i+1

04+

0271

C 4 Perturbation Period 0.24 D Perturbation Period 0.18

0671
¢i+1

04}

0.2} _. - |
. . v . |

0 (l)i 1 0 (I)i 1

FIGURE 4. Resulting orbits from iterating the Phase Transition Curve for perturbation intensity of 0.5 WV. Panel A. Resulting orbit from
iterating with a perturbation period 6f77°0 and initial conditior0.327°0. After some iterations the orbit move to the crossing of the map and
the identity function. A rhythm with 1-periodicity results given that each iteration falls in the same phase. Panel B. Orbit with 2-periodicity,
resulting from iterating with perturbation period @B57°0, the orbits visit two phases of the map. In this panel, as in the following ones, the
initial condition is omitted and only the asymptotic part of the orbit is illustrated. Panels C and D. Orbits with 3-periodicity and 4-periodicity
resulting from iterating with perturbation periods®@£47°0 and0.187°0.

that orbits converge to in fixed points or periodic orbits, thatin consequence, all orbits passing around that vicinity are at-

is, after certain number of perturbations the phases where theacted. This fact allows us to analytically calculate those

system moves around are the same. This repeated phases daperiodicity cases.

be reached in one or several oscillations. The combination of Panels B, C and D illustrate rhythms with higher peri-

the number of perturbations with the number of oscillationsodicity, though transitory paths have not been represented,

will be called coupling rhythm, and will be identified with only the final orbits. Panel B presents a 2-periodicity

N : M notation; whereN = number of perturbations and rhythm obtained when perturbation period)ig857°0. Panel

M = number of oscillations. When two rhythms have theC shows a 3-periodicity orbit occurring for perturbations

samelN, we would say that they have the same periodicity. applied 0.2470 and, D a 4-periodicity orbit obtained for
Figure 4 shows some orbits obtained with 0.5 WV per-0.1870. It can be observed that between identity line and

turbation intensity. Panel A displays the orbit the system fol-RI branch in the map there is a channel, and by adequately

lows when0.77°0 perturbation period and an initial condition choosing the perturbation period it can be made as thin as de-

of 0.327°0 were used. It can be seen that after a transiensired. Reduction in the width of this channel will induce very

course of five iterations, the orbit converges to a point wherdong orbits.

the identity line intersects the map. Staying in this point

means that before each perturbation the system is always 8t4. Periodical Rhythms. Experimental results

the same phase. This is a rhythm with 1-periodicity. This

type of evolution occurs because the intersection of identityTo corroborate the theoretical predictions established in the

line with the map has an absolute value slope lower than onéast section, we perturbed the Tantalus oscillator with an in-
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FIGURE 5. Resulting couplings from applying periodic perturbations with intensity 0.5 Experimental recordings resulting from applying
periodic perturbations with periods and intensities as in Fig. 4. Points of the theoretically calculated orbits were taken as initial conditions
for each experiment. In each panel the horizontal axis indicates time in seconds. In the vertical axis indicates the water height in millimeters.
In the upper part of each panel the perturbation period and resulting rhythm is indicated, where the first digit indicates the number of
perturbations and the second one the number of oscillations in which the patterns is repeated.

tensity equal to 0.5 WV, which matches the case shown ir8.5. Bifurcation Diagrams for the Perturbation Period

Fig. 4. This means that volume pulses of 234.5 mL are ingy repeating the exercise that we have described in Sec. 3.3,
jected in 2 seconds. In all the experiments the initial condiy, \+ now for intensities going from 0.1 to 1.05 in 0.01 step
tion or first perturbation pulse phase was selected among tl'nge; for 1000 periods between 0 and 1 with 0.001 steps size
several points in the studied orbits. Then for perturbation pezq for 10 initial conditions between 0 and 1 with 0.1 steps
riod 0.77°0 the first pulse was applied in phasé870. Panel  gj7¢ \we completed 950 000 studied cases. We looked for pe-
A of Fig. 5 shows that the result in this case is a couplingyqgicities between 1 and 16 making 2560 iterations in each
with 1:1 rhythm. Panel B in the same figure shows the re¢55e Most of the cases: 871 211 had periodicity between 1
sult for 0.337°0 perturbation period and an initial condition 4,4 16 The remaining cases could have longer periodicities.
of 0.277°0, the obtained rhythm is 2:1. In panel C the cou- |, kig. 6, panels A and B, we show the periodicities pattern
pling rhythm is 3:1, a result from perturbing withCe2470  optained for perturbation intensities 0.2 WV and 0.4 WV, It
period and an initial condition df.177°0. Finally, in panel D can pe seen that the periodicity patterns have a general horse-
a coupling rhythm 4:1 produced by perturbation pulses withyh e shape, built by rungs that constitutes a staircase. At the
0.17T0 period and initial conditior).817°0 is shown. Once right and left ends, outside the horseshoe, there are 1-rhythm

