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Scattering of periodic solitons
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Through numerical simulations we studyN -soliton scattering (N=3,4) in the (2 + 1)-dimensionalCP 1 model with periodic boundary
conditions. Solitons colliding from symmetrical configurations scatter atπ/N , as observed in the usual model with standard boundary
conditions. When the initial configurations are not symmetric the angles differ fromπ/N . We describe our observed patterns based on a
properly formulated geodesic approximation.
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Usando simulaciones numéricas estudiamos la dispersión deN solitones (N = 3, 4) en el modeloCP 1 en (2+1) dimensiones con condi-
ciones de borde periódicas. Las colisiones a partir de configuraciones simétricas dan uńangulo de dispersión π/N , concordando con lo
observado en el modelo usual con condiciones de borde estándar. Si inicialmente las configuraciones no son simétricas, los solitones no se
dispersan aπ/N . Presentamos una descripción de esta dińamica en t́erminos de una aproximación geod́esica.

Descriptores: Solitón; dispersíon; modeloCP 1.
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1. Introduction

Physics in(2 + 1) dimensions is an area of much active re-
search, covering topics that include Heisenberg ferromag-
nets, the quantum Hall effect, superconductivity, nematic
crystals, topological fluids, vortices and solitary waves [1].
Most of these systems are non-linear. In their mathematical
description, the well-known family of sigma models plays a
starring role. The simplest Lorentz-covariant soliton model
in (2+1) dimensions is theCP 1 or non-linearO(3) sigma
model. Its solutions, sometimes called ‘lumps’, are realiza-
tions of harmonic maps, a long-established area of research
in pure mathematics. However, analyticalO(3) soliton solu-
tions have only been found for the static case; the full time-
dependent model must be studied using numerical methods
and/or other approximation procedures [2].

Sigma models are also useful as low dimensional ana-
logues of field theories in higher dimensions. In effect,
the O(3) model in two dimensions exhibits conformal in-
variance, spontaneous symmetry breaking, asymptotic free-
dom, and topological solitons, properties similar to those
present in a number of important field theories in (3+1)
dimensions –like the Skyrme model of nuclear physics [3].

We are concerned with the planarCP 1 model (both in its
original and Skyrme-like versions) with periodic boundary
conditions where the solitons are harmonic mapsT2 7→S2.
A rich diversity of phenomena has been found in this
model [4–6], going beyond the two-soliton and annular struc-
tures one might expect by analogy with the model with stan-

dard boundary conditions, where the soliton fields are har-
monic maps<2 ∪ {∞} ≈ S2 7→ S2.

For planar systems,N identical lumps initially placed
at the vertices of a rectangular polygon ofN sides, fired
with equal speed to collide head-on at the centre of the poly-
gon, scatter and emerge on the vertices of the dual polygon.
Suchπ/N scattering, studied for theCP 1 model on<2 in
Ref. 7, may be understood on symmetry grounds: the initial
data hasDN (dihedral group) symmetry and the time evo-
lution respects that. But imposing periodic boundary condi-
tions breaks the foresaid symmetry, and the interesting ques-
tion whether dual-polygon scattering still holds for this case
must be investigated.

Through numerical simulations onT2, we confirm
the π/N scattering for 3 and 4 identical lumps. The
caseN = 2 has been considered elsewhere [4], and it con-
forms to the well-documented scattering at 90◦. We also
look into non-symmetrical configurations (they do not scatter
at π/N ) and explain the results using the geodesic approxi-
mation.

In the following section we introduce our periodicCP 1

model. The numerical procedure is explained in Sec. 3.
Sec. 4 analyses collisions between three solitons, and the
caseN = 4 is considered in Sec. 5. In Sec. 6, we present
our version of the geodesic approximation which includes the
case of initial configurations that are not symmetrical. We
find that our predictions (based on this approximation) are in
agreement with what is observed in numerical simulations.
We close with some concluding remarks in Sec. 7.
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2. TheCP 1 model on the torus

The non-linearO(3) model involves three real scalar fields
~φ(xµ) ≡ (φ1, φ2, φ3) which satisfy the constraint that
∀ xµ ≡ (x0, x1, x2) = (t, x, y) ∈ T2 the fields lie on the unit
sphereS2:

~φ.~φ = 1. (1)

Subject to this constraint, the Lagrangian density of the sys-
tem is

L = 1
4

(
∂µ

~φ
)

.
(
∂µ~φ

)
. (2)

The invariance of this Lagrangian under globalO(3) rota-
tions in field-space is apparent.

