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We study numerically and theoretically the behaviour of one-dimensional bright spatial soliton in an interface formed by a nonlinear media
under drift and diffusion nonlinearities, and a linear one in the second media. The mechanism of diffusion causes self-bending effect on the
soliton, and in consequence it is launched to nonlinear interface; after that the soliton is reflected to nonlinear medium and self-bending by
diffusion newly launched the soliton to the interface. In consequence, a quasi-surface wave is formed. We present details about the trajectory,
coefficient of saturation and energy during the dynamics of the spatial soliton.
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Estudiamos nuḿerica y téoricamente el comportamiento de un solitón espacial brillante unidimensional en una interfase formada por un
medio nolineal bajo las nolinealidades de arrastre y difusión, y el otro medio lineal. El mecanismo de difusión da lugar al efecto de auto-
doblamiento sobre el solitón, que en consecuencia es lanzado hacia la interfase nolineal. Posteriormente el solitón es reflejado al medio
nolineal y el auto-doblamiento por difusión nuevamente lanza al soliton hacia la interfase. En consecuencia, una onda cuasi-superficial es
formada. Presentamos una discusión detallada acerca de la trayectoria, del coeficiente de saturación y de la enerǵıa durante la dińamica de el
solitón espacial.

Descriptores: Gúıas de onda nolineales; solitonesópticos; ondas superficiales fotorrefractivas.

PACS: 42.65Wi; 42.65Tg; 42.65H

1. Introduction

All optical switching has been performed on nonlinear in-
terfaces [1-3]. Media with a nonzero nonlinearity, such as
photorefractive crystal like: barium titanate, lithium niobate,
SBN, and KTP which are highly promising prospective ma-
terials for creating all-optical switching, scanning, and pro-
cessing devices, particularly those based on the use of spatial
solitons. The first spatial solitons showed that the nonlinear-
ity is produced by an external electric field that is slowly be-
ing screened [4,5]. The second type is the so-called screening
solitons that occur in a steady state when the external field is
non uniformly screened [6-10]. The third type is the photo-
voltaic solitons [11]. The soliton is a fundamental mode of
the optical waveguide which is created in a photorefractive
medium. Structures formed by intersecting waveguidesi.e.
by coherent [12-16]and incoherent [17,18] soliton collisions,
are especially attractive from a practical point of view. In
this context the interaction of spatial solitons with nonlinear
interfaces is an important field of investigation because the
interface can provide beam scanning over a wide range of
angles with fine variations of the angle of incidence upon the
interface. At the same time, an interface is a guiding system,

and the capture of spatial solitons may be associated with a
nonlinear surface wave excitation [19].

A one-dimensional particle like model was developed by
Aceveset al. [20] to obtain an equation of motion for the av-
erage location of the soliton. The interface serves as an affec-
tive induced potential barrier, which the particle (the soliton)
can either pass or be reflected from, according to its “kinetic
energy”. The height of the potential barrier is directly pro-
portional to the intensity of the soliton, and the kinetic energy
depends on the so-called soliton velocity, which is a function
of the incident angle.

Afterwards the properties of total internal reflection were
studied in a saturable nonlinearity, theoretically and exper-
imentally [21]. For small incident angles (typically less
than 1.25◦) in SBN photorefractive crystal, it is possible to
observe total internal reflection of the beam. Recently, the
Goos-Ḧanchen shift effect was measured by Gilleset al. [22].

On the other hand, the self-bending process of steady-
state bright spatial solitons in biased photorefractive media
was investigated by Christodoulideset al. [23-25]. Self-
bending of photorefractive solitons is caused by diffusion
in photorefractive crystals and becomes an important effect
when the beam size is in the range of the charge carriers dif-
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fusion length. In consequence, the diffusion process intro-
duces an asymmetric tilt in the light induced photorefractive
waveguide, which in turn is expected to affect the propaga-
tion characteristics of these steady-state photorefractive soli-
tons. As a result, when the diffusion process of these bright
solitons is predicted [26], that is, the solitary beam center
shifts quadratically with the propagation distance. The exper-
imental observation of the self-bending of screening solitons
have been done in SBN:60 [27-28].

In the present paper we study experimentally and numer-
ically, the combined effects of the total internal reflection in
nonlinear interfaces, and self-bending by diffusion effect. In
Sec. 2, the physical model about the nonlinear interface (un-
der diffusion and drift nonlinearity) is presented. In conse-
quence the nonlinear Schrödinger equation (NLSE) is modi-
fied. In Sec. 3 numerical results are presented. In particular,
the coefficient of diffusion describes the interaction between
the nonlinear interface and the spatial soliton. In Sec. 4 the
dynamics of the spatial soliton undulatory is presented. In
Sec. 5 experimental results are presented. Finally the conclu-
sion of the work is presented in Sec. 6.