again the coincidence between theory and experiments is resqinns: these rhythms are consequence of the intersection
markable. Not only are the predicted rhythms obtained; bufanyveen the identity line and the mapping, as has been de-

they can also be reached by starting the perturbation protocgkribed in Sec. 3.3. As perturbation intensity grows these

in the predicted phases. It has to be noted that each expeflsgions grow, which reflects that R3 grows with the perturba-
ment was repeated at least three times. tion intensity, as can be seen in the left panels of Fig. 3.
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FIGURE 6. One-parametric Bifurcation Diagrams: increasing, additive and with bistabilities zones. In panels A and B are shown the
bifurcation diagrams obtained when perturbing with periods between 0 and 1, in steps of 0.0001. In the first panel the perturbations are done
with an intensity of 0.2 WV and in the second one of 0.4 WV. Panel C. Detail of panel A, for periods beh26&id and0.457°0. It can

be noted that between the regions with 2-periodicity and 3-periodicity there exists a gap filled with periodicities that sum the periodicities of
the edges, this way we have a region with periodicity 3+2=5, another one with 3+5=8, etc. Panel D. Detail of panel B, for periods between
0.1770 and 0.427°0. It can be noticed that region of 2-periodicity and the one of 3-periodicity overlap, which predicts the existence of

bistabilities.

In general, we have “additive periodicities”, that is, con- 3.6. Experimental verification of Bistability and Addi-
secutive periodicities do not have contiguous domains of tive Rhythms
rhythms [22]. This characteristic is illustrated in panel C ) ) )
of Fig. 5. Here we show that between 2-periodicity and 3-/n panel A of Fig. 7 we show a 2-rhythm coupling obtained
periodicity there is a gap. This gap is partially occupied byPY Using a perturbation period 0470, we have two per-
a 2 + 3 = 5-periodicity region. Between 2-periodicity and turbations for each Tantalus oscillation. Repeating the proce-
5-periodicity zones there is a 2 +5 = 7-periodicity zone; anddure for perturbation period.257°0 we get a 3-rhythm cou- -
so on and so forth. Panel D in the same figure shows anoth&ing, three perturbations for one Tantalus oscillation, this is

type of phenomena commonly found in Periodicity DiagramsShown in panel B in the same figure. Finally, when we chose
or One-parametric Bifurcation Diagrams. In the region be-an intermediate perturbation peridd37'0, which according

tween perturbation periods270 and0.470 and perturba- {0 the results displayed in panel C of Fig. 6 should correspond
tions intensity 0.4 WV, there is a region in which when chang-{0 & 5-periodicity pattern, we see that the experimental result
ing the initial condition, we get different coupling rhythms, iS five perturbations coupled to two Tantalus oscillations.

that is, there is bistability and this property is very common  [n refation to the experimental verification for the exis-
in the Tantalus Oscillator diagrams. tence of predicted bistabilities (panel D of Fig. 6), we have

explored for perturbation intensity 0.4 WV and different per-
turbation periods overlapping their respective regions. In
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FIGURE 7. Experimental recordings: additive and bistable rhythms. In the first three panels the addition phenomenon is illustrated, obtained
with a perturbation intensity of 0.2 WV. In the last two panels the bistability phenomenon is illustrated, obtained with a perturbation intensity
of 0.4 WV. In all the panels the blue trace shows the evolution of the water level, the red trace indicates the perturbation moments. Panel
A. Rhythm 2:1 obtained with a perturbation perioddotT'0; we have two perturbations per oscillation. Panel B. Rhythm 3:1 obtained with

a perturbation period di.257°0; we have three perturbations per oscillation. Panel C. Applying perturbations with period in between the
previous ones: 0.3, a rhythm 5:2 is obtained, which is the combination of the elemental blocks for 2:1 and 3:1. We have 5 perturbations in
two oscillations. In panels D and E perturbations with the same intensity and period were applied: 0.4WV and 0.28TO0. In panel D the initial
condition was 0.25T0 and the resulting rhythm was 2:1. In panel E the initial conditiof.@2E0 and the obtained rhythm 3:1.