The model is conveniently recast in terms of one inde-
pendent complex fieldW (theCP 1 formulation) related to~φ
via

~φ =




W + W̄

|W |2 + 1︸ ︷︷ ︸
φ1

, i
−W + W̄

|W |2 + 1︸ ︷︷ ︸
φ2

,
|W |2 − 1
|W |2 + 1︸ ︷︷ ︸

φ3


 . (3)

The Lagrangian (2) now reads

L =
|∂tW |2 − 2|∂zW |2 − 2|∂z̄W |2

(1 + |W |2)2 , (4)

wherez = x + iy andz̄ = x− iy. For allt, the fieldsW are
mappings from the torusT2 to the sphereS2, i.e., they satisfy
the periodic boundary conditions

W (z + mL + inL) = W (z), (5)

wherem,n = 0, 1, 2, . . . and the periodL denotes the size of
the square torus.

Thestaticsoliton solutions of the model are thus doubly
periodic functions ofz, that is, elliptic functions that may be
expressed through the Weierstrassσ-function as [8,9]:

W = λ

κ∏

j=1

σ(z − aj)
σ(z − bj)

,

κ∑

j=1

aj =
κ∑

j=1

bj . (6)

The complex numberλ is related to the overall size of the
solitons, the zerosaj and polesbj determine their sizes and
positions onT2, and the positive integerκ is the order of the
elliptic functionW .

The static energy density (or potential energy density) as-
sociated with (6) can be read-off from (4):

E = 2
|∂zW |2 + |∂z̄W |2

(1 + |W |2)2 . (7)

Pictures of this energy distribution reveal the familiarCP 1

lumps, as those of Fig. 1 for example.

FIGURE 1. The energy distribution forN=3 at the initial time, both
in three dimensional and contour plot forms.

The energy is related to the topological charge by the Bo-
gomolnyi bound

E ≥ 2π|N |. (8)

The instanton solutions correspond to the equality in (8):
solutions carryingN > 0 (N < 0) imply ∂z̄W = 0
(∂zW = 0), the Cauchy-Riemann conditions forW being
an analytic function ofz (z̄). Note that the simplest non-
trivial elliptic function is of the order of two, hence there are
no single-soliton solutions onT2.

We utilize the pure model (4) forN = 3, but forN = 4
the energy involved is so large that the well-known instabil-
ity of the planar model (recall that its conformal invariance
means that the lumps can have any width) breaks the numer-
ical procedure fast. A stabilising Skyrme term must be intro-
duced for this case.

3. Numerical procedure

In this paper we want to discuss time dependent solutions
of the model (4) and its Skyrme version [see equation (24)],
where the time dependence describes the movement of soli-
tons. As we do not have analytical time-dependent solutions,
we resort to numerical simulations. For this we take fields of
the form (6) as the initial conditions. Since during the sim-
ulations the fieldW may become arbitrarily large, we have
preferred to run our simulations in theφ-formulation of the
model.

Strictly speaking, truly independent solitons can only be
obtained in the asymptotic regime of large soliton separa-
tion, which really never happens on a compact manifold such
asT2. However, each factorWj ≡ σ(z−aj)/σ(z−bj) in (6)
(when aj ∼ bj) roughly represents one soliton, providing
a setting to study more or less independent structures. The
present work is limited to systems in the topological classes 3
and 4. These systems move, collide and scatter off upon
being set into motion by boosting eachWj separately. The
initial-value problem is then completely specified by giving
bothW (t) and∂tW (t) at the initial timet = 0.
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For a square torus we have the so-called lemniscatic
case [10] whereσ possesses the simple Laurent expansion

σ(u) =
∞∑

j=0

Gju
4j+1, Gj ≡ Gj(L) ∈ <. (9)

For the accuracy of our calculations it is sufficient to com-
pute the series (9) up toG5 (our coefficients forj > 5 are
negligible):

G0 = 1
G1 = −0.7878030
G2 = −0.221654845
G3 = 9.36193× 10−3

G4 = 7.20830× 10−5

G5 = 2.37710× 10−5





.

