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Transformation of a wavefunction under changes of reference frame
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A simple procedure to derive the transformation of a wavefunction under a change of reference frame is applied to some examples and its
relation with the transformation of the Hamilton principal function is studied.
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Se aplica a algunos ejemplos un procedimiento simple para obtener la transtor@cina fundéin de onda bajo un cambio de marco de
referencia y se estudia su relagicon la transformaén de la funabn principal de Hamilton.
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1. Introduction from the start some specific form for the transformed Hamil-
tonian. Furthermore, this method is applicable to transforma-
Usually, the wavefunction, employed in the non-relativistictions that do not belong to a continuous group, and we do not
quantum mechanics, and the Hamilton principal function, aphave to deal with “infinitesimal” transformations.
pearing in the Hamilton—Jacobi equation of classical mechan-  |n Sec. 2 we show how one can readily obtain the oper-
ics, behave as scalar fields. For instance, if one starts with thgor that represents a Change of frame on the state vectors,
Schibdinger equation written in Cartesian coordinates, its expresenting several examples. In Sec. 3 we show that the
pression in any other coordinate system is obtained by replaghase factors appearing in the transformations of the wave-
ing the partial derivatives of the wavefunction with respect tofunctions, obtained in Sec. 2, are given &y /" where
the Cartesian coordinates by its derivatives with respect to the 1, s the term that has to be added to the Hamilton princi-
new coordinates. However, in the case of certain transformayal function in the change of frame under consideration.
tions, such as the Galilean transformations, the wavefunction
acquires an extra phase factor and, similarly,
principal function requires an additional term.

One way of finding the transformation law for & wave- |, the context of the non-relativistic quantum mechanics we

function under a change of reference frame, applicable to thg,sider a transformation given byaitary operator//, de-
cases where the transformations of interest form a continuoq.ghed by the conditions

group, consists in finding first the infinitesimal generators of

the action of the group on the wavefunctions; then, with the  Uz,U ™! = X;(z;,1), Up,U ' = Pi(p;,t), (1)

aid of the exponential map, the elements of the group can - _

be constructed and, making use of the BCH formula, the dewhere ther; andp; are Hermitian operators representing the

sired transformations can be expressed in a convenient mak-artesian coordinates and momenta, Meare given func-

ner (seee.g, Refs. 1 to 4). tions ofz; andt, and theP; are given functions op; andt.
Another approach consists in assuming that the HamiltoFor example, for a Galilean transformation

nian transforms into some specific operator under the change

of frame being considered, and then looking for a trans- X =x-Vt, P=p-mV, )

formation of the wavefunction such that a solution of the\,nerem is the mass of the particle being considered, and

Schiddinger equation in the initial frame is mapped into & S0-y s a constant vector, corresponding to the velocity of the
lution of the Schédinger equation in the second frame (seeyoost. (In order to facilitate the comparison with the results
e.g, Refs. 5 and 6). In this approach, it is not necessary @y previous works, we considectivetransformations.)
consider a continuous group of transformations, but one has ' |1 spould be noticed that Egs. (1) defitieup to a phase

to postulate the form of the new Hamiltonian. factor that depends anonly (see the examples below).

In this paper we apply a simple method to find the opera-  The state of the system is transformed according to
tor that represents the effect of a change of frame on the state

vectors (or on the wavefunctions), without having to impose [y = Ulp) 3)

the Hamilto . .
! ré. Transformation of the wavefunctions
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and a straightforward computation shows thamaps any 2.1. Spatial translations

solution of the Schirdinger equation . )
A relatively simple and common example of a change of

ihM = H|y) frame corresponds to translations. We include it because it
de serves to illustrate the method and because some results will
into a solution of be employed below.
) ) A spatial translation by a constant vectocan be defined
ih=a = Kl¥) by Egs. (1) with
if X=x-—a, P =rp. 9)
K=UHU'+ ihd—UU‘l (4)
dt ’ Then, from Eq. (8) we obtaipg-xg = 3 —a+po - (xo —a),

This last equation shows thatif depends explicitly on the i.e.,

time, then the Hamiltonian does not transform following the a=L0—pg-a.