panels D and E of Fig. 7 we show the results obtained afturbation intensity is 0.2 WV, perturbation period goes from
ter applying repetitive pulses with a perturbation period 0f0.1827°0 to 0.1547°0 and the initial condition is 0.1. In panel
0.2870 and initial condition 0f0.257°0 (panel D) and the A the 4-period orbit when perturbation periodlid827°0 is
same parameters values but with initial conditi@d270  shown.

(panel E). It can be observed that we get two different cou- The arrow and “a” letter are indicating one of the four ele-

plings: 2:1 and 3:1. ments in the orbit. As the perturbation periodicity is decreas-
ing, this element is approaching the discontinuity. In panel B
3.7. Border Collision Bifurcations we see its new position indicated with an arrow and “b” let-

ter, when the perturbation periodid 567°0. At that moment
Bifurcation Diagrams described in the previous paragraph iit is almost touching the discontinuity. Another small reduc-
which the system “jumps” from one periodicity to another tion in the perturbation period causes the orbit to touch the
pose the question: what kind of bifurcations occur betweeriscontinuity and moves from branch R2 to branch R1, reor-
one periodicity and the other? In most cases we are studyganizing the orbit path that now has 5-periodicity. In panel D
ing the bifurcations type is Border Collision and it happensof the same figure, we show in a general fashion these bifur-
because the orbits collide with the essential discontinuity deeations. We plot the phase values for each orbit element for
scribed at the beginning of this results section. In Fig. 8 weperturbation periods from 0.12 to 0.2. In red we show phase
illustrate how this kind of bifurcation occurs when the per- values corresponding to 5-rhythm, in black the phase values
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FIGURE 8. Border Collision Bifurcations. Transition between 4-periodicity and 5-periodicity during the period reduction. In Panel A the
obtained orbit for a perturbation period @fl827°0 is shown; it has 4-periodicity. The third element of the orbit is identified with a blue
arrow and the letter “a”. Panel B. The reduction the perturbation periodLt®7'0 approaches this third element to the map discontinuity,

now marked labeled with letter “b”. Panel C. A very small reduction makes the third element of the map collide with the map discontinuity
and reorganizes the orbit with now five elements. Panel D. In the horizontal axis the perturbation period is indicated, in the vertical axis the
phases the iteration visits are indicated. Phases with 4-periodicity are in black and those of 5-periodicity in red. The horizontal blue line
indicates the discontinuity position. Observing the graph from right to left it can be seen that the 4 periodicity starts in the fourth phase and
ends in the third one. At that moment the 5 periodicity starts in its fourth phase to end in its third one. We are counting the phases from top
to bottom.

corresponding to 4-rhythm. A thin horizontal blue line marks3.8. Two-parametric Bifurcation Diagram

the essential discontinuity position; arrows indicate the posi-

tion of a, b and ¢ points marked in panels A, B and C. If We can group the One-parametric Bifurcations Diagrams as
we analyze the pattern of moving phases going from righthose shown in panels A and B of Fig. 6, to build a TBD. In
to left along the blue line, we can see that 4-rhythm beging@nel A of Fig. 9 this construction is shown. The horizontal
at the discontinuity point for the fourth phase (if considered@Xis indicates perturbation periods from 0 to 1 in step size
from top to bottom), and it finishes to the end of third phasef 0-001; in the vertical axis we represent the perturbation
in the same discontinuity line. For the fourth phase, the 5intensity between 0.1 and 1.05 WV in step size of 0.001; in

nuity for the third phase. represented giving the same color to these rhythms with the