We have employed the fourth-order Runge-Kutta method,
and approximated the spatial derivatives by finite differences.
The Laplacian has been evaluated using the standard nine-
point formula, and to further check our results a 13-point
recipe has also been used. Respectively, the Laplacians are:

∇2 =




1 4 1
4 −20 4
1 4 1




6× (δx)2
,

∇2 =




−1
1 12 1

−1 12 −48 12 −1
1 12 1

−1




10× (δx)2
. (10)

The discrete model has been evolved on a
nx×ny=200×200 square periodic lattice with spatial and
time stepsδx=δy=0.02 andδt=0.005, respectively. The ver-
tices of the fundamental period cellwe have used for our
simulations were at

(0, 0), (0, L), (L,L), (L, 0), L = nx × δx = 4. (11)

Unavoidable round-off errors have gradually shifted the
fields away from the constraint~φ.~φ = 1. So, like in the pla-

nar case [11], to correct this we have rescaled~φ → ~φ/

√
~φ.~φ

every few iterations. Each time, just before the rescaling op-
eration, we have evaluated the quantityµ ≡ ~φ.~φ− 1 at each
lattice point. Treating the maximum of the absolute value
of µ as a measure of the numerical errors, we have found that
max|µ| ≈ 10−8. This magnitude is useful as a guide to de-
termine how reliable a given numerical outcome is. Usage of
unsound numerics in the Runge-Kutta evolution shows itself
as a rapid growth of max|µ|; this also occurs, for instance,
when the solitons pinch-off.

The parameterλ in (6) has been set toλ = (1, 0) all
throughout.

4. Three solitons

First we have considered states with three solitons. Our ini-
tial configuration is given by takingκ = 3 in (6), the elliptic
function of order 3

W =
σ(z − a1)
σ(z − b1)

σ(z − a2)
σ(z − b2)

σ(z − a3)
σ(z − b3)

,

3∑

j=1

aj =
3∑

j=1

bj . (12)

The values ofaj , bj have been selected in such a way that the
solitons lie symmetrically around a circle in the network (11).
This is easily achieved by fixinga1, b1 to reasonable values
and setting

a′1 = a1 − c
b′1 = b1 − c

}
, (13)

wherec = (2, 2) stands for the centre of the period cell. Then

a′j=a′1 exp (iβj)
b′j=b′1 exp (iβj)

}
; βj=(j − 1)

2π

3
, j=1, 2, 3. (14)

This symmetrical arrangement gives solitons of the same
size, and satisfies the selection rule in (12) for any choice
of the complex numbersa′1, b′1:

3∑
κ=1

a′j = (0, 0) =
3∑

κ=1

b′j . (15)

Next we go back toaj andbj through

aj = a′j + c

bj = b′j + c (16)

and supply the system with an initial speedv0 by boosting

aj → aj + vjt
bj → bj + vjt

}
; vj = −v0 exp (iβj). (17)

It is now possible to evaluate the time derivative ofW at the
initial time. Inserting (17) into (12) we get

∂tW (t) |t=0= [(∂tW1)W2W3 + W1(∂tW2)W3

+W1W2(∂tW3)]t=0 , (18)

where

∂tWj(t) |t=0 = −vj

[
∂zσ(z − aj)
σ(z − aj)

− ∂zσ(z − bj)
σ(z − bj)

]
Wj ,

Wj ≡ σ(z − aj)
σ(z − bj)

. (19)

Our initial-value problem is defined by (12) and (18)-(19).
Choosing
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a1 = (3, 2)
b1 = (1.45, 1.95)
v0 = 0.35



 , (20)

gives an initial configuration whose energy density is exhib-
ited in Fig. 1. The solitons are placed on the vertices of an
equilateral triangle; the first lump is situated along the line
y=2 atβ1 = 0◦, with respect to which solitons 2 and 3 are
rotatedβ2 = 120◦ andβ3 = 240◦, respectively. These an-
gles are readily checked from the picture with the help of a
protractor.