simple ruleH — UHU ™" (cf. Ref. 7). (Note that we are yonce taking into account thatmay depend oo, andg3

working in the Schidinger picture.) If the arbitrary phase may depend op,, we conclude that

factor contained inU can be chosen in such a way that

K = H, then we say thaHl is invariant undet/ [3]. a = x(t), B8=po-a+ x(t), (10)
Let |xo) and |py) be eigenstates of the position and

momentum operators and p, respectively (withx|xq) =

Xo|%o) andp|po) = pPo|po)) then, making use of Egs. (1)

we have

where(¢) is a real-valued function of only. Substituting
the expression fof into Eq. (7), making use of (9), we ob-
tain
-1 _ oix/Ah ipo-a/h _ Jix/h jip-a/h
XU~ xo) = U~ X (x, £)]x0) = X(x0,¢) U~ |x0), U™ lpo) = e/ e po) = e/ e M py),

which means thal/ ~!|x,) is an eigenstate of with eigen- which amounts to

valueX(xo,t), thus UL = eix/hgipa/n (11)

U™ xo) = €*/"[X(xo,1)), (5)  Substituting (11) and the first Eq. (9) into (5) we obtain the

. . well-known relation
where« is some real number, which may dependsqn ¢,

and the parameters containedlin This last equation, to- P2/ x0) =[x — a) 12)
gether with (3), imply that a wavefunction transforms accord- ,
ing to (note that the phase facte®/” cancels out).
. On the other hand, from Eqgs. (4) and (11) we find that, in
¥ (x0) = (x0|Up) = e/ "(X (%0, 8)|¢)) the present case,
= e*la/hw(x(xo, t)) (6) K — UHU71 + %’ (13)

As we shall see in the examples below, in some cases
different from zero.
In a similar manner, from Egs. (1) it follows that p?

H=-—-F-x, (14)
U~ po) = e/"|P(py, 1)), @)

so that, if, for example,

2m

whereF is a constant vector, corresponding to a particle sub-
where 3 is some real number, which may depend @ ject to a constant forcE, then [see (1) and (9)]
t, and the parameters containedih In order to deter- 9

mine the values ofx and 5 we form the scalar product K=U (p —F. X) Uty CLX = Ii
(xolUU|po) = (xo|po) = (2h)=3/2 exp(ipo - x0/h), 2m ¢ 2m
\é\:zgzc\;itbhy virtue of (5), (7) and the unitarity éf, must coin CF(x—a)t % CH4F-.-a+ %
(27h) ~3/26lF=)/M(X (%0, )| P (po, 1)) If we demand thakl' = H (which is reasonable, since the
) particle is in a uniform field of force, an@f represents a
= (27h) 3 exp L (3 —a+P(po,t) - X(xo,1)]. translation), we have to choose = —F - at and, accord-
h ing to (6), the wavefunctions must transform as
rence: ¥/ (x0) = 62y (xg — a). (15)
Po X0 =3 —a+ P(po,t) - X(x0,1). (8)

(Note that with this choice fox, according to Eq. (11), the
In the following subsections we consider several application®perator corresponding to translationg/is= e~ (P—Ft)-a/h
of the basic formula (8). which involves the conserved operator F¢ [3].)

Rev. Mex. Fis63(2017) 185-189



TRANSFORMATION OF A WAVEFUNCTION UNDER CHANGES OF REFERENCE FRAME

2.2. Translations in the momentum

187

and, therefore,

Even though it is not a change of frame, we shall con- U~" = exp(i/h) [3mV?t+x(t)] P VI/he=imVx/h - (22)

sider a “translation” in the momentum, defined Ky= x,

P = p — b, whereb is a constant vector. In this case Eq. (8)

givespo - xo = 8 — a + (po — b) - xo, which leads to

5 = X(t)a

wherex(t) is a real-valued function of only. Then, from
Eq. (5) we obtain

o= _b'XO+X(t)7 (16)

U_1|X()> _ eix/he—ib-xo/h|xo> — eix/he—ib»x/h|xo>
which means that
U—l _ eix/he—ib-x/h (17)
and from Eq. (7) we havd ~!|pg) = eX/*|py — b), i.e,,

e P/ pg) = |po — b). (18)

As in Sec. 2.1, we can determine the functigrif we
impose some specific relation between the Hamiltonidns
and K [see Eq. (4)]. Substituting (22) into (4), with the aid
of (19), we find

dx

1
K=UHU'—-mV?+p-V+ 2=
UHU 2m +p +dt

(cf.Ref. 8). Thus, if we takél = p?/2m, then

(23)

dx
dt’
which coincides withH if x = 0. Other Hamiltonians are
also invariant under the Galilean transformations, with the
appropriate choice of [3].