2. Physical Model

The incidence of the beam toward nonlinear interface is
represented in the Fig. 1. The left of the interface, one-
dimensional beam is propagated under diffusion and drift
nonlinear medium; the right is the linear medium. A valid
approximation was assumed and that the complex amplitude
satisfies the Eq. [3],
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wherea is the amplitude of the electric field;X = x/x0 is
the transversal coordenate normalized;x0 is the initial width
of the beam;Z = z/LD is the propagation distance normal-
ized;LD = kx2

0 is the diffraction length corresponding tox0;
k = n0ω/c is the wave number;n0 is the linear refraction in-
dex of the photorefractive crystal;ω is the carrier frequency.

In photorefractive media the change of the refractive in-
dex may be quasi-local, and a bright spatial soliton has been
found, when there exists dependence between refraction in-
dex and intensity [24]. This mechanism is known as drift
and is experimentally easy to make, with an external applied
electric field (E0 ∼ 0.1/1 kV/cm) greater than the diffusion
mechanism (0.01 Kv/cm approximately).

The diffusion effects in surface optical waves has been
elegantly studied by Garcı́a-Quirinoet al. [29]. These waves
can be guided along the boundary of the crystal with a metal-
lic or a dielectric layer of a lower refractive index, or with
a similar photorefractive crystal(PRC) with the opposite sign
of the nonlinearity. Under the steady-state conditions of il-
lumination (when nothing is changing with time) the space-
charge electric field arising as a result of equal drift-diffusion
equilibrium. To describe both drift and diffusion mechanisms

of nonlinear response, the local and nonlocal components of
nonlinearity are very important. Absortion of interfering ex-
ternal and/or internal (generated in PRC) light fields leads to
spatially nonuniform photogeneration of free carriers. Then,
their drift in the external electric field and/or spatial diffusion
follow. Resulting from further trapping of these carriers by
defects and impurities (so-called traps), a spatially nonuni-
form distribution of internal electric field is formed. Under
this conditions our mathematical model of propagation of the
beams is,

δn = β|a|2 + γ
∂|a|2
∂X

(2)

whereβ = (1/2)k2a2
0n

4
0rE0 is the Kerr coefficient;r is the

linear electro-optic coefficient corresponding to this particu-
lar orientation of the PRC and polarization of the light;E0 is
the external electric field applied to the PRC in the transversal
directionx;
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is the numerical constant characterizing the strength of the
diffusion photorefractive nonlinearity (diffusion constant),T
is the Boltzmann temperature constant;e is the electron
charge. The coefficient of diffusion is

γ =
µ
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The sign of γ depends on the external electric field ap-
pliedE0; substituting Eq.(2) in Eq.(1) we obtain,
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The detailed discussion about the stable solutions in
PRC with drift and diffusion, was made by V. Aleshke-
vich et al. [30]. Asymmetric soliton type solutions are sta-
ble, whereas multi-soliton solutions are unstable due to the
perturbations sensibility.

For our case, we are interested in spatial solitons reflected
by a nonlinear interface (with drift and diffusion nonlineari-
ties governed in PRC), and a second linear media (air). Using
the abrupt change of the refractive index between nonlinear-
linear media[3,21], it is possible to obtain,
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where∆=(n01 − n02)/
˜
n2 |a0|2; f(X)=U(X); U(X)=1 if

X ≤ 0 andU(X)=0 if X>0; f(X)=(1/2)[1− tanh(κx)]
to describe general interface;κ represents the steepness of
the interface. Note ifγ = 0 and β = 1, the solution is,
a(X,Z) = sech(X) exp[−iZ/2]. However, if the diffusion
and drift mechanism are taken together, then the solutions
can be numerically studied. In the next section we extend a
discussion of the numerical results.
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FIGURE 1. Scheme of the interface formed by nonlinear and linear
medium.

3. Numerical solutions

We use a numerical split-step method [31] to solve Eq.(6).
The initial condition is,

a(X, Z = 0) = A sech(X −X0) exp(−iZ + φ) (5)

whereA is the amplitude of the beam,X0 is the initial po-
sition before propagation. Figure 2 shows very interesting
propagation phenomena of a spatial soliton for saturation co-
efficient value ofγ = 0.2. Unlike of total internal reflection
with incident angle, this is not necessary for self-bending ef-
fect. The spatial soliton is supported by drift nonlinearity;
in the same figure the spatial soliton is reflected by nonlin-
ear interface but, newly the soliton is launched to nonlinear
interface due to difussion nonlinearity, and so on. As a con-
sequence, spatial undulatory soliton is propagated with con-
stant energy along its trajectory. Now the question is: what
happens if the diffusion coefficient is increased? Figure 3
represents this case. The beam is launched more easily to
nonlinear interface, and the beam is splitted in linear and
nonlinear mediums. The reflected beam is smaller than the
incident beam and its form is conserved. The energy of the
beam in the linear medium is diffracted. On the other hand,
the mass center is a very important characteristic of the non-
linear interfaces, because with this parameter is possible to
obtain information about the trajectory of the beam in the in-
terface. The mass center is defined by [21],

x̂ ≡

∞∫
−∞

a∗XadX

∞∫
−∞

aa∗dX

. (6)

The trajectory of the mass center, for different values of
diffusion coefficient, is shown in Fig. 4. The picture shows

FIGURE 2. Undulatory behaviour of the spatial soliton propagated
in a nonlinear interface. Drift and diffusion nonlinearities give pe-
riodic reflection and incidence withγ = 0.2.