The results of simulations for this case are depicted in
Fig. 2 for various times. The three solitons are fired towards
the centre of the triangle, and in so doing they expand (the
peakEmax of the energy density decreases). The solitonic
trio collides head-on and coalesces in a ringish structure, then
emerging towards the vertices of the dual triangle, that is, the
initial line of approach of a given incoming soliton forms an
angle ofπ/3 with the line along which an outgoing, emerging
soliton progresses. Thisπ/3 scattering can be best appreci-
ated in Fig. 3, where both the initial state (t=0) and the final
state (t = 2) are displayed together.

Returning to Fig. 2 we see thatEmax becomes narrower
with time, particularly after the lumps scatter off and start
drawing away from each other. Att = 2, for instance, the
maximum value of the energy density goes up toEmax =
579.37. Soon aftert > 2, this peak gets so spiky that the nu-
merics breaks down: the instability of the planarO(3) model
takes over and leads to singularity formation.

FIGURE 2. The evolution of the three lumps of Fig. 1 at various
times.

FIGURE 3. Scattering atπ/3 radians.

Our result is noteworthy: the initial configuration, al-
though positioned at the vertices of an equilateral triangle in
the period cell, does not produceD3 symmetry because the
torus itself, being homogeneous but not isotropic, has no such
symmetry (the fundamental grid has directed sides). One
could reasonably expect the lumps to scatter along directions
that need not respectD3 symmetry. Therefore, the rationale
applied to explainπ/N scattering for the model on<2 is no
longer valid for the model with periodic boundary conditions.

However, we observe that as the solitons are well local-
ized the boundary conditions may not be very important, and
our numerical results are consistent with this expectation. To
test this further, we could place the solitons nearer the edges
of the grid and see whether we still observe60◦ scattering.
We hope to investigate this issue in the future.

5. Four solitons

Next we have looked at theN = 4 configurations. The initial
field is given by the elliptic function of order 4

W =
σ(z − a1)
σ(z − b1)

σ(z − a2)
σ(z − b2)

σ(z − a3)
σ(z − b3)

σ(z − a4)
σ(z − b4)

,

4∑

j=1

aj =
4∑

j=1

bj , (21)

whereaj , bj are chosen so that the solitons sit symmetrically
at the vertices of a square in the basic cell. A treatment par-
allel to that of the previous section leads to

a′j=a′1 exp (iϕj)
b′j=b′1 exp (iϕj)

}
; ϕj=(j−1)

π

2
, j=1, 2, 3, 4. (22)
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The condition between the zeros and the poles is again veri-
fied∀ a′1, b′1 :

4∑

j=1

a′j = (0, 0) =
4∑

j=1

b′j .

Both the initial velocity and the time dependence are in-
troduced by boosting:

aj → aj + vjt
bj → bj + vjt

}
; vj = −v0 exp (iϕj), (23)

where equation (16) should be kept in mind.
As pointed out in Sec. 2, four lumps involve a large en-

ergy, and while evolving in time they become too spiky be-
fore we can learn anything much about the scattering process.
We have therefore studied this system in the Skyrme version
of the theory, where the solitons are stable and may be ex-
amined for as long as required. Instead of the Lagrangian
density (4) we have thus taken:

L =
|Wt|2 − 2|Wz|2 − 2|Wz̄|2

(1 + |W |2)2

− 8θ1
|Wz|2 − |Wz̄|2
(1 + |W |2)4 (|Wt|2 + |Wz|2 − |Wz̄|2). (24)

The configuration (6) is no longer an exact solution of the
field equation derived from (24), albeit it is a very good ap-
proximation to it. Let us also stress that the presence of a
smallθ1 term does not affect either the trajectory of the lumps
before the collision or their scattering angle.