If one does not allow for the presence of a phase factor
eX/" in U~ one arrives at the wrong conclusion that only the
Hamiltonian of a free particle is invariant under the Galilean

1 1
(p—mV)2—§mV2+p~V+

m

Another useful formula follows from the second equationtransformations [9].

in (1): UpU~! = p — b or, equivalently,

eib-x/hpe—ib»x/h =p-— b. (19)

2.4. Constant acceleration

Now we consider the effect of a constant acceleratin,

It may be noticed that Eqs. (18) and (19) do not contain thgynjich corresponds to

function.

2.3. Galilean transformations

X:xf%atQ, P =p — mat,

Substituting these expressions into Eq. (8) we have

In the case of the Galilean transformations the functions

X(x,t) and P(p,t) are given byX(x,t) = x — Vi,

P(p,t) = p — mV [see Egs. (2)]. Then, Eq. (8) becomes

Po-Xo = —a+(po—mV):(xg — Vt),
that is
a+mV -xg— %mVQt:ﬁ—pth—&—%szt,
which implies that
a=-mV  xg+ smV>? + x(t),
B=po-Vt—imV3+x(t), (20)

where x(t) is some real-valued function afonly. Hence,
according to (5), we have

U~ xo) = exp(i/h)
x [=mV -xq+ imV?t 4+ x(t)] |xo — Vi), (21)
which can also be expressed as [see Eq. (12)]
exp(i/h) [ — mV - xo + 2mV?t + x(t)] V" x)

or, equivalently,

exp(i/h) [%mVQt + X(t)] P VE/h g—imVox/h |x0)

Po-Xo = —a+ (py — mat) - (xo — 1at?),
which implies that

o= —mat - xg + %mazt:3 + x(t),

1 1

B =3Po- at? — gma2t3 + x(t), (24)

wherex(¢) is a function oft only, and we have included the
term (1/6)ma?t? into « for later convenience.

The expression of the operatbr—! can be obtained by
calculating ~!|x,), following the same steps as in Sec. 2.3.
Alternatively, we can start by considering the actiorLof!
on |po). From Egs. (7), (24), and (18) we find that

U~"po) = exp(i/h)
x [4po - at® — tma®t® + x(t)]|po — mat)
= exp(i/h)[5(p + mat) - at®
— gma’t® + x(t)][po — mat)
= exp(i/h)[2ma®t® + x(t)]
x ePat? /2 mat)
= exp(i/h)[2ma®t® + x(t)]

ip-at?/2h _—imat-x/h
x elPrat’/2h o "po),
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hence or

. . (K —H)dt =d(F1 +b-x),

U—l — exp(i/h) [%ma%?’ + X(t)] elp'at2/2h e—lmat'x/h. - - - . -
which is equivalent to the existence of a functipft) such

Thus, from Eq. (4), making use of (19), we obtain that /1 + b-x = x(t) and K — H = dy/dt. Thus,
F, = —b - x + x(t), which coincides with the expression
1 Lo 9,0, dx for o given in (16
K=UHU '+at-p—ma-x— -ma“t°+ —. (25) Toragwve () _ . .
2 dt For the Galilean transformations, considered in Sec. 2.3,
If we take H = p2/2m, corresponding to a free particle, we from Eq. (26) we have
h
ave (p—mV)-d(x — Vi) — Hdt — (p - dx — Kdt) = dF},
_ (p —mat)? I 50 dx
2
_P axe X —p - Vdt —mV - dx +mV2dt + (K — H)dt = dF,,
2 dt

Choosingy = 0, the Hamiltonian’ corresponds to a parti- Which can be written in the form

cle in a uniform force field of intensityaa [cf. Eq. (14)], and

. 1 2 — _1 2 .
Egs. (6) and (24) reproduce the result of Ref. 6. (K= H—p-V4gmV7)dt =d(F — gmV+mV - x).

