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Transformation of a wavefunction under changes of reference frame
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A simple procedure to derive the transformation of a wavefunction under a change of reference frame is applied to some examples and its
relation with the transformation of the Hamilton principal function is studied.
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Se aplica a algunos ejemplos un procedimiento simple para obtener la transformación de una funcíon de onda bajo un cambio de marco de
referencia y se estudia su relación con la transformación de la funcíon principal de Hamilton.
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1. Introduction

Usually, the wavefunction, employed in the non-relativistic
quantum mechanics, and the Hamilton principal function, ap-
pearing in the Hamilton–Jacobi equation of classical mechan-
ics, behave as scalar fields. For instance, if one starts with the
Schr̈odinger equation written in Cartesian coordinates, its ex-
pression in any other coordinate system is obtained by replac-
ing the partial derivatives of the wavefunction with respect to
the Cartesian coordinates by its derivatives with respect to the
new coordinates. However, in the case of certain transforma-
tions, such as the Galilean transformations, the wavefunction
acquires an extra phase factor and, similarly, the Hamilton
principal function requires an additional term.

One way of finding the transformation law for a wave-
function under a change of reference frame, applicable to the
cases where the transformations of interest form a continuous
group, consists in finding first the infinitesimal generators of
the action of the group on the wavefunctions; then, with the
aid of the exponential map, the elements of the group can
be constructed and, making use of the BCH formula, the de-
sired transformations can be expressed in a convenient man-
ner (see,e.g., Refs. 1 to 4).

Another approach consists in assuming that the Hamilto-
nian transforms into some specific operator under the change
of frame being considered, and then looking for a trans-
formation of the wavefunction such that a solution of the
Schr̈odinger equation in the initial frame is mapped into a so-
lution of the Schr̈odinger equation in the second frame (see,
e.g., Refs. 5 and 6). In this approach, it is not necessary to
consider a continuous group of transformations, but one has
to postulate the form of the new Hamiltonian.

In this paper we apply a simple method to find the opera-
tor that represents the effect of a change of frame on the state
vectors (or on the wavefunctions), without having to impose

from the start some specific form for the transformed Hamil-
tonian. Furthermore, this method is applicable to transforma-
tions that do not belong to a continuous group, and we do not
have to deal with “infinitesimal” transformations.

In Sec. 2 we show how one can readily obtain the oper-
ator that represents a change of frame on the state vectors,
presenting several examples. In Sec. 3 we show that the
phase factors appearing in the transformations of the wave-
functions, obtained in Sec. 2, are given bye−iF1/~, where
−F1 is the term that has to be added to the Hamilton princi-
pal function in the change of frame under consideration.

2. Transformation of the wavefunctions

In the context of the non-relativistic quantum mechanics we
consider a transformation given by aunitaryoperator,U , de-
fined by the conditions

UxiU
−1 = Xi(xj , t), UpiU

−1 = Pi(pj , t), (1)

where thexi andpi are Hermitian operators representing the
Cartesian coordinates and momenta, theXi are given func-
tions ofxj andt, and thePi are given functions ofpj andt.
For example, for a Galilean transformation

X = x−Vt, P = p−mV, (2)

wherem is the mass of the particle being considered, and
V is a constant vector, corresponding to the velocity of the
boost. (In order to facilitate the comparison with the results
of previous works, we consideractivetransformations.)

It should be noticed that Eqs. (1) defineU up to a phase
factor that depends ont only (see the examples below).

The state of the system is transformed according to

|ψ′〉 = U |ψ〉 (3)
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and a straightforward computation shows thatU maps any
solution of the Schr̈odinger equation

i~
d|ψ〉
dt

= H|ψ〉
into a solution of

i~
d|ψ′〉
dt

= K|ψ′〉
if

K = UHU−1 + i~
dU

dt
U−1. (4)

This last equation shows that ifU depends explicitly on the
time, then the Hamiltonian does not transform following the
simple ruleH 7→ UHU−1 (cf. Ref. 7). (Note that we are
working in the Schr̈odinger picture.) If the arbitrary phase
factor contained inU can be chosen in such a way that
K = H, then we say thatH is invariant underU [3].

Let |x0〉 and |p0〉 be eigenstates of the position and
momentum operatorsx andp, respectively (withx|x0〉 =
x0|x0〉 andp|p0〉 = p0|p0〉) then, making use of Eqs. (1)
we have

xU−1|x0〉 = U−1X(x, t)|x0〉 = X(x0, t)U−1|x0〉,
which means thatU−1|x0〉 is an eigenstate ofx with eigen-
valueX(x0, t), thus

U−1|x0〉 = eiα/~|X(x0, t)〉, (5)

whereα is some real number, which may depend onx0, t,
and the parameters contained inU . This last equation, to-
gether with (3), imply that a wavefunction transforms accord-
ing to

ψ′(x0) = 〈x0|U |ψ〉 = e−iα/~〈X(x0, t)|ψ〉
= e−iα/~ψ

(
X(x0, t)

)
. (6)

As we shall see in the examples below, in some casesα is
different from zero.