Taking

a1 = (3.10, 3.10)
b1 = (1.65, 1.575)
θ1 = 10−3

v0 = 0.35 exp(iπ/4)





, (25)

entails the state of identical ‘baby skyrmions’ illustrated in
Fig. 4. The solitonsW2, W3 andW4 are rotated90◦, 180◦

FIGURE 4. The energy distribution forN=4 att = 0.

FIGURE 5. The evolution of the four lumps of Fig. 4 gets under-
way.

FIGURE 6. Scattering atπ/4 radians.

and270◦ with respect toW1, which we have conveniently
placed in the first quadrant, roughly on the central diagonal
joining the grid points (0,0)-(4,4).

The system (21) gets moving via (23), and zeroes in on
the middle of the mesh, where the four skyrmions bump head-
on into each other. This dynamics makes the solitons scatter
off and emerge towards the vertices of the dual square, at45◦

with respect to the initial direction of motion, as depicted in
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diagram 5. Figure 6 superimposes both the initial state (t=0)
and the final state (t = 3), allowing greater clarity in the ap-
preciation of the scattering angleπ/4.

Unlike the outcome of the previous section, the dual
square scattering onT2 is not so surprising. For although
the initial data doesn’t haveD4 symmetry, it does have 4-
fold rotational symmetry and zero angular momentum. Note
that the boundary conditions (5) break theSO(2) rotational
symmetry of the plane into a 4-fold rotational symmetry.

6. Geodesic approximation

Note that, in analogy to theS2 case, when the speedv in (17)
and (22) is set to zero, our initial configuration is a static so-
lution of the equations of motion. If we changeaj , bj to a
new value given by (17) or (22) for a particular value oft the
new configuration is again a static solution of the equations of
motion. Hence asv changes, the changes (17) and (22) con-
nect configurations which correspond to static solutions of
the equations of motion. Thus it is reasonable to expect that a
system set off with a smallv will follow such a change. This
expectation goes under the name of geodesic approximation
(the system evolves by changing its zero-mode parameters).
Its validity is not expected to depend too much on whether
the model is defined onS2 or T2.

So far we have been concerned with solitons of equal
size. Let us now look into the more general situation of en-
ergy lumps of different sizes, illustrating the proceedings by
studying the caseN = 3.

First we set up the initial configuration and evolve it
through our standard numerical simulation. Then we choose
a set of collective coordinates to reproduce the results of our
simulations (trajectory, scattering), offering an explanation in
the framework of the geodesic approximation.

6.1. Numerical simulation

Our 3-soliton system is still given by a function of the
form (12), but with a layout not as symmetrical as before.
Instead of (14) we put

a′j = a′1 exp (iαj)
b′j = b′1 exp (iαj)

}
;

αj = (j − 1)
2π

3
+ (−1)(j−1)(1− δ1j)ξ, (26)

with j=1,2,3 and the numbersa′1, b′1 being fixed as custom-
ary. The initial three-soliton configuration can be written as

W =
σ(z − a1)
σ(z − b)

σ(z − a2)
σ(z − b2)

σ(z − a3)
σ(z − b3)

=
σ(z′ − a′1)
σ(z′ − b′)

σ(z′ − a′1e
iα2)

σ(z′ − b′1eiα2)
σ(z′ − a′1e

−iα2)
σ(z′ − b′1e−iα2)

, (27)

where

b′ = a′1 + 2(a′1 − b′1) cos α2, [α2 =
2π

3
− ξ], (28)

ensures that the zeros and poles comply with the constraint
in Ref. 6). As usual we switch between primed and unprimed
numbers through formula (16), plusb′=b−c and z′=z−c.
We have also used the fact thatexp(iα3) = exp(−iα2).

Note that equatingξ to zero simplifiesαj to

(j − 1)2π/3 = βj

of (14), whereupon the elliptic function (27) reduces to the
field (12) simply because

cos α2 = cos β2 = −1/2 → b′ = b′1

according to (28).
An angle ξ 6= 0 generates solitons of different sizes

which no longer enjoy the positional symmetry boasted by
the arrangement (14). In the set-up (14), whereξ=0 and
the solitons have the same size, the required relationship∑

a′j =
∑

b′j looks after itself as shown in (15). Forξ 6= 0,
a demand of the kind (28) is needed.