FIGURE 3. For γ = 0.8 the undulatory surface soliton losses its
energy by diffraction in linear medium.

the behaviour of the beam during propagation. Observe the
undulatory trajectory of the beam in the nonlinear medium. If
we increase the diffusion coefficient, the trajectory is asym-
metric and not parabolic. This case is equivalent to increasing
the incident angle of the beam, in consequence the increments
are less. In this case, we do not observe the Goos-Hänchen
shift reported for total internal reflection [3,21] due to diffu-
sion nonlinearity.

Figure 5 shows the variations of maximum intensity of
the beam along the distance of propagation. If the diffusion
coefficient parameter is increased, the oscillations increase,
as a consequence, the energy decreases; this case is repre-
sented in Fig. 6. Observe that the sum of the percentage of
energy of the reflected beam and the transmitted beam, is not
constant with respect to the initial beam, because part of the
beam in the linear medium is lost by diffraction.
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FIGURE 4. Mass center of the undulatory spatial solitons for dif-
ferentγ values.

FIGURE 5. Maximum intensity of the undulatory surface soliton in
function of the distance of propagation.

In the next section we describe the trajectory of the sur-
face soliton with particle technique.

4. Dynamics of the undulatory soliton

We use the particle theory developed by Aceveset al. [20]
to find the exact trajectory of the beam. According to this
theory, the nonlinear interface characteristics can be obtained
from the mass center dynamics. The nonlinear Schrödinger
equation has been modified in our previous papers and has
the form[3,21],
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FIGURE 6. Energy of the undulatory surface soliton in function of
theγ.

whereP0 =
∫

aa∗dX. If we differentiate Eq. (7) and use
Eq. (3) we obtained,
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The Eq. (8) represents the influence of the repulsion from
the dielectric-photorefractive crystal boundary on the beam
trajectory. Further, within the frames of the method of the ef-
fective particles, we assume that the self-bending and the re-
pulsion from the boundary do not affect strongly the station-
ary beam shape (this assumption is valid even when the laser
beam reflects from the boundary at the angle close to the to-
tal internal reflection angle). This means that when obtaining
the approximate beam center trajectory one can substitute,
into the integral in the right part of Eq. (8) an approximate
expression fora(X,Z) = sech[κ(X − X0(z))] (whereκ is
the form-factor), which is the solution of the standard unper-
turbed Schr̈odinger equation. Substituting in Eq. (10) it is
possible to obtain,
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= −1
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∆κ sech2(κX0)− 1

4
κ3 sech4)κX0)

+
4
15
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µκ4[sech4(κX0)− 1] tanh(κX0)

+
2
15

µκ4 tanh3(κX0). (9)

WhenX0 → -∞ (that meansthat the beam goes away from
the air-PRC boundary into the volume of PRC) the last equa-
tion transforms into that describing the beam self-bending
along the parabolic trajectory in the PRC, and using boundary
conditions, (X0 and initial angle of incidenceV0 atZ = 0),

X(Z) = X0 + V0Z +
8
15

µκZ2. (10)

The Eq. (10) describes the parabolic trajectory of the
beam spatial soliton during its propagation. Figure 7 shows
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FIGURE 7. Parabolic trajectory of the surface soliton forγ = 0.2

value.

FIGURE 8. Dependence between bending distance vs. diffusion
coefficient.

the trajectory of the beam forγ = 0.2, where it is possible
to observe a reflection by the nonlinear interface, as a conse-
quence, surface waves are formed in the nonlinear interface.

5. Experimental results vs. theoretical predic-
tions

Experimental studies about self-bending beams in photore-
fractive crystals, were done by Petteret al. [28]. It is known

FIGURE 9. Dependence between bending distance vs. Kerr coeffi-
cient.

that self-bending of photorefractive solitons is caused by dif-
fusion in photorefractive crystals, and becomes an important
effect when the beam size is in the range of the diffusion
length for the charge carriers. Figure 8 shows the numeri-
cal results of the examination of the bending distance in de-
pendence with the diffusion coefficient. The decrease of the
bending distance, at higher beam intensities (implicit in dif-
fusion coefficient), is mainly due to the beam widening and
therefore the smaller gradient for the saturated nonlinearity.
The propagation distance was 20 diffraction length, and com-
paring our numerical data with that found experimentally we
can see good qualitative agreement. Figure 9 shows the bend-
ing distance in dependence on the kerr coefficient. In the
range of higher saturation(Ibeam/Ioutput > 1), the form of the
curve is quadratic relation approximately. It also agrees with
the experimental results of Petteret al.

6. Conclusions

We studied quasi-surface waves formed in a nonlinear in-
terface by drift and diffusion nonlinearity mechanism. For
γ < 0.4, surface waves are formed. For other values ofγ the
beam is splitted in two beams, and part of the beam in the
linear medium is diffracted. Other important point, is that the
trajectory of the beam along the boundary PRC-air interface
shows a parabolic behaviour.
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