Thus, there exists a functiog(t) such that

3. Connection with classical mechanics

Fy = imV?t —mV -x+ x(t)
In this section we shall show that the functiarobtained in
the examples of Sec. 2 coincides with the functigrdefined  [cf. Ed. (20)] and
by 1 dx
PdX; — Hdt — (pydz; — Kdt) = dFy, (26) K=H+p-V-— 5mv“’ +
where H = H(X;, P;,t) and K(x;,p;,t) are the Hamil-
tonian functions(for the c)anonica(l coordi)nate(s?(l-, P;) and [cf. Eq. (23)]. If H(X, P, t) = P?/2m, then

(x4, pi), respectively. As is well known, the transformation (p —mV)? 1 dy
that relates the coordinatéX;, P;,¢) and (z;, p;,t) of the K(x,p,t) = 5 +p-V-— §mV2 + T
extended phase space is canonical if and only if there exists )
a function; such that Eq. (26) holds. (Very often, the func- . dix’
tion F} is called a generating function of the transformation, 2m dt
but that name is not always adequate, as in all the cases Colynich coincides WithH (x, p, t) if y = 0.
sidered here, see,g, Refs. 10 and 11.) In the case of uniform acceleration considered in Sec. 2.4,
In the case considered in Sec. 2.1, Eq. (26) takes the forg, Eq. (26) we have
i.e, (K — H)dt = dFy, which is equivalent to saying that or, equivalently,
K — H is some function of only; hence F} is some func- ' '
tion, x(¢) [cf. Eg. (10)], and (K — H —p-at+ ima®t® + ma-x)dt
d _ 1, 2,3
K(x,p,t) ~ HX,P,t) = = = d(F1 + ma-xt - gma’t’).
[cf. Eq. (13)]. If H is given by Eq. (14), then Hence, there exists a functigt{t) such that
2,3
P2 d Fy = —ma - xt + tma®t® + x(t)
K<X7p7t>:27_FX+d7>t< 0
TZ; [cf. Eq. (24)] and
P dx
=;——-F-(x—a)+—, 1 d
2m dt K(x,p,t)=H(X,P,t)+p - at—imaQtQ—ma . x—l—d—>t<

which reduces tp?/2m — F-x if y = —F - at (cf. Sec. 2.1). _ ,
In the case of the translations in the momentum (Sec. 2.2J¢f. Eq. (25)]. TakingHd (X, P,t) = P*/2m, correspond-

Eq. (26) yields ing to a free particle, setting = 0 we obtainK (x, p,t) =
p?/2m — ma - x, corresponding to a particle in a uniform
(p—b) -dx— Hdt — (p-dx — Kdt) = dF; force field.
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It may be noticed that, in the derivations presented so far By contrast with the assertion in Ref. 6, we see that the
in this section, only the function appears, without reference function o (denoted as-AS in Ref. 6) is not a Hamilton’s
to 5. However, we can see that Eq. (8) amounts to principal function, but the difference between two of such
functions. In fact, the assertion in Ref. 6 (suggested by one
f=atpx-P-X, of the referees of that paper) simply makes no sense because
which shows thats is a “type F; generating function” there are two Hamiltonians (or Lagrangians) involved, one of
(though, in the examples considered here, it is not really dhem corresponding to a free particle and the other to a parti-
generating function owing to the fact that the varialppeand  cle in a uniform force, while a Hamilton's principal function
P are not functionally independent). is associated with just one Hamiltonian (or Lagrangian).
As shown in Ref. 12 (see also Ref. 11), under a canon-
ical transformat_ion_ reIating_the coordinateXi,Pi,_t) and 4. Concluding remarks
(x4, pi,t), the principal function transforms according to
S —§_F The examples presented in this paper explicitly show that
= 1, (27) ' .
the representation on the state vectors of a transformation
in the sense that if the functio is a solution of the is not completely specified by its action on the coordinates
Hamilton—Jacobi (HJ) equation fdf, thenS’ = S — Fy is  and momenta. The remaining phase factor in the opetator
a solution of the HJ equation for the Hamiltoni&h with H ~ determines (or is determined by) the difference between the
and K related as in (26). Thus, at least in the examples conHamiltoniansH and K.
sidered here, the transformation law for the wavefunctions is The method employed here should be applicable also to
related in a simple manner with the transformation law for thenonlinear transformations, and it would be interesting to ana-
Hamilton principal function. This behavior is not totally sur- lyze some explicit examples of such transformations, even if
prising if we take into account the relationship between thehey are not related to changes of reference frame.
solutions of the Sclirdinger equation anekp i.S/%, whereS
is a solution of the corresponding HJ equation.
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