Now we have evolved the solitons (27) in the pure version
of theCP 1 model, with the solitons being sent into collision
in the regular fashion:

aj → (a′1 − v0t) exp (iαj) + c
b → (b′ − v0t) + c
bs → (b′1 − v0t) exp (iαs) + c



 ;

j = 1, 2, 3; s = 2, 3. (29)

FIGURE 7. Numerical simulation for solitons rotated an angle
ξ = 10◦ with respect to the symmetrical configuration of Fig. 1.
They do not scatter at60◦.
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The associated energy distribution is shown for a typical
case by the contour plot of Fig. 7, which corresponds to a
choice of parameters (20) in addition toξ = 10◦.

The starting configuration is represented by the three
wider structures whereas the final, scattered state is the nar-
rower trio plotted therein. The sense of motion is clearly in-
dicated by the arrows. We note that for both configurations
the solitons are rotated an extra angleξ with respect toW1, as
compared to their partners of Fig. 3. And, unlike the latter, it
is not the case that the three initial lumps have the same size;
nor they are situated at the vertices of an equilateral triangle.
Apparent as well from our simulations is that the scattering
angle differs fromπ/3. This is a consequence of considering
nonsymmetrical solitons, whose collisions are not elastic and
thus involve energy transfer.

Clearly the distance among the solitons differ from differ-
ent pairs of them, and so their interactions are not the same
resulting in a different scattering pattern. Can we explain
this difference? In the next subsection, we show that an ex-
planation can be provided in terms of, appropriately chosen,
collective coordinates, with the motion following appropriate
geodesics.

6.2. Collective coordinates

In order to make a wise selection of collective coordinates
let us consider closely the positions and sizes of the solitons
defined in the previous subsection.

The location of the solitons (27) is clearly

a′1 + b′

2
,

a′1 + b′1
2

eiα2 ,
a′1 + b′1

2
e−iα2 , (30)

and their sizes are
∣∣∣∣
a′1 − b′

2

∣∣∣∣ ,

∣∣∣∣
a′1 − b′1

2

∣∣∣∣ ,

∣∣∣∣
a′1 − b′1

2

∣∣∣∣ . (31)

Put

a′1 = k − χ, b′1 = k + χ, (32)

so the positions (30) adopt the form

k − χ[1 + 2 cos(α2)], keiα2 , ke−iα2 , (33)

while the sizes (31) read

|2χ cos(α2)| , |χ| , |χ| . (34)

Consistently, forξ = 0 the description (33)-(34) corresponds
to objects of the same size|χ|, which are symmetrically situ-
ated atk andk exp(±i2π/3) (with respect to the centre). For
simplicity, two out of the three lumps have the same size.

A possible collective coordinate description involves
treatingk, χ, andα2 as collective coordinates. Thus, in the
simulation we expectα2 andχ to remain approximately con-
stant, andk to vary. We are suggesting that the scattering
can be understood as proceeding (on average) with onlyk

depending on time and varying from (takek real for sim-
plicity) k > 0 to k < 0. It is easy to show, although a bit
tedious in practice (this involves estimating various elliptic
integrals which can be done partially analytically, partially
numerically), that both on<2 andT2 the kinetic energy of
the motion just described is finite. So such behaviour is pos-
sible.

We have carried out our collective coordinates “motion”
using the specific values

χ = (0.55, 0), k = (u, 0), u ∈ [1,−1], (35)

whereu varies across the interval in steps of 0.2. We see
from (33) and (35) that the configurations foru > 0 (u < 0)
correspond to incoming (outgoing/scattered) lumps. The
valueu ≈ 0 represents the situation where the solitons have
collided and are on top of each other, coalescing in the centre
of the mesh. It is largely the behaviour ofW at u ≈ 0 what
determines the scattering angle.