same periodicity. It can be seen that in general, the diagram
A detailed inspection of the phase diagrams for each studaas the same appearance as those obtained by Chialvo [18]
ied perturbation intensity and for each initial condition showsand Santilan [19]. There are large zones with 1:0 and 1:1
all bifurcations occur in this way when we plot the phasesrhythm at both sides. The region with higher rhythm has a
between 0 and 1. Then we can say that most of the bifurcariangular shape with its vertex pointing towards higher in-
tions occurring in this system are BCB, without discardingtensities. The border zone with 1:0 rhythms is barely curved,
that there may be some other bifurcation types. while the border with the 1:1 region is a straight-line.
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FIGURE 9. Two-parametric Bifurcation Diagram and Bistabilities Diagram. In both panels the horizontal axis indicates the periodicity
and the vertical axis the perturbation intensity. Panel A. Regions with similar periodicity are indicated with the same color. Yellow for
periodicity 1. White regions have periodicity greater than 14. Panel B. Regions with different periodicities overlap, this indicates that there
are many bistability regions. These regions are indicated in black.

The pattern inside the triangle is formed by bands, thatis, Besides considering the perturbation period as a bifurca-
sets of points with the same rhythm. As some of the rhythmsion parameter, its intensity is also considered, then triangular
share the same periodicity, we assigned all of them the sanwoupling regions can be found for periodicities greater than 1,
color. For example, looking at the diagram from left to right though for big perturbation intensities rhythms 1:0, 2:1 and
we see 5:1, 5:2, 5:3 and 5:4 rhythm bands. To all of them we.:1 still remain, this being due to the model characteristic
assigned the red color. At the right side of the figure it ap-that does not allow the water level to go over the maximal
pears the color code for periodicities, reported up to 14. Yelthreshold regardless the moment when the perturbation takes
low color corresponds to 1-periodicity. On the left side of theplace.

figure is the 1:0 coupling, meaning that the system receives |n 2016 a paper was published [19] dealing with a system
periodic perturbation in the same phase but never completegalogous to the Tantalus Oscillator in which results similar
an oscillation. On the right side the coupling is 1:1, imply- to those in Chialvo, et al. are obtained. In that case it is a
ing an oscillation is produced for each volume perturbationcapacitor being charged until it reaches its threshold voltage
applied in the sam&0 phase. and when it does so, it discharges rapidly [19]. The voltage
Although the diagram changes as the intensity perturbapscillation has a shape very close to the water level in the
tion grows, there are some general characteristics. A notablgantalus Oscillator. The charge and discharge process can be
one is that periodicities accumulate to the left and right Ofaffected by a Circuitry which allows introducing constant pe-
the diagram boundaries. In both cases, as we approach {@d voltage pulses. Even though with that systems it is not
the borders, longer periodicities are observed, but each timgossible to evaluate the effect of isolated perturbations, the
in narrower zones. This property could be observed in thguthor manages to extract a PTC by means of studying the
One-parametric Bifurcation Diagrams of panels A and B ofeffect of individual pulses from the train of stimuli.
Fig. 6. Another general characteristic is that a band rhythms Among the presented results it can be highlighted a TBD.

goes to the vertex of the triangle becoming thinner but preyg giagram displays periodicities according to perturbation

serving th_eir orderir_lg. Zooming the visualizati_on _of the dia‘period and intensity; and its shape is very close to that ob-
gram at different heights, the same band ordering is observed,oq by Chialvogt al. Nevertheless, it is shown by the

A noyel result_respect to ,Chial_v,o_ an_d Satil|[18,19] pa- 4 thor as well; that in the studied case, all rhythms with pe-
pers, is the existence of bistabilities in our system. In pa”enliodicity greater than one converge to one point. It also hap-

B of Fig. 9 they are shovyn. We can see that besides a widgens that, since the origin of all oscillations (and the marking
zone between 2:1 and 3:1 rhythm; in the middle of the diayyent 1 calculate the PTC's) is defined as the moment when
gram there are bistabilities too. They accumulate towards th

i X ) ; . fhe capacitor is starting the charging process, the discontinu-
boundaries. White zones in the diagram are partially oughﬁy characteristic is less noticeable.

to bistabilities of very high order not detected in our simula-

tions In our case we have taken the beginning of the emptying

process of the Tantalus Oscillator as the origin of all oscilla-
tions, and also as marking event. This highlights the phase
where the isolated perturbation PTC’s obtained have their
There is a large number of oscillators that can be typified asliscontinuity. This discontinuity is precisely where the orbits
oscillators with a stable limit cycle. Among those, some ofcollide when the perturbation period is changed and produces
them can be modelled by discontinuous PTC’s under bried BCB. These bifurcations are the dominant ones in the bifur-
perturbations, the Tantalus oscillator being one of these. Thisation diagram. Besides, a variety of phenomena occur as the
oscillator had already been studied from the nonlinear dyperturbation period and/or intensity are modified. These phe-
namics perspective by Chialvat al. [18] these authors nomena have been shown and discussed in several theoretical
showed that by changing the perturbation period it can bg@apers regarding discontinuous maps. One of the research
found that the Periodicity Diagram has a Devil's Staircasegroups that has more contributed in the study of these phe-
shape. nomena is the group leading by Avrutin [16-17,22-23,25].

4. Discussion
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We will discuss the trajectory reinjection mechanism happendiagonal section of the map, see Fig. 2 Ref. 23. When the
ing in the Tantalus map. This mechanism was addressed, iorbit attains a value in the interval [1-a,1) the value for the
general, in a paper of the mentioned research group in theext iteration is zero and the orbit repeats itself. This is the
year 2000 [23]. Supported on that work we propose that thenechanism known as reinjection. The number of steps de-
peak of the rhythms with periodicity greater than one in thepends on the value “a”, the lower it is the larger the number
two-parametric diagram is a point where a BBB takes place of steps and the greater the periodicity of the orbit. As it can

The reinjection mechanism was suggested byeP in  be seen with this map, a countless number of periodic orbits
1985 [24] and developed by Avrutin in 2000 [23]. For this can be generated.

aim the following map was used: A similar mechanism exists with the map obtained for
X(i)+a, if z(i) <1 the Tantalus oscillator. In Fig. 3 it can be seen that any per-

X(@i+1)= _ . (11) turbation intensity studied forms a channel between the PTC

{ 0, if x(i) 21 and the identity function. In Fig. 4 it can be seen that the

The dynamic associated with this discontinuous map inmagnitude of the perturbation period modifies the width of
cludes countless periodic orbits. It consists of a line parallethe channel and the size and organization of the orbits. For
to the identity function separated a distance “a” from it, andinstance, for perturbation periods close to zero or one there
of a small horizontal segment on the abscissa axis. The d@Xists an intersection between the identity function and the
main section where the first segment of the map is valid idranch R3 of the map, therefore there are no channels formed.
[0,1) and the second part applies for the values greater thaNevertheless, when the period moves the map upwards or
or equal to one. The orbits this map induces, consist on a sglownwards, the previously mentioned crossing is eliminated
ries of steps formed in between the identity function and theand therefore stepped orbits can be found for which the rein-
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FIGURE 10. Reinjection mechanism for the Tantalus map. For low or high periodicities, the map forms a channel with the identity function

through which the orbit flows. In the case of high periodicities, the channel is formed by branch R2 and the orbit is reflected in branch R1
to be reinjected in the channel. In panels A, B and C it is shown that as the perturbation period increases, the channel is narrower, the orbits
have more steps and the periodicity is higher. This mechanism works for any length of branch R2, that is for any perturbation lower than 1.

In panel D it is shown that the same mechanism also works for brief perturbation periods.
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jection mechanism occurs. This is shown in Fig. 10. In paneb. Conclusions
A we show the orbit occurring for a perturbation period of
0.6957°0. In this case branches R2 and R3 form a channelhe Tantalus oscillator is a nonlinear oscillator with stable
with the identity function in which the orbit will move. The limit cycle. It is of hydraulic nature and its oscillation pe-
value of the perturbation period is such that it allows the for-riod depends on the filling and emptying rates as well as on
mation of four steps before the orbit leaves through the lowethe container’s volume with which it is constructed. When
side of the channel and travels to the branch R1 where it reirthis system suffers brief perturbations it returns to its original
jects to traverse once again the channel. If a simulation oscillation after a short transient. In this research we apply
the water level is done for this case, a pattern is found to b&onophasic perturbations to a Tantalus oscillator, those per-
repeated four times for every five applied perturbations, thigurbations being injections of a given volume of water. The
being a rhythm 5:4. If the perturbation period is slightly in- injected volumes are smaller than the volume of the container
creased the width of the channel is reduced. In panel B wénd their duration is shorter than 2% of the normal oscillatory
show that forT'p = 0.725T°0 the new channel width compels period.
to traverse it in five steps. The organization of the orbitis We have done the analytical calculation of the PTC’s
exactly the same as discussed above but with an additiontinked to these perturbations. We found that this curve has
step, therefore the rhythm obtained is 6:5, that is, five oscila discontinuity, which we have named essential, which exists
lations where six perturbations fall. The range of this procefor all the perturbation intensities smaller than the actual vol-
dure seems to be limitless regarding the number of steps thatme of the container. The size of the discontinuity increases
can be fitted. In panel C we increase the perturbation periodith the perturbation magnitude. We experimentally mea-
to 0.7947°0, the channel width is once again reduced and tocsured the PTC’s and found an extraordinary consistency with
traverse it eleven steps are needed, this way we get a periothe curves analytically predicted.
icity rhythm of twelve. It must be mentioned that we have  We iterate the PTC's to predict the effect of periodic per-
illustrated the type of channel formed for perturbation peri-turbations, varying the period for fixed given volumes of per-
ods greater than 0.5 WV, but we shall mention that for periodsurbation. We find bifurcation diagrams with the shape pre-
lower than 0.5 WV a similar channel is formed but it does indicted by Avrutin,et al. for discontinuous maps, those au-
between the branch R1 and part of the branch R2, as showhors named these diagrams Periodicity Diagrams. In our
in the orbit with periodicity 6 occurring faf'p = 0.1177°0. case these are increasing, additive and with bistabilities [22].
. L . . We experimentally show some of the rhythms illustrated in
Relying on the_rel_njec'uc?n r_n(_a_chanlsm we infer that _thethe research, Figs. 5 and 7. We show experimental occur-
peak of the .TBD' In its per|(_)d|cme§ gr_eater_ than ON€, IS &ence of bistabilities and the oscillation patterns matching the
BBB. Recalling that a BBB is a point in which an infinite addition of periodicities.

number of bifurcation lines converge. In this case, the bifur- . . .
cation lines would be of border collision. This lines would be We study the type of occurring bifurcation between both

induced by the reinjection mechanism occurring basically inpe”Od'C't'eS and find they are BCB. The same behavior

a channel formed between the identity function and the map(r:hanges take place when some of the elements of the orbit

The orbit traverses this channel through a given number ofcolllde with the discontinuity in the PTC's. We construct

steps and then leaves it to be reflected somewhere else in t@e TBD finding it has the general form as the one found in

. : . Fﬁlalvo, et al. for the Tantalus oscillator [18] and by San-
map where it only suffers from one iteration. In the case of . :

. T . : tillan for an analogous system [19]. Nevertheless, in our case
high periodicities, as shown in panels A, B, and C of Fig. 10. . : ; . o .
the number of steps gone throuah depends on two factorét"s possible to notice a large number of bistabilities. Itis also

Ps g 9 P observed that towards the frontiers of the rhythms 1:0 and 1:1

the existing distance between branch R2 of the map and t S . . .
identity function (distance determined by the perturbation pe%e periodicity of the rhythms increases, leaving the regions

riod) and the length of the branch R2 of the map (determine(ﬁ)f o!lfferent rhythms ?p"‘ by BCB. This is (_jue o the rein-
2 . ection mechanism discussed by the Avrutin research group
by the perturbation intensity). Therefore, as long as the DEIJ-

o L for discontinuous maps [23]. Based on this mechanism, we
turbation intensity is less than one the branch R2 of the ma . ! L .
I . . . nfer that the number this BCB lines are infinite. Given that

it will have a length different from zero which will allow the

generation of orbits with periodicities as lengthy as wantedthey converge in only one point of the TBD, and they do so

. : in a point where the map loses its discontinuity, we infer that
for which it would only be required to approach the map and,, . oo . . .
: : : this point is a BBB, since it has been shown that for a similar
the identity function as much as needed.

system, whenever the map ceases to be discontinuous a BBB
As we have shown through the results, the regions of diftakes place [25].

ferentiated periodicities are separated by BCB. When the per-

turbation intensity becomes 1, the branch R2 of the map, aﬁcknowledgments
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