In a similar manner, from Eqs. (1) it follows that

U−1|p0〉 = eiβ/~|P(p0, t)〉, (7)

whereβ is some real number, which may depend onp0,
t, and the parameters contained inU . In order to deter-
mine the values ofα and β we form the scalar product
〈x0|UU−1|p0〉 = 〈x0|p0〉 = (2π~)−3/2 exp(ip0 · x0/~),
which, by virtue of (5), (7) and the unitarity ofU , must coin-
cide with

(2π~)−3/2ei(β−α)/~〈X(x0, t)|P(p0, t)〉

= (2π~)−3/2 exp
i
~
[
β − α + P(p0, t) ·X(x0, t)

]
.

Hence,

p0 · x0 = β − α + P(p0, t) ·X(x0, t). (8)

In the following subsections we consider several applications
of the basic formula (8).

2.1. Spatial translations

A relatively simple and common example of a change of
frame corresponds to translations. We include it because it
serves to illustrate the method and because some results will
be employed below.

A spatial translation by a constant vectora can be defined
by Eqs. (1) with

X = x− a, P = p. (9)

Then, from Eq. (8) we obtainp0 ·x0 = β−α+p0 · (x0−a),
i.e.,

α = β − p0 · a.

Hence, taking into account thatα may depend onx0, andβ
may depend onp0, we conclude that

α = χ(t), β = p0 · a + χ(t), (10)

whereχ(t) is a real-valued function oft only. Substituting
the expression forβ into Eq. (7), making use of (9), we ob-
tain

U−1|p0〉 = eiχ/~ eip0·a/~|p0〉 = eiχ/~ eip·a/~|p0〉,
which amounts to

U−1 = eiχ/~ eip·a/~. (11)

Substituting (11) and the first Eq. (9) into (5) we obtain the
well-known relation

eip·a/~|x0〉 = |x0 − a〉 (12)

(note that the phase factoreiχ/~ cancels out).
On the other hand, from Eqs. (4) and (11) we find that, in

the present case,

K = UHU−1 +
dχ

dt
, (13)

so that, if, for example,

H =
p2

2m
− F · x, (14)

whereF is a constant vector, corresponding to a particle sub-
ject to a constant forceF, then [see (1) and (9)]

K = U

(
p2

2m
− F · x

)
U−1 +

dχ

dt
=

p2

2m

− F · (x− a) +
dχ

dt
= H + F · a +

dχ

dt
.

If we demand thatK = H (which is reasonable, since the
particle is in a uniform field of force, andU represents a
translation), we have to chooseχ = −F · at and, accord-
ing to (6), the wavefunctions must transform as

ψ′(x0) = eiF·at/~ψ(x0 − a). (15)

(Note that with this choice forχ, according to Eq. (11), the
operator corresponding to translations isU = e−i(p−Ft)·a/~,
which involves the conserved operatorp− Ft [3].)
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2.2. Translations in the momentum

Even though it is not a change of frame, we shall con-
sider a “translation” in the momentum, defined byX = x,
P = p− b, whereb is a constant vector. In this case Eq. (8)
givesp0 · x0 = β − α + (p0 − b) · x0, which leads to

α = −b · x0 + χ(t), β = χ(t), (16)

whereχ(t) is a real-valued function oft only. Then, from
Eq. (5) we obtain

U−1|x0〉 = eiχ/~e−ib·x0/~|x0〉 = eiχ/~e−ib·x/~|x0〉

which means that

U−1 = eiχ/~e−ib·x/~ (17)

and from Eq. (7) we haveU−1|p0〉 = eiχ/~|p0 − b〉, i.e.,

e−ib·x/~|p0〉 = |p0 − b〉. (18)

Another useful formula follows from the second equation
in (1): UpU−1 = p− b or, equivalently,

eib·x/~pe−ib·x/~ = p− b. (19)

It may be noticed that Eqs. (18) and (19) do not contain the
functionχ.

2.3. Galilean transformations

In the case of the Galilean transformations the functions
X(x, t) and P(p, t) are given byX(x, t) = x − Vt,
P(p, t) = p−mV [see Eqs. (2)]. Then, Eq. (8) becomes

p0 · x0 = β − α + (p0 −mV) · (x0 −Vt),

that is

α + mV · x0 − 1
2mV 2t = β − p0 ·Vt + 1

2mV 2t,

which implies that

α = −mV · x0 + 1
2mV 2t + χ(t),

β = p0 ·Vt− 1
2mV 2t + χ(t), (20)

whereχ(t) is some real-valued function oft only. Hence,
according to (5), we have

U−1|x0〉 = exp(i/~)

× [−mV · x0 + 1
2mV 2t + χ(t)

] |x0 −Vt〉, (21)

which can also be expressed as [see Eq. (12)]

exp(i/~)
[−mV · x0 + 1

2mV 2t + χ(t)
]
eip·Vt/~ |x0〉

or, equivalently,

exp(i/~)
[
1
2mV 2t + χ(t)

]
eip·Vt/~ e−imV·x/~ |x0〉

and, therefore,

U−1 = exp(i/~)
[
1
2mV 2t+χ(t)

]
eip·Vt/~ e−imV·x/~. (22)

As in Sec. 2.1, we can determine the functionχ if we
impose some specific relation between the HamiltoniansH
andK [see Eq. (4)]. Substituting (22) into (4), with the aid
of (19), we find

K = UHU−1 − 1
2
mV 2 + p ·V +

dχ

dt
(23)

(cf. Ref. 8). Thus, if we takeH = p2/2m, then

K =
1

2m
(p−mV)2 − 1

2
mV 2 + p ·V +

dχ

dt
,

which coincides withH if χ = 0. Other Hamiltonians are
also invariant under the Galilean transformations, with the
appropriate choice ofχ [3].

If one does not allow for the presence of a phase factor
eiχ/~ in U−1 one arrives at the wrong conclusion that only the
Hamiltonian of a free particle is invariant under the Galilean
transformations [9].

2.4. Constant acceleration

Now we consider the effect of a constant acceleration,a,
which corresponds to

X = x− 1
2at2, P = p−mat,

Substituting these expressions into Eq. (8) we have

p0 · x0 = β − α + (p0 −mat) · (x0 − 1
2at2),

which implies that

α = −mat · x0 + 1
6ma2t3 + χ(t),

β = 1
2p0 · at2 − 1

3ma2t3 + χ(t), (24)

whereχ(t) is a function oft only, and we have included the
term(1/6)ma2t3 into α for later convenience.

The expression of the operatorU−1 can be obtained by
calculatingU−1|x0〉, following the same steps as in Sec. 2.3.
Alternatively, we can start by considering the action ofU−1

on |p0〉. From Eqs. (7), (24), and (18) we find that

U−1|p0〉 = exp(i/~)

× [
1
2p0 · at2 − 1

3ma2t3 + χ(t)
]|p0 −mat〉

= exp(i/~)
[
1
2 (p + mat) · at2

− 1
3ma2t3 + χ(t)

]|p0 −mat〉
= exp(i/~)

[
1
6ma2t3 + χ(t)

]

× eip·at2/2~|p0 −mat〉
= exp(i/~)

[
1
6ma2t3 + χ(t)

]

× eip·at2/2~ e−imat·x/~|p0〉,
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hence

U−1 = exp(i/~)
[
1
6ma2t3 + χ(t)

]
eip·at2/2~ e−imat·x/~.

Thus, from Eq. (4), making use of (19), we obtain

K = UHU−1 + at · p−ma · x− 1
2
ma2t2 +

dχ

dt
. (25)

If we takeH = p2/2m, corresponding to a free particle, we
have

K =
(p−mat)2

2m
+ at · p−ma · x− 1

2
ma2t2 +

dχ

dt

=
p2

2m
−ma · x +

dχ

dt
.

Choosingχ = 0, the HamiltonianK corresponds to a parti-
cle in a uniform force field of intensityma [cf. Eq. (14)], and
Eqs. (6) and (24) reproduce the result of Ref. 6.

3. Connection with classical mechanics

In this section we shall show that the functionα obtained in
the examples of Sec. 2 coincides with the functionF1 defined
by

PidXi −Hdt− (pidxi −Kdt) = dF1, (26)

whereH = H(Xi, Pi, t) and K(xi, pi, t) are the Hamil-
tonian functionsfor the canonical coordinates(Xi, Pi) and
(xi, pi), respectively. As is well known, the transformation
that relates the coordinates(Xi, Pi, t) and (xi, pi, t) of the
extended phase space is canonical if and only if there exists
a functionF1 such that Eq. (26) holds. (Very often, the func-
tion F1 is called a generating function of the transformation,
but that name is not always adequate, as in all the cases con-
sidered here, see,e.g., Refs. 10 and 11.)

In the case considered in Sec. 2.1, Eq. (26) takes the form

p · dx−Hdt− p · dx + Kdt = dF1,

i.e., (K − H)dt = dF1, which is equivalent to saying that
K − H is some function oft only; hence,F1 is some func-
tion, χ(t) [cf. Eq. (10)], and

K(x,p, t)−H(X,P, t) =
dχ

dt

[cf. Eq. (13)]. IfH is given by Eq. (14), then

K(x,p, t) =
P2

2m
− F ·X +

dχ

dt

=
p2

2m
− F · (x− a) +

dχ

dt
,

which reduces top2/2m−F ·x if χ = −F ·at (cf. Sec. 2.1).
In the case of the translations in the momentum (Sec. 2.2),

Eq. (26) yields

(p− b) · dx−Hdt− (p · dx−Kdt) = dF1

or
(K −H)dt = d(F1 + b · x),

which is equivalent to the existence of a functionχ(t) such
that F1 + b · x = χ(t) and K − H = dχ/dt. Thus,
F1 = −b · x + χ(t), which coincides with the expression
for α given in (16).

For the Galilean transformations, considered in Sec. 2.3,
from Eq. (26) we have

(p−mV) · d(x−Vt)−Hdt− (p · dx−Kdt) = dF1,

i.e.,

−p ·Vdt−mV · dx + mV 2dt + (K −H)dt = dF1,

which can be written in the form

(K −H −p ·V + 1
2mV 2)dt = d(F1− 1

2mV 2t + mV ·x).

Thus, there exists a functionχ(t) such that

F1 = 1
2mV 2t−mV · x + χ(t)

[cf. Eq. (20)] and

K = H + p ·V − 1
2
mV 2 +

dχ

dt

[cf. Eq. (23)]. IfH(X,P, t) = P2/2m, then

K(x,p, t) =
(p−mV)2

2m
+ p ·V − 1

2
mV 2 +

dχ

dt

=
p2

2m
+

dχ

dt
,

which coincides withH(x,p, t) if χ = 0.
In the case of uniform acceleration considered in Sec. 2.4,

from Eq. (26) we have

(p−mat) · d(x− 1
2at2)−Hdt− (p · dx−Kdt) = dF1,

or, equivalently,

(K −H − p · at + 1
2ma2t2 + ma · x)dt

= d(F1 + ma · xt− 1
6ma2t3).

Hence, there exists a functionχ(t) such that

F1 = −ma · xt + 1
6ma2t3 + χ(t)

[cf. Eq. (24)] and

K(x,p, t)=H(X,P, t)+p · at−1
2
ma2t2−ma · x+

dχ

dt

[cf. Eq. (25)]. TakingH(X,P, t) = P2/2m, correspond-
ing to a free particle, settingχ = 0 we obtainK(x,p, t) =
p2/2m − ma · x, corresponding to a particle in a uniform
force field.
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It may be noticed that, in the derivations presented so far
in this section, only the functionα appears, without reference
to β. However, we can see that Eq. (8) amounts to

β = α + p · x−P ·X,

which shows thatβ is a “type F4 generating function”
(though, in the examples considered here, it is not really a
generating function owing to the fact that the variablesp and
P are not functionally independent).

As shown in Ref. 12 (see also Ref. 11), under a canon-
ical transformation relating the coordinates(Xi, Pi, t) and
(xi, pi, t), the principal function transforms according to

S′ = S − F1, (27)

in the sense that if the functionS is a solution of the
Hamilton–Jacobi (HJ) equation forH, thenS′ = S − F1 is
a solution of the HJ equation for the HamiltonianK, with H
andK related as in (26). Thus, at least in the examples con-
sidered here, the transformation law for the wavefunctions is
related in a simple manner with the transformation law for the
Hamilton principal function. This behavior is not totally sur-
prising if we take into account the relationship between the
solutions of the Schrödinger equation andexp iS/~, whereS
is a solution of the corresponding HJ equation.

By contrast with the assertion in Ref. 6, we see that the
function α (denoted as−~S in Ref. 6) is not a Hamilton’s
principal function, but the difference between two of such
functions. In fact, the assertion in Ref. 6 (suggested by one
of the referees of that paper) simply makes no sense because
there are two Hamiltonians (or Lagrangians) involved, one of
them corresponding to a free particle and the other to a parti-
cle in a uniform force, while a Hamilton’s principal function
is associated with just one Hamiltonian (or Lagrangian).

4. Concluding remarks

The examples presented in this paper explicitly show that
the representation on the state vectors of a transformation
is not completely specified by its action on the coordinates
and momenta. The remaining phase factor in the operatorU
determines (or is determined by) the difference between the
HamiltoniansH andK.

The method employed here should be applicable also to
nonlinear transformations, and it would be interesting to ana-
lyze some explicit examples of such transformations, even if
they are not related to changes of reference frame.
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