The states fork=(1,0) (incoming lumps) andk=(-0.2,0)
(“scattered” lumps) are depicted in Fig. 8 for the case
ξ = 10◦. As long as the path followed by the lumps and the
scattering angle is concerned, the similarity with the numer-
ically evolved situation of Fig. 7 is clear. Also, since we are
mostly interested in the relative position of the solitons and
their scattering angles, it is immaterial that the breadths of
the solitons in Fig. 7 differ from the solitons of Fig. 8.

FIGURE 8. “Scattering” according to our collective coordinates
view for ξ = 10◦, to be compared with the numerical result shown
in Fig. 7. The incoming lumps are pictured fork = (1, 0) and the
outgoing structures correspond tok = (−0.2, 0). It is not impor-
tant that the widths of these lumps are not the same as their siblings
of Fig. 7: we are interested in the relative positions and scattering
angles.
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FIGURE 9. Trajectory plots (ξ = 10◦) sketching the path followed
by the humps presented in Figs. 7 and 8. The itinerary according to
our geodesic approximation (circles) shows very good agreement
with the motion obtained via numerical simulation (solid lines).

FIGURE 10. Plots comparing the trajectory obtained via numer-
ical simulations (solid lines) and the trajectory gotten using the
geodesic approximation (circles) forξ = 20◦.

A more detailed comparison can be made via Fig. 9,
which shows consecutive snapshots [corresponding to
k=(1,0), (0.8,0), . . . , (-0,2),(-0.4,0). . . (-1,0)] of lump posi-
tions. The collective coordinate motion has been ticked with
small circles and the motion according to the time evolution
of subsection 6.1 has been sketched with solid lines. Note
that after scattering the path of the numerically evolved lumps

(continuous lines) cannot be followed much farther; this is
because the solitons get very spiky and the simulation breaks
down.

Our simulations have been carried out for several values
of ξ and have been compared with the corresponding collec-
tive coordinate motion. We have always found the trajecto-
ries from both approaches to be in agreement, thus support-
ing our choice of collective coordinates. Another illustration
is provided by Fig. 10 for the caseξ = 20◦.

7. Conclusions
In this article we have studied head-on collisions between
solitons in the (2+1)-DCP 1 model with periodic boundary
conditions, that is, with the model defined on a flat torusT2.

Through numerical simulations we have found that soli-
tons of equal sizes (at the initial time) scatter at an angleπ/N
(dual-polygon scattering), whereN is the soliton number or
topological charge of the system. In this paper we have fo-
cused onN = 3, 4 (the caseN = 2 has been considered
previously [4], and it has been found to comply with theπ/2
scattering).

Unlike the usual model on<2, our model with periodic
boundary conditions breaks theSO(2) rotational invariance
of the plane, leaving us with a numerical mesh with directed
sides where the initial soliton configuration has no symmetry
under the dihedral groupDN . It is remarkable to still find
π/N scattering onT2, especially forN = 3; for N = 4,
since theSO(2) symmetry breaks into a four-fold rotational
symmetry, the results are noteworthy but less unexpected. In
any case, we need to study this matter further through numer-
ical experiments with lumps situated near the borders of the
cell, and check for deviations fromDN scattering.

We have also considered solitons of different sizes (at the
initial time) and have observed that the scattering angle is no
longerπ/N , outcome arising from the fact that there is en-
ergy transfer in collisions between unsymmetrical solitons.

By reparametrising the quantities describing the positions
of the solitons using a judicious set of collective coordinates,
we have been able to reproduce the above numerical results,
thus offering an explanation of the scattering process. We
have illustrated this approach using a 3-soliton field.

These results raise important questions pertaining to the
interplay between the symmetry of the initial configuration
and the lack of symmetry of the torus itself. As pointed out at
the end of Sec. 4, the non-isotropy of the torus might af-
fect the evolution of the lumps if they are initially placed
near the boundary of the mesh. What about systems with
N = 5, 6, . . .? Numerical experiments on a periodic, rect-
angular grid would also be worth performing. We hope to
report on these matters in the near